regmap.c 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95 96 97 98
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

99 100 101
	if (map->format.format_write)
		return false;

102 103 104
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

105
	if (map->rd_table)
106
		return regmap_check_range_table(map, reg, map->rd_table);
107

108 109 110 111 112
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
113
	if (!regmap_readable(map, reg))
114 115 116 117 118
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

119
	if (map->volatile_table)
120
		return regmap_check_range_table(map, reg, map->volatile_table);
121

122 123 124 125
	if (map->cache_ops)
		return false;
	else
		return true;
126 127 128 129
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
130
	if (!regmap_readable(map, reg))
131 132 133 134 135
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

136
	if (map->precious_table)
137
		return regmap_check_range_table(map, reg, map->precious_table);
138

139 140 141
	return false;
}

142
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
143
	size_t num)
144 145 146 147 148 149 150 151 152 153
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

154 155 156 157 158 159 160 161
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

176 177 178 179 180 181 182 183 184 185
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

186
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 188 189
{
	u8 *b = buf;

190
	b[0] = val << shift;
191 192
}

193
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 195 196
{
	__be16 *b = buf;

197
	b[0] = cpu_to_be16(val << shift);
198 199
}

200 201 202 203 204 205 206
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

207 208 209 210 211 212
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

213
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 215 216
{
	u8 *b = buf;

217 218
	val <<= shift;

219 220 221 222 223
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

224
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 226 227
{
	__be32 *b = buf;

228
	b[0] = cpu_to_be32(val << shift);
229 230
}

231 232 233 234 235 236 237
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

238 239 240 241 242 243
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

244
static void regmap_parse_inplace_noop(void *buf)
245
{
246 247 248 249 250
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
251 252 253 254

	return b[0];
}

255 256 257 258 259 260 261
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

262 263 264 265 266 267 268
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

269
static void regmap_parse_16_be_inplace(void *buf)
270 271 272 273 274 275
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

276 277 278 279 280 281 282
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

283
static unsigned int regmap_parse_16_native(const void *buf)
284 285 286 287
{
	return *(u16 *)buf;
}

288
static unsigned int regmap_parse_24(const void *buf)
289
{
290
	const u8 *b = buf;
291 292 293 294 295 296 297
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

298 299 300 301 302 303 304
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

305 306 307 308 309 310 311
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

312
static void regmap_parse_32_be_inplace(void *buf)
313 314 315 316 317 318
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

319 320 321 322 323 324 325
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

326
static unsigned int regmap_parse_32_native(const void *buf)
327 328 329 330
{
	return *(u32 *)buf;
}

331
static void regmap_lock_mutex(void *__map)
332
{
333
	struct regmap *map = __map;
334 335 336
	mutex_lock(&map->mutex);
}

337
static void regmap_unlock_mutex(void *__map)
338
{
339
	struct regmap *map = __map;
340 341 342
	mutex_unlock(&map->mutex);
}

343
static void regmap_lock_spinlock(void *__map)
344
__acquires(&map->spinlock)
345
{
346
	struct regmap *map = __map;
347 348 349 350
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
351 352
}

353
static void regmap_unlock_spinlock(void *__map)
354
__releases(&map->spinlock)
355
{
356
	struct regmap *map = __map;
357
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 359
}

M
Mark Brown 已提交
360 361 362 363 364 365 366 367 368
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

452 453 454 455 456
enum regmap_endian_type {
	REGMAP_ENDIAN_REG,
	REGMAP_ENDIAN_VAL,
};

457
static int regmap_get_endian(struct device *dev,
458 459 460 461 462 463 464 465 466 467
				const struct regmap_bus *bus,
				const struct regmap_config *config,
				enum regmap_endian_type type,
				enum regmap_endian *endian)
{
	struct device_node *np = dev->of_node;

	if (!endian || !config)
		return -EINVAL;

468
	/* Retrieve the endianness specification from the regmap config */
469 470 471 472 473 474 475 476 477 478 479
	switch (type) {
	case REGMAP_ENDIAN_REG:
		*endian = config->reg_format_endian;
		break;
	case REGMAP_ENDIAN_VAL:
		*endian = config->val_format_endian;
		break;
	default:
		return -EINVAL;
	}

480
	/* If the regmap config specified a non-default value, use that */
481 482 483
	if (*endian != REGMAP_ENDIAN_DEFAULT)
		return 0;

484
	/* Parse the device's DT node for an endianness specification */
485 486 487 488 489 490 491 492 493 494 495 496 497
	switch (type) {
	case REGMAP_ENDIAN_VAL:
		if (of_property_read_bool(np, "big-endian"))
			*endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			*endian = REGMAP_ENDIAN_LITTLE;
		break;
	case REGMAP_ENDIAN_REG:
		break;
	default:
		return -EINVAL;
	}

