regmap.c 54.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
40 41 42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

59 60
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
61 62 63 64 65 66 67 68 69 70 71 72
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
73
EXPORT_SYMBOL_GPL(regmap_check_range_table);
74

75 76 77 78 79 80 81 82
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

83
	if (map->wr_table)
84
		return regmap_check_range_table(map, reg, map->wr_table);
85

86 87 88 89 90 91 92 93
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

94 95 96
	if (map->format.format_write)
		return false;

97 98 99
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

100
	if (map->rd_table)
101
		return regmap_check_range_table(map, reg, map->rd_table);
102

103 104 105 106 107
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
108
	if (!regmap_readable(map, reg))
109 110 111 112 113
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

114
	if (map->volatile_table)
115
		return regmap_check_range_table(map, reg, map->volatile_table);
116

117 118 119 120
	if (map->cache_ops)
		return false;
	else
		return true;
121 122 123 124
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
125
	if (!regmap_readable(map, reg))
126 127 128 129 130
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

131
	if (map->precious_table)
132
		return regmap_check_range_table(map, reg, map->precious_table);
133

134 135 136
	return false;
}

137
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
138
	size_t num)
139 140 141 142 143 144 145 146 147 148
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

149 150 151 152 153 154 155 156
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

171 172 173 174 175 176 177 178 179 180
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

181
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 183 184
{
	u8 *b = buf;

185
	b[0] = val << shift;
186 187
}

188
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 190 191
{
	__be16 *b = buf;

192
	b[0] = cpu_to_be16(val << shift);
193 194
}

195 196 197 198 199 200
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

201
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 203 204
{
	u8 *b = buf;

205 206
	val <<= shift;

207 208 209 210 211
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

212
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 214 215
{
	__be32 *b = buf;

216
	b[0] = cpu_to_be32(val << shift);
217 218
}

219 220 221 222 223 224
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

225
static void regmap_parse_inplace_noop(void *buf)
226
{
227 228 229 230 231
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
232 233 234 235

	return b[0];
}

236 237 238 239 240 241 242 243
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
244 245 246 247 248 249
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

250
static unsigned int regmap_parse_16_native(const void *buf)
251 252 253 254
{
	return *(u16 *)buf;
}

255
static unsigned int regmap_parse_24(const void *buf)
256
{
257
	const u8 *b = buf;
258 259 260 261 262 263 264
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

265 266 267 268 269 270 271 272
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
273 274 275 276 277 278
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

279
static unsigned int regmap_parse_32_native(const void *buf)
280 281 282 283
{
	return *(u32 *)buf;
}

284
static void regmap_lock_mutex(void *__map)
285
{
286
	struct regmap *map = __map;
287 288 289
	mutex_lock(&map->mutex);
}

290
static void regmap_unlock_mutex(void *__map)
291
{
292
	struct regmap *map = __map;
293 294 295
	mutex_unlock(&map->mutex);
}

296
static void regmap_lock_spinlock(void *__map)
297
__acquires(&map->spinlock)
298
{
299
	struct regmap *map = __map;
300 301 302 303
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
304 305
}

306
static void regmap_unlock_spinlock(void *__map)
307
__releases(&map->spinlock)
308
{
309
	struct regmap *map = __map;
310
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 312
}

M
Mark Brown 已提交
313 314 315 316 317 318 319 320 321
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

405 406 407 408 409
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
410
 * @bus_context: Data passed to bus-specific callbacks
411 412 413 414 415 416 417 418
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
419
			   void *bus_context,
420 421
			   const struct regmap_config *config)
{
422
	struct regmap *map;
423
	int ret = -EINVAL;
424
	enum regmap_endian reg_endian, val_endian;
425
	int i, j;
426

