regmap.c 71.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22

M
Mark Brown 已提交
23
#define CREATE_TRACE_POINTS
24
#include "trace.h"
M
Mark Brown 已提交
25

26
#include "internal.h"
27

28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
38
			       bool *change, bool force_write);
39

40 41
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
42 43
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
44 45
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
46 47
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
48 49
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

65 66
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
67 68 69 70 71 72 73 74 75 76 77 78
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
79
EXPORT_SYMBOL_GPL(regmap_check_range_table);
80

81 82 83 84 85 86 87 88
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

89
	if (map->wr_table)
90
		return regmap_check_range_table(map, reg, map->wr_table);
91

92 93 94 95 96
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
97 98 99
	if (!map->reg_read)
		return false;

100 101 102
	if (map->max_register && reg > map->max_register)
		return false;

103 104 105
	if (map->format.format_write)
		return false;

106 107 108
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

109
	if (map->rd_table)
110
		return regmap_check_range_table(map, reg, map->rd_table);
111

112 113 114 115 116
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
117
	if (!map->format.format_write && !regmap_readable(map, reg))
118 119 120 121 122
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

123
	if (map->volatile_table)
124
		return regmap_check_range_table(map, reg, map->volatile_table);
125

126 127 128 129
	if (map->cache_ops)
		return false;
	else
		return true;
130 131 132 133
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
134
	if (!regmap_readable(map, reg))
135 136 137 138 139
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

140
	if (map->precious_table)
141
		return regmap_check_range_table(map, reg, map->precious_table);
142

143 144 145
	return false;
}

146
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
147
	size_t num)
148 149 150 151 152 153 154 155 156 157
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

158 159 160 161 162 163 164 165
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

180 181 182 183 184 185 186 187 188 189
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

190
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 192 193
{
	u8 *b = buf;

194
	b[0] = val << shift;
195 196
}

197
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 199 200
{
	__be16 *b = buf;

201
	b[0] = cpu_to_be16(val << shift);
202 203
}

204 205 206 207 208 209 210
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

211 212 213 214 215 216
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

217
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 219 220
{
	u8 *b = buf;

221 222
	val <<= shift;

223 224 225 226 227
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

228
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 230 231
{
	__be32 *b = buf;

232
	b[0] = cpu_to_be32(val << shift);
233 234
}

235 236 237 238 239 240 241
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

242 243 244 245 246 247
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
248 249 250 251 252
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

253
	b[0] = cpu_to_be64((u64)val << shift);
X
Xiubo Li 已提交
254 255 256 257 258 259
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

260
	b[0] = cpu_to_le64((u64)val << shift);
X
Xiubo Li 已提交
261 262 263 264 265
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
266
	*(u64 *)buf = (u64)val << shift;
X
Xiubo Li 已提交
267 268 269
}
#endif

270
static void regmap_parse_inplace_noop(void *buf)
271
{
272 273 274 275 276
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
277 278 279 280

	return b[0];
}

281 282 283 284 285 286 287
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

288 289 290 291 292 293 294
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

295
static void regmap_parse_16_be_inplace(void *buf)
296 297 298 299 300 301
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

302 303 304 305 306 307 308
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

309
static unsigned int regmap_parse_16_native(const void *buf)
310 311 312 313
{
	return *(u16 *)buf;
}

314
static unsigned int regmap_parse_24(const void *buf)
315
{
316
	const u8 *b = buf;
317 318 319 320 321 322 323
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

324 325 326 327 328 329 330
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

331 332 333 334 335 336 337
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

338
static void regmap_parse_32_be_inplace(void *buf)
339 340 341 342 343 344
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

345 346 347 348 349 350 351
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

352
static unsigned int regmap_parse_32_native(const void *buf)
353 354 355 356
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

392
static void regmap_lock_mutex(void *__map)
393
{
394
	struct regmap *map = __map;
395 396 397
	mutex_lock(&map->mutex);
}

398
static void regmap_unlock_mutex(void *__map)
399
{
400
	struct regmap *map = __map;
401 402 403
	mutex_unlock(&map->mutex);
}

404
static void regmap_lock_spinlock(void *__map)
405
__acquires(&map->spinlock)
406
{
407
	struct regmap *map = __map;
408 409 410 411
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
412 413
}