498 499 500 501 502
	/* If the endianness was specified in DT, use that */
	if (*endian != REGMAP_ENDIAN_DEFAULT)
		return 0;

	/* Retrieve the endianness specification from the bus config */
503 504 505 506 507 508 509 510 511 512 513 514 515
	switch (type) {
	case REGMAP_ENDIAN_REG:
		if (bus && bus->reg_format_endian_default)
			*endian = bus->reg_format_endian_default;
		break;
	case REGMAP_ENDIAN_VAL:
		if (bus && bus->val_format_endian_default)
			*endian = bus->val_format_endian_default;
		break;
	default:
		return -EINVAL;
	}

516 517 518 519 520 521 522
	/* If the bus specified a non-default value, use that */
	if (*endian != REGMAP_ENDIAN_DEFAULT)
		return 0;

	/* Use this if no other value was found */
	*endian = REGMAP_ENDIAN_BIG;

523 524 525
	return 0;
}

526 527 528 529 530
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
531
 * @bus_context: Data passed to bus-specific callbacks
532 533 534 535 536 537 538 539
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
540
			   void *bus_context,
541 542
			   const struct regmap_config *config)
{
543
	struct regmap *map;
544
	int ret = -EINVAL;
545
	enum regmap_endian reg_endian, val_endian;
546
	int i, j;
547

548
	if (!config)
549
		goto err;
550 551 552 553 554 555 556

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

557 558 559 560
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
561
	} else {
562 563
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
564 565 566 567 568 569 570 571 572
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
573
	}
574
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
575
	map->format.pad_bytes = config->pad_bits / 8;
576
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
577 578
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
579
	map->reg_shift = config->pad_bits % 8;
580 581 582 583
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
584
	map->use_single_rw = config->use_single_rw;
585
	map->can_multi_write = config->can_multi_write;
586 587
	map->dev = dev;
	map->bus = bus;
588
	map->bus_context = bus_context;
589
	map->max_register = config->max_register;
590 591 592 593
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
594 595 596
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
597
	map->precious_reg = config->precious_reg;
598
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
599
	map->name = config->name;
600

601 602
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
603
	INIT_LIST_HEAD(&map->async_free);
604 605
	init_waitqueue_head(&map->async_waitq);

606 607 608
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
609
	} else if (bus) {
610 611 612
		map->read_flag_mask = bus->read_flag_mask;
	}

613 614 615 616
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

617 618 619 620 621 622
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

623 624 625 626 627
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
628

629 630
	ret = regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_REG,
				&reg_endian);
631 632 633
	if (ret)
		return ERR_PTR(ret);

634 635
	ret = regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_VAL,
				&val_endian);
636 637
	if (ret)
		return ERR_PTR(ret);
638

639
	switch (config->reg_bits + map->reg_shift) {
640 641 642 643 644 645 646 647 648 649
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

670 671 672 673 674 675 676 677 678 679
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

680 681 682 683 684
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
685 686 687 688 689 690 691 692 693 694
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
695 696
		break;

697 698 699 700 701 702
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

703
	case 32:
704 705 706 707 708 709 710 711 712 713
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
714 715
		break;

716 717 718 719
	default:
		goto err_map;
	}

720 721 722
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

723 724 725 726
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
727
		map->format.parse_inplace = regmap_parse_inplace_noop;
728 729
		break;
	case 16:
730 731 732 733
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
734
			map->format.parse_inplace = regmap_parse_16_be_inplace;
735
			break;
736 737 738 739 740
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
741 742 743 744 745 746 747
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
748
		break;
749
	case 24:
750 751
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
752 753 754
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
755
	case 32:
756 757 758 759
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
760
			map->format.parse_inplace = regmap_parse_32_be_inplace;
761
			break;
762 763 764 765 766
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
767 768 769 770 771 772 773
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
774
		break;
775 776
	}

777 778 779 780
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
781
		map->use_single_rw = true;
782
	}
783

784 785 786 787
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

788
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
789 790
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
791
		goto err_map;
792 793
	}

794 795
	if (map->format.format_write) {
		map->defer_caching = false;
796
		map->reg_write = _regmap_bus_formatted_write;
797 798
	} else if (map->format.format_val) {
		map->defer_caching = true;
799
		map->reg_write = _regmap_bus_raw_write;
800 801 802
	}

skip_format_initialization:
803

804
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
805
	for (i = 0; i < config->num_ranges; i++) {
806 807 808 809
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
810 811 812
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
813
			goto err_range;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
833 834 835