427
	if (!config)
428
		goto err;
429 430 431 432 433 434 435

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

436 437 438 439
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
440
	} else {
441 442
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
443 444 445 446 447 448 449 450 451
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
452
	}
453
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454
	map->format.pad_bytes = config->pad_bits / 8;
455
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 457
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
458
	map->reg_shift = config->pad_bits % 8;
459 460 461 462
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
463
	map->use_single_rw = config->use_single_rw;
464 465
	map->dev = dev;
	map->bus = bus;
466
	map->bus_context = bus_context;
467
	map->max_register = config->max_register;
468 469 470 471
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
472 473 474
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
475
	map->precious_reg = config->precious_reg;
476
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
477
	map->name = config->name;
478

479 480
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
481
	INIT_LIST_HEAD(&map->async_free);
482 483
	init_waitqueue_head(&map->async_waitq);

484 485 486
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
487
	} else if (bus) {
488 489 490
		map->read_flag_mask = bus->read_flag_mask;
	}

491 492 493 494 495 496 497 498 499
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
500

501 502 503 504 505 506 507 508 509 510 511 512
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

513
	switch (config->reg_bits + map->reg_shift) {
514 515 516 517 518 519 520 521 522 523
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

544 545 546 547 548 549 550 551 552 553
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

554 555 556 557 558
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
559 560 561 562 563 564 565 566 567 568
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
569 570
		break;

571 572 573 574 575 576
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

577
	case 32:
578 579 580 581 582 583 584 585 586 587
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
588 589
		break;

590 591 592 593
	default:
		goto err_map;
	}

594 595 596
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

597 598 599 600
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
601
		map->format.parse_inplace = regmap_parse_inplace_noop;
602 603
		break;
	case 16:
604 605 606 607
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
608
			map->format.parse_inplace = regmap_parse_16_be_inplace;
609 610 611 612 613 614 615 616
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
617
		break;
618
	case 24:
619 620
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
621 622 623
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
624
	case 32:
625 626 627 628
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
629
			map->format.parse_inplace = regmap_parse_32_be_inplace;
630 631 632 633 634 635 636 637
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
638
		break;
639 640
	}

641 642 643 644
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
645
		map->use_single_rw = true;
646
	}
647

648 649 650 651
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

652
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
653 654
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
655
		goto err_map;
656 657
	}

658 659
	if (map->format.format_write) {
		map->defer_caching = false;
660
		map->reg_write = _regmap_bus_formatted_write;
661 662
	} else if (map->format.format_val) {
		map->defer_caching = true;
663
		map->reg_write = _regmap_bus_raw_write;
664 665 666
	}

skip_format_initialization:
667

668
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
669
	for (i = 0; i < config->num_ranges; i++) {
670 671 672 673
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
674 675 676
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
677
			goto err_range;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
697 698 699

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
700
		for (j = 0; j < config->num_ranges; j++) {
701 702 703 704 705
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

706 707 708 709
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

710 711
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
712 713 714
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
715 716 717 718 719
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
720 721 722
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
723 724 725 726 727 728 729 730 731 732
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

733
		new->map = map;
M
Mark Brown 已提交
734
		new->name = range_cfg->name;
735 736 737 738 739 740 741 742 743
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

		if (_regmap_range_add(map, new) == false) {
744
			dev_err(map->dev, "Failed to add range %d\n", i);
745 746 747 748 749 750 751 752 753 754 755 756 757
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
758

759
	ret = regcache_init(map, config);
760
	if (ret != 0)
761 762
		goto err_range;

763 764 765 766
	if (dev)
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
M
Mark Brown 已提交
767

768 769
	return map;

770
err_regcache:
M
Mark Brown 已提交
771
	regcache_exit(map);
772 773
err_range:
	regmap_range_exit(map);
774
	kfree(map->work_buf);
775 776 777 778 779 780 781
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

782 783 784 785 786 787 788 789 790 791
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
792
 * @bus_context: Data passed to bus-specific callbacks
793 794 795 796 797 798 799 800 801
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
802
				void *bus_context,
803 804 805 806 807 808 809 810
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

811
	regmap = regmap_init(dev, bus, bus_context, config);
812 813 814 815 816 817 818 819 820 821 822
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

823 824 825 826 827 828 829 830
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
831 832
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