414
static void regmap_unlock_spinlock(void *__map)
415
__releases(&map->spinlock)
416
{
417
	struct regmap *map = __map;
418
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 420
}

M
Mark Brown 已提交
421 422 423 424 425 426 427 428 429
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
528

529 530 531 532 533 534 535 536
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

537 538 539
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
540
{
541
	struct device_node *np;
542
	enum regmap_endian endian;
543

544
	/* Retrieve the endianness specification from the regmap config */
545
	endian = config->val_format_endian;
546

547
	/* If the regmap config specified a non-default value, use that */
548 549
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
550

551 552 553
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
554

555 556 557 558 559 560 561 562 563 564
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
565 566

	/* Retrieve the endianness specification from the bus config */
567 568
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
569

570
	/* If the bus specified a non-default value, use that */
571 572
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
573 574

	/* Use this if no other value was found */
575
	return REGMAP_ENDIAN_BIG;
576
}
577
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578

579 580 581 582 583 584
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
585
{
586
	struct regmap *map;
587
	int ret = -EINVAL;
588
	enum regmap_endian reg_endian, val_endian;
589
	int i, j;
590

591
	if (!config)
592
		goto err;
593 594 595 596 597 598 599

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

600 601 602 603
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
604
	} else {
605 606
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
607 608 609
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
610 611
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
612 613 614 615
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
616 617
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
618 619
		}
		map->lock_arg = map;
620
	}
621 622 623 624 625 626 627 628 629 630

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

631
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632
	map->format.pad_bytes = config->pad_bits / 8;
633
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634 635
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
636
	map->reg_shift = config->pad_bits % 8;
637 638 639 640
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
641 642
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
643
	map->can_multi_write = config->can_multi_write && bus && bus->write;
644 645 646 647
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
648 649
	map->dev = dev;
	map->bus = bus;
650
	map->bus_context = bus_context;
651
	map->max_register = config->max_register;
652 653 654 655
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
656 657 658
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
659
	map->precious_reg = config->precious_reg;
660
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
661
	map->name = config->name;
662

663 664
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
665
	INIT_LIST_HEAD(&map->async_free);
666 667
	init_waitqueue_head(&map->async_waitq);

668 669 670
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
671
	} else if (bus) {
672 673 674
		map->read_flag_mask = bus->read_flag_mask;
	}

675 676 677 678
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

679 680 681 682 683 684
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

685 686 687 688
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
689
		map->reg_update_bits = bus->reg_update_bits;
690
	}
691

692 693
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
694

695
	switch (config->reg_bits + map->reg_shift) {
696 697 698 699 700 701 702 703 704 705
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

726 727 728 729 730 731 732 733 734 735
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

736 737 738 739 740
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
741 742 743 744 745 746 747 748 749 750
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
751 752
		break;

753 754 755 756 757 758
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

759
	case 32:
760 761 762 763 764 765 766 767 768 769
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
770 771
		break;

X
Xiubo Li 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif

787 788 789 790
	default:
		goto err_map;
	}

791 792 793
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

794 795 796 797
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
798
		map->format.parse_inplace = regmap_parse_inplace_noop;
799 800
		break;
	case 16:
801 802 803 804
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
805
			map->format.parse_inplace = regmap_parse_16_be_inplace;
806
			break;
807 808 809 810 811
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
812 813 814 815 816 817 818
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
819
		break;
820
	case 24:
821 822
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
823 824 825
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
826
	case 32:
827 828 829 830
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
831
			map->format.parse_inplace = regmap_parse_32_be_inplace;
832
			break;
833 834 835 836 837
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
838 839 840 841 842 843 844
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
845
		break;
X
Xiubo Li 已提交
846
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
847
	case 64:
X
Xiubo Li 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif
868 869
	}

870 871 872 873
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
874
		map->use_single_write = true;
875
	}
876

877 878 879 880
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

881
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882 883
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
884
		goto err_map;
885 886
	}

887 888
	if (map->format.format_write) {
		map->defer_caching = false;
889
		map->reg_write = _regmap_bus_formatted_write;
890 891
	} else if (map->format.format_val) {
		map->defer_caching = true;
892
		map->reg_write = _regmap_bus_raw_write;
893 894 895
	}

skip_format_initialization:
896

897
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
898
	for (i = 0; i < config->num_ranges; i++) {
899 900 901 902
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
903 904 905
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
906
			goto err_range;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
926 927 928

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
929
		for (j = 0; j < config->num_ranges; j++) {
930 931 932 933 934
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

935 936 937 938
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

939 940
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
941 942 943
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
944 945 946 947 948
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
949 950 951
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
952 953 954 955 956 957 958 959 960 961
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

962
		new->map = map;
M
Mark Brown 已提交
963
		new->name = range_cfg->name;
964 965 966 967 968 969 970 971
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
972
		if (!_regmap_range_add(map, new)) {
973
			dev_err(map->dev, "Failed to add range %d\n", i);
974 975 976 977 978 979 980 981 982 983 984 985 986
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
987

988
	ret = regcache_init(map, config);
989
	if (ret != 0)
990 991
		goto err_range;

992
	if (dev) {
993 994 995
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
996
	}
M
Mark Brown 已提交
997

998 999
	return map;

1000
err_regcache:
M
Mark Brown 已提交
1001
	regcache_exit(map);
1002 1003
err_range:
	regmap_range_exit(map);
1004
	kfree(map->work_buf);
1005 1006 1007 1008 1009
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1010
EXPORT_SYMBOL_GPL(__regmap_init);
1011

1012 1013 1014 1015 1016
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1017 1018 1019 1020 1021 1022
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1023 1024 1025 1026 1027 1028 1029
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1030 1031
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1041
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042

1043 1044 1045 1046 1047 1048
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1049
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050 1051
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1143 1144 1145
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1146 1147 1148 1149
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1150
	regmap_debugfs_exit(map);
1151 1152 1153 1154 1155 1156 1157 1158

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1159
	regmap_debugfs_init(map, config->name);
1160

1161 1162 1163
	map->cache_bypass = false;
	map->cache_only = false;

1164
	return regcache_init(map, config);
1165
}
1166
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167

1168 1169 1170 1171 1172
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1173 1174
	struct regmap_async *async;

1175
	regcache_exit(map);
1176
	regmap_debugfs_exit(map);
1177
	regmap_range_exit(map);
1178
	if (map->bus && map->bus->free_context)
1179
		map->bus->free_context(map->bus_context);
1180
	kfree(map->work_buf);
M
Mark Brown 已提交
1181 1182 1183 1184 1185 1186 1187 1188
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1189 1190 1191 1192
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1242
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1243

1244
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245
			       struct regmap_range_node *range,
1246 1247 1248 1249 1250 1251 1252 1253
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1254 1255
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1256

1257 1258 1259 1260
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1261

1262 1263 1264 1265
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1266

1267 1268 1269 1270 1271 1272 1273 1274
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1275

1276 1277 1278
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1279
					  &page_chg, false);
1280

1281
		map->work_buf = orig_work_buf;
1282

1283
		if (ret != 0)
1284
			return ret;
1285 1286
	}

1287 1288
	*reg = range->window_start + win_offset;

1289 1290 1291
	return 0;
}

1292
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293
		      const void *val, size_t val_len)
1294
{
1295
	struct regmap_range_node *range;
1296
	unsigned long flags;
1297
	u8 *u8 = map->work_buf;
1298 1299
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1300 1301 1302
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1303 1304
	int i;

1305
	WARN_ON(!map->bus);
1306

1307 1308 1309
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1310 1311
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1312
				return -EINVAL;
1313

1314 1315 1316 1317
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1318
			ival = map->format.parse_val(val + (i * val_bytes));
1319 1320
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1321 1322
			if (ret) {
				dev_err(map->dev,
1323
					"Error in caching of register: %x ret: %d\n",
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1334 1335
	range = _regmap_range_lookup(map, reg);
	if (range) {
1336 1337 1338 1339 1340 1341
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1342
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1343 1344
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1345
						map->format.val_bytes);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1360
		if (ret != 0)
1361 1362
			return ret;
	}
1363

1364
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365

1366 1367
	u8[0] |= map->write_flag_mask;

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1378
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1379
		struct regmap_async *async;
1380

1381
		trace_regmap_async_write_start(map, reg, val_len);
1382

M
Mark Brown 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1426 1427 1428 1429 1430 1431

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1432
			list_move(&async->list, &map->async_free);
1433 1434
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1435 1436

		return ret;
1437 1438
	}

1439
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1440

1441 1442 1443 1444
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1445
	if (val == work_val)
1446
		ret = map->bus->write(map->bus_context, map->work_buf,
1447 1448 1449
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1450
	else if (map->bus->gather_write)
1451
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452 1453
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1454 1455
					     val, val_len);