914 915 916 917 918 919 920 921 922 923
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
924 925 926
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
927 928 929 930
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
931
	regmap_debugfs_exit(map);
932 933 934 935 936 937 938 939

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

940
	regmap_debugfs_init(map, config->name);
941

942 943 944
	map->cache_bypass = false;
	map->cache_only = false;

945
	return regcache_init(map, config);
946
}
947
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
948

949 950 951 952 953
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
954 955
	struct regmap_async *async;

956
	regcache_exit(map);
957
	regmap_debugfs_exit(map);
958
	regmap_range_exit(map);
959
	if (map->bus && map->bus->free_context)
960
		map->bus->free_context(map->bus_context);
961
	kfree(map->work_buf);
M
Mark Brown 已提交
962 963 964 965 966 967 968 969
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
970 971 972 973
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

1012
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1013
			       struct regmap_range_node *range,
1014 1015 1016 1017 1018 1019 1020 1021
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1022 1023
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1024

1025 1026 1027 1028
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1029

1030 1031 1032 1033
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1034

1035 1036 1037 1038 1039 1040 1041 1042
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1043

1044 1045 1046 1047
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1048

1049
		map->work_buf = orig_work_buf;
1050

1051
		if (ret != 0)
1052
			return ret;
1053 1054
	}

1055 1056
	*reg = range->window_start + win_offset;

1057 1058 1059
	return 0;
}

1060
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1061
		      const void *val, size_t val_len)
1062
{
1063
	struct regmap_range_node *range;
1064
	unsigned long flags;
1065
	u8 *u8 = map->work_buf;
1066 1067
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1068 1069 1070
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1071 1072
	int i;

1073
	WARN_ON(!map->bus);
1074

1075 1076 1077
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1078 1079
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1080
				return -EINVAL;
1081

1082 1083 1084 1085
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1086
			ival = map->format.parse_val(val + (i * val_bytes));
1087 1088
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1089 1090
			if (ret) {
				dev_err(map->dev,
1091
					"Error in caching of register: %x ret: %d\n",
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1102 1103
	range = _regmap_range_lookup(map, reg);
	if (range) {
1104 1105 1106 1107 1108 1109
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1110
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1111 1112
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1113
						map->format.val_bytes);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1128
		if (ret != 0)
1129 1130
			return ret;
	}
1131

1132
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1133

1134 1135
	u8[0] |= map->write_flag_mask;

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1146
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1147
		struct regmap_async *async;
1148

1149 1150
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1194 1195 1196 1197 1198 1199

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1200
			list_move(&async->list, &map->async_free);
1201 1202
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1203 1204

		return ret;
1205 1206
	}

M
Mark Brown 已提交
1207 1208 1209
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1210 1211 1212 1213
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1214
	if (val == work_val)
1215
		ret = map->bus->write(map->bus_context, map->work_buf,
1216 1217 1218
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1219
	else if (map->bus->gather_write)
1220
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1221 1222
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1223 1224
					     val, val_len);

1225
	/* If that didn't work fall back on linearising by hand. */
1226
	if (ret == -ENOTSUPP) {
1227 1228
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1229 1230 1231 1232
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1233 1234
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1235
		ret = map->bus->write(map->bus_context, buf, len);
1236 1237 1238 1239

		kfree(buf);
	}

M
Mark Brown 已提交
1240 1241 1242
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1243 1244 1245
	return ret;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1257 1258 1259 1260 1261 1262 1263
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1264
	WARN_ON(!map->bus || !map->format.format_write);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1290
	WARN_ON(!map->bus || !map->format.format_val);
1291 1292 1293 1294 1295 1296 1297

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1298
				 map->format.val_bytes);
1299 1300
}

1301 1302 1303 1304 1305
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1306 1307
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1308
{
M
Mark Brown 已提交
1309
	int ret;
1310
	void *context = _regmap_map_get_context(map);
1311

1312 1313 1314
	if (!regmap_writeable(map, reg))
		return -EIO;