1456
	/* If that didn't work fall back on linearising by hand. */
1457
	if (ret == -ENOTSUPP) {
1458 1459
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1460 1461 1462 1463
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1464 1465
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1466
		ret = map->bus->write(map->bus_context, buf, len);
1467 1468 1469 1470

		kfree(buf);
	}

1471
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1472

1473 1474 1475
	return ret;
}

1476 1477 1478 1479 1480 1481 1482
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1483 1484
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1485 1486 1487
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1510 1511 1512 1513 1514 1515 1516
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1517
	WARN_ON(!map->bus || !map->format.format_write);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1528
	trace_regmap_hw_write_start(map, reg, 1);
1529 1530 1531 1532

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1533
	trace_regmap_hw_write_done(map, reg, 1);
1534 1535 1536 1537

	return ret;
}

1538 1539 1540 1541 1542 1543 1544 1545
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1546 1547 1548 1549 1550
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1551
	WARN_ON(!map->bus || !map->format.format_val);
1552 1553 1554 1555 1556 1557 1558

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1559
				 map->format.val_bytes);
1560 1561
}

1562 1563 1564 1565 1566
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1567 1568
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1569
{
M
Mark Brown 已提交
1570
	int ret;
1571
	void *context = _regmap_map_get_context(map);
1572

1573 1574 1575
	if (!regmap_writeable(map, reg))
		return -EIO;

1576
	if (!map->cache_bypass && !map->defer_caching) {
1577 1578 1579
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1580 1581
		if (map->cache_only) {
			map->cache_dirty = true;
1582
			return 0;
1583
		}
1584 1585
	}

1586
#ifdef LOG_DEVICE
1587
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588 1589 1590
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1591
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1592

1593
	return map->reg_write(context, reg, val);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1610
	if (!IS_ALIGNED(reg, map->reg_stride))
1611 1612
		return -EINVAL;

1613
	map->lock(map->lock_arg);
1614 1615 1616

	ret = _regmap_write(map, reg, val);

1617
	map->unlock(map->lock_arg);
1618 1619 1620 1621 1622

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1637
	if (!IS_ALIGNED(reg, map->reg_stride))
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1675
	if (!regmap_can_raw_write(map))
1676
		return -EINVAL;
1677 1678
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1679 1680
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1681

1682
	map->lock(map->lock_arg);
1683

1684
	ret = _regmap_raw_write(map, reg, val, val_len);
1685

1686
	map->unlock(map->lock_arg);
1687 1688 1689 1690 1691

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_write_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_force_write);

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1788 1789 1790 1791 1792 1793 1794 1795 1796
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1797
 * data to the device either in single transfer or multiple transfer.
1798 1799 1800 1801 1802 1803 1804 1805 1806
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1807
	size_t total_size = val_bytes * val_count;
1808

1809
	if (map->bus && !map->format.parse_inplace)
1810
		return -EINVAL;
1811
	if (!IS_ALIGNED(reg, map->reg_stride))
1812
		return -EINVAL;
1813

1814 1815
	/*
	 * Some devices don't support bulk write, for
1816 1817 1818 1819 1820 1821 1822
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1823
	 */
1824
	if (!map->bus) {
1825
		map->lock(map->lock_arg);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1848

1849 1850 1851 1852 1853
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1854 1855
out:
		map->unlock(map->lock_arg);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1870
		map->lock(map->lock_arg);
1871 1872
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1873
			ret = _regmap_raw_write(map,
1874 1875 1876
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1877 1878 1879
			if (ret)
				break;
		}
1880 1881 1882 1883 1884 1885 1886

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1887
		map->unlock(map->lock_arg);
1888
	} else {
1889 1890
		void *wval;

1891 1892 1893
		if (!val_count)
			return -EINVAL;

1894
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1895 1896
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1897
			return -ENOMEM;
1898 1899
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1900
			map->format.parse_inplace(wval + i);
1901

1902
		map->lock(map->lock_arg);
1903
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1904
		map->unlock(map->lock_arg);
1905 1906

		kfree(wval);
1907
	}
1908 1909 1910 1911
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1912 1913 1914 1915 1916
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1917
 * relative. The page register has been written if that was necessary.
1918 1919
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
1920
				       const struct reg_sequence *regs,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1933 1934 1935
	if (!len)
		return -EINVAL;

1936 1937 1938 1939 1940 1941 1942 1943 1944
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
1945 1946
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
1947
		trace_regmap_hw_write_start(map, reg, 1);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1962
		trace_regmap_hw_write_done(map, reg, 1);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1977
					       struct reg_sequence *regs,
1978 1979 1980 1981
					       size_t num_regs)
{
	int ret;
	int i, n;
1982
	struct reg_sequence *base;
1983
	unsigned int this_page = 0;
1984
	unsigned int page_change = 0;
1985 1986 1987
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
1988 1989
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2025 2026 2027
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2028 2029 2030 2031

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2032 2033
				base += n;
				n = 0;
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2045
		}
2046

2047 2048 2049 2050 2051 2052
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2053
static int _regmap_multi_reg_write(struct regmap *map,
2054
				   const struct reg_sequence *regs,
2055
				   size_t num_regs)
2056
{
2057 2058 2059 2060 2061 2062 2063 2064
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2065 2066 2067

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2080
			if (!IS_ALIGNED(reg, map->reg_stride))
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2103 2104

	for (i = 0; i < num_regs; i++) {
2105 2106
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2107 2108 2109 2110

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2111
		range = _regmap_range_lookup(map, reg);
2112
		if (range || regs[i].delay_us) {
2113 2114
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2115 2116 2117 2118 2119 2120 2121
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2122 2123 2124
			return ret;
		}
	}
2125
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2126 2127
}

2128 2129 2130
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
2131 2132
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
2133 2134 2135 2136 2137
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2138 2139 2140 2141 2142
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2143
 *
2144 2145
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2146
 */
2147
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2148
			   int num_regs)
2149
{
2150
	int ret;
2151 2152 2153

	map->lock(map->lock_arg);

2154 2155
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2156 2157 2158 2159 2160 2161
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2162 2163 2164 2165
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2179
int regmap_multi_reg_write_bypassed(struct regmap *map,
2180
				    const struct reg_sequence *regs,
2181
				    int num_regs)
2182
{
2183 2184
	int ret;
	bool bypass;
2185 2186 2187

	map->lock(map->lock_arg);

2188 2189 2190 2191 2192 2193 2194
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2195 2196 2197 2198
	map->unlock(map->lock_arg);

	return ret;
}
2199
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2230
	if (!IS_ALIGNED(reg, map->reg_stride))
2231 2232 2233 2234
		return -EINVAL;

	map->lock(map->lock_arg);

2235 2236 2237 2238 2239
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2240 2241 2242 2243 2244 2245 2246

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2247 2248 2249
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2250
	struct regmap_range_node *range;
2251 2252 2253
	u8 *u8 = map->work_buf;
	int ret;

2254
	WARN_ON(!map->bus);
2255

2256 2257 2258 2259
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2260
		if (ret != 0)
2261 2262
			return ret;
	}
2263

2264
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265 2266

	/*
2267
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2268
	 * register address; since it's always the high bits for all
2269 2270 2271
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2272
	u8[0] |= map->read_flag_mask;
2273

2274
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2275

2276
	ret = map->bus->read(map->bus_context, map->work_buf,
2277
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2278
			     val, val_len);
2279

2280
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2281 2282

	return ret;
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2309 2310 2311 2312
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2313 2314
	void *context = _regmap_map_get_context(map);

2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2324 2325 2326
	if (!regmap_readable(map, reg))
		return -EIO;

2327
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2328
	if (ret == 0) {
2329
#ifdef LOG_DEVICE
2330
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331 2332 2333
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2334
		trace_regmap_reg_read(map, reg, *val);
2335

2336 2337 2338
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2339

2340 2341 2342 2343 2344 2345
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2346
 * @map: Register map to read from
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2357
	if (!IS_ALIGNED(reg, map->reg_stride))
2358 2359
		return -EINVAL;

2360
	map->lock(map->lock_arg);
2361 2362 2363

	ret = _regmap_read(map, reg, val);

2364
	map->unlock(map->lock_arg);
2365 2366 2367 2368 2369 2370 2371 2372

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2373
 * @map: Register map to read from
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2384 2385 2386 2387
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2388