1315
	if (!map->cache_bypass && !map->defer_caching) {
1316 1317 1318
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1319 1320
		if (map->cache_only) {
			map->cache_dirty = true;
1321
			return 0;
1322
		}
1323 1324
	}

1325 1326 1327 1328 1329
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1330 1331
	trace_regmap_reg_write(map->dev, reg, val);

1332
	return map->reg_write(context, reg, val);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1349 1350 1351
	if (reg % map->reg_stride)
		return -EINVAL;

1352
	map->lock(map->lock_arg);
1353 1354 1355

	ret = _regmap_write(map, reg, val);

1356
	map->unlock(map->lock_arg);
1357 1358 1359 1360 1361

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1414
	if (!regmap_can_raw_write(map))
1415
		return -EINVAL;
1416 1417 1418
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1419
	map->lock(map->lock_arg);
1420

1421
	ret = _regmap_raw_write(map, reg, val, val_len);
1422

1423
	map->unlock(map->lock_arg);
1424 1425 1426 1427 1428

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1513 1514 1515 1516 1517 1518 1519 1520 1521
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1522
 * data to the device either in single transfer or multiple transfer.
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1533
	if (map->bus && !map->format.parse_inplace)
1534
		return -EINVAL;
1535 1536
	if (reg % map->reg_stride)
		return -EINVAL;
1537

1538
	map->lock(map->lock_arg);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1566

1567 1568 1569 1570 1571
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1572
	} else {
1573 1574
		void *wval;

1575 1576 1577 1578 1579 1580 1581
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			ret = -ENOMEM;
			dev_err(map->dev, "Error in memory allocation\n");
			goto out;
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1582
			map->format.parse_inplace(wval + i);
1583

1584
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1585 1586

		kfree(wval);
1587
	}
1588
out:
1589
	map->unlock(map->lock_arg);
1590 1591 1592 1593
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs,
				int num_regs)
{
	int ret = 0, i;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		if (reg % map->reg_stride)
			return -EINVAL;
	}

	map->lock(map->lock_arg);

	for (i = 0; i < num_regs; i++) {
		ret = _regmap_write(map, regs[i].reg, regs[i].def);
		if (ret != 0)
			goto out;
	}
out:
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

1669 1670 1671 1672 1673
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
1674 1675 1676 1677 1678 1679 1680

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1681 1682 1683
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1684
	struct regmap_range_node *range;
1685 1686 1687
	u8 *u8 = map->work_buf;
	int ret;

1688
	WARN_ON(!map->bus);
1689

1690 1691 1692 1693
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1694
		if (ret != 0)
1695 1696
			return ret;
	}
1697

1698
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1699 1700

	/*
1701
	 * Some buses or devices flag reads by setting the high bits in the
1702 1703 1704 1705
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1706
	u8[0] |= map->read_flag_mask;
1707

M
Mark Brown 已提交
1708 1709 1710
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

1711
	ret = map->bus->read(map->bus_context, map->work_buf,
1712
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
1713
			     val, val_len);
1714

M
Mark Brown 已提交
1715 1716 1717 1718
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

1737 1738 1739 1740
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
1741 1742
	void *context = _regmap_map_get_context(map);

1743
	WARN_ON(!map->reg_read);
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

1754
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
1755
	if (ret == 0) {
1756 1757 1758 1759 1760
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
1761
		trace_regmap_reg_read(map->dev, reg, *val);
1762

1763 1764 1765
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
1766

1767 1768 1769 1770 1771 1772
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
1773
 * @map: Register map to read from
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

1784 1785 1786
	if (reg % map->reg_stride)
		return -EINVAL;

1787
	map->lock(map->lock_arg);
1788 1789 1790

	ret = _regmap_read(map, reg, val);

1791
	map->unlock(map->lock_arg);
1792 1793 1794 1795 1796 1797 1798 1799

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
1800
 * @map: Register map to read from
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
1811 1812 1813 1814
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
1815

1816 1817
	if (!map->bus)
		return -EINVAL;
1818 1819
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1820 1821
	if (reg % map->reg_stride)
		return -EINVAL;
1822