2389 2390
	if (!map->bus)
		return -EINVAL;
2391 2392
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2393
	if (!IS_ALIGNED(reg, map->reg_stride))
2394
		return -EINVAL;
2395 2396
	if (val_count == 0)
		return -EINVAL;
2397

2398
	map->lock(map->lock_arg);
2399

2400 2401
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2402 2403 2404 2405
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2406 2407 2408 2409
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2410

2411 2412 2413 2414 2415 2416 2417 2418
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2419 2420
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2421 2422 2423
			if (ret != 0)
				goto out;

2424
			map->format.format_val(val + (i * val_bytes), v, 0);
2425 2426
		}
	}
2427

2428
 out:
2429
	map->unlock(map->lock_arg);
2430 2431 2432 2433 2434

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2493 2494 2495
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2496
 * @map: Register map to read from
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2509
	bool vol = regmap_volatile_range(map, reg, val_count);
2510

2511
	if (!IS_ALIGNED(reg, map->reg_stride))
2512
		return -EINVAL;
2513

2514
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515 2516 2517 2518
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2519 2520 2521 2522
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2523 2524 2525 2526
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2564
		}
2565 2566

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567
			map->format.parse_inplace(val + i);
2568 2569
	} else {
		for (i = 0; i < val_count; i++) {
2570
			unsigned int ival;
2571
			ret = regmap_read(map, reg + (i * map->reg_stride),
2572
					  &ival);
2573 2574
			if (ret != 0)
				return ret;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
2585
#ifdef CONFIG_64BIT
X
Xiubo Li 已提交
2586
				u64 *u64 = val;
2587
#endif
2588 2589 2590 2591 2592
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2593 2594 2595 2596 2597
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2611 2612
		}
	}
2613 2614 2615 2616 2617

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2618 2619
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2620
			       bool *change, bool force_write)
2621 2622
{
	int ret;
2623
	unsigned int tmp, orig;
2624

2625 2626
	if (change)
		*change = false;
2627

2628 2629 2630
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2631
			*change = true;
2632
	} else {
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2645
	}
2646 2647 2648

	return ret;
}
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2663 2664
	int ret;

2665
	map->lock(map->lock_arg);
2666
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2667
	map->unlock(map->lock_arg);
2668 2669

	return ret;
2670
}
2671
EXPORT_SYMBOL_GPL(regmap_update_bits);
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/**
 * regmap_write_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_write_bits(struct regmap *map, unsigned int reg,
		      unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);
	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_bits);

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2720
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2721 2722 2723 2724 2725 2726 2727 2728 2729

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2746 2747
	int ret;

2748
	map->lock(map->lock_arg);
2749
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2750
	map->unlock(map->lock_arg);
2751
	return ret;
2752 2753 2754
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2782
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2783 2784 2785 2786 2787 2788 2789 2790 2791

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2792 2793 2794 2795 2796
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2797
	trace_regmap_async_io_complete(map);
2798

2799
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2800
	list_move(&async->list, &map->async_free);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2811
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2839
	if (!map->bus || !map->bus->async_write)
2840 2841
		return 0;

2842
	trace_regmap_async_complete_start(map);
2843

2844 2845 2846 2847 2848 2849 2850
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2851
	trace_regmap_async_complete_done(map);
2852

2853 2854
	return ret;
}
2855
EXPORT_SYMBOL_GPL(regmap_async_complete);
2856

M
Mark Brown 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2870 2871 2872
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2873
 */
2874
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2875 2876
			  int num_regs)
{
2877
	struct reg_sequence *p;
2878
	int ret;
M
Mark Brown 已提交
2879 2880
	bool bypass;

2881 2882 2883 2884
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2885
	p = krealloc(map->patch,
2886
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2887 2888 2889 2890 2891
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2892
	} else {
2893
		return -ENOMEM;
M
Mark Brown 已提交
2894 2895
	}

2896
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2897 2898 2899 2900

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2901
	map->async = true;
M
Mark Brown 已提交
2902

2903
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2904

2905
	map->async = false;
M
Mark Brown 已提交
2906 2907
	map->cache_bypass = bypass;

2908
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2909

2910 2911
	regmap_async_complete(map);

M
Mark Brown 已提交
2912 2913 2914 2915
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2916
/*
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2967 2968 2969 2970 2971 2972 2973
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);