1823
	map->lock(map->lock_arg);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
1835 1836
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
1837 1838 1839
			if (ret != 0)
				goto out;

1840
			map->format.format_val(val + (i * val_bytes), v, 0);
1841 1842
		}
	}
1843

1844
 out:
1845
	map->unlock(map->lock_arg);
1846 1847 1848 1849 1850

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

1909 1910 1911
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
1912
 * @map: Register map to read from
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
1925
	bool vol = regmap_volatile_range(map, reg, val_count);
1926

1927 1928
	if (reg % map->reg_stride)
		return -EINVAL;
1929

1930
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
1950 1951

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1952
			map->format.parse_inplace(val + i);
1953 1954
	} else {
		for (i = 0; i < val_count; i++) {
1955
			unsigned int ival;
1956
			ret = regmap_read(map, reg + (i * map->reg_stride),
1957
					  &ival);
1958 1959
			if (ret != 0)
				return ret;
1960
			memcpy(val + (i * val_bytes), &ival, val_bytes);
1961 1962
		}
	}
1963 1964 1965 1966 1967

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

1968 1969 1970
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
1971 1972
{
	int ret;
1973
	unsigned int tmp, orig;
1974

1975
	ret = _regmap_read(map, reg, &orig);
1976
	if (ret != 0)
1977
		return ret;
1978

1979
	tmp = orig & ~mask;
1980 1981
	tmp |= val & mask;

1982
	if (tmp != orig) {
1983
		ret = _regmap_write(map, reg, tmp);
1984 1985 1986 1987
		*change = true;
	} else {
		*change = false;
	}
1988 1989 1990

	return ret;
}
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
	bool change;
2006 2007
	int ret;

2008
	map->lock(map->lock_arg);
2009
	ret = _regmap_update_bits(map, reg, mask, val, &change);
2010
	map->unlock(map->lock_arg);
2011 2012

	return ret;
2013
}
2014
EXPORT_SYMBOL_GPL(regmap_update_bits);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	bool change;
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, &change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2067 2068
	int ret;

2069
	map->lock(map->lock_arg);
2070
	ret = _regmap_update_bits(map, reg, mask, val, change);
2071
	map->unlock(map->lock_arg);
2072
	return ret;
2073 2074 2075
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2113 2114 2115 2116 2117
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2118 2119
	trace_regmap_async_io_complete(map->dev);

2120
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2121
	list_move(&async->list, &map->async_free);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2132
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2160
	if (!map->bus || !map->bus->async_write)
2161 2162
		return 0;

2163 2164
	trace_regmap_async_complete_start(map->dev);

2165 2166 2167 2168 2169 2170 2171
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2172 2173
	trace_regmap_async_complete_done(map->dev);

2174 2175
	return ret;
}
2176
EXPORT_SYMBOL_GPL(regmap_async_complete);
2177

M
Mark Brown 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2195
	struct reg_default *p;
M
Mark Brown 已提交
2196 2197 2198
	int i, ret;
	bool bypass;

2199 2200 2201 2202
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2203
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2204 2205 2206 2207

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2208
	map->async = true;
M
Mark Brown 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/* Write out first; it's useful to apply even if we fail later. */
	for (i = 0; i < num_regs; i++) {
		ret = _regmap_write(map, regs[i].reg, regs[i].def);
		if (ret != 0) {
			dev_err(map->dev, "Failed to write %x = %x: %d\n",
				regs[i].reg, regs[i].def, ret);
			goto out;
		}
	}

2220 2221 2222 2223 2224 2225 2226
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2227 2228 2229 2230 2231
	} else {
		ret = -ENOMEM;
	}

out:
2232
	map->async = false;
M
Mark Brown 已提交
2233 2234
	map->cache_bypass = bypass;

2235
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2236

2237 2238
	regmap_async_complete(map);

M
Mark Brown 已提交
2239 2240 2241 2242
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2243
/*
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2258 2259 2260 2261 2262 2263 2264
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);