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
836
		for (j = 0; j < config->num_ranges; j++) {
837 838 839 840 841
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

842 843 844 845
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

846 847
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
848 849 850
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
851 852 853 854 855
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
856 857 858
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
859 860 861 862 863 864 865 866 867 868
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

869
		new->map = map;
M
Mark Brown 已提交
870
		new->name = range_cfg->name;
871 872 873 874 875 876 877 878
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
879
		if (!_regmap_range_add(map, new)) {
880
			dev_err(map->dev, "Failed to add range %d\n", i);
881 882 883 884 885 886 887 888 889 890 891 892 893
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
894

895
	ret = regcache_init(map, config);
896
	if (ret != 0)
897 898
		goto err_range;

899
	if (dev) {
900 901 902
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
903
	}
M
Mark Brown 已提交
904

905 906
	return map;

907
err_regcache:
M
Mark Brown 已提交
908
	regcache_exit(map);
909 910
err_range:
	regmap_range_exit(map);
911
	kfree(map->work_buf);
912 913 914 915 916 917 918
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

919 920 921 922 923 924 925 926 927 928
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
929
 * @bus_context: Data passed to bus-specific callbacks
930 931 932 933 934 935 936 937 938
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
939
				void *bus_context,
940 941 942 943 944 945 946 947
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

948
	regmap = regmap_init(dev, bus, bus_context, config);
949 950 951 952 953 954 955 956 957 958 959
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

960 961 962 963 964 965 966 967
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
968 969
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1061 1062 1063
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1064 1065 1066 1067
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1068
	regmap_debugfs_exit(map);
1069 1070 1071 1072 1073 1074 1075 1076

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1077
	regmap_debugfs_init(map, config->name);
1078

1079 1080 1081
	map->cache_bypass = false;
	map->cache_only = false;

1082
	return regcache_init(map, config);
1083
}
1084
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1085

1086 1087 1088 1089 1090
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1091 1092
	struct regmap_async *async;

1093
	regcache_exit(map);
1094
	regmap_debugfs_exit(map);
1095
	regmap_range_exit(map);
1096
	if (map->bus && map->bus->free_context)
1097
		map->bus->free_context(map->bus_context);
1098
	kfree(map->work_buf);
M
Mark Brown 已提交
1099 1100 1101 1102 1103 1104 1105 1106
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1107 1108 1109 1110
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1160
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1161

1162
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1163
			       struct regmap_range_node *range,
1164 1165 1166 1167 1168 1169 1170 1171
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1172 1173
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1174

1175 1176 1177 1178
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1179

1180 1181 1182 1183
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1184

1185 1186 1187 1188 1189 1190 1191 1192
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1193

1194 1195 1196 1197
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1198

1199
		map->work_buf = orig_work_buf;
1200

1201
		if (ret != 0)
1202
			return ret;
1203 1204
	}

1205 1206
	*reg = range->window_start + win_offset;

1207 1208 1209
	return 0;
}

1210
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1211
		      const void *val, size_t val_len)
1212
{
1213
	struct regmap_range_node *range;
1214
	unsigned long flags;
1215
	u8 *u8 = map->work_buf;
1216 1217
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1218 1219 1220
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1221 1222
	int i;

1223
	WARN_ON(!map->bus);
1224

1225 1226 1227
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1228 1229
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1230
				return -EINVAL;
1231

1232 1233 1234 1235
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1236
			ival = map->format.parse_val(val + (i * val_bytes));
1237 1238
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1239 1240
			if (ret) {
				dev_err(map->dev,
1241
					"Error in caching of register: %x ret: %d\n",
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1252 1253
	range = _regmap_range_lookup(map, reg);
	if (range) {
1254 1255 1256 1257 1258 1259
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1260
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1261 1262
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1263
						map->format.val_bytes);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1278
		if (ret != 0)
1279 1280
			return ret;
	}
1281

1282
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1283

1284 1285
	u8[0] |= map->write_flag_mask;

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1296
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1297
		struct regmap_async *async;
1298

1299 1300
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1344 1345 1346 1347 1348 1349

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1350
			list_move(&async->list, &map->async_free);
1351 1352
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1353 1354

		return ret;
1355 1356
	}

M
Mark Brown 已提交
1357 1358 1359
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1360 1361 1362 1363
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1364
	if (val == work_val)
1365
		ret = map->bus->write(map->bus_context, map->work_buf,
1366 1367 1368
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1369
	else if (map->bus->gather_write)
1370
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1371 1372
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1373 1374
					     val, val_len);

1375
	/* If that didn't work fall back on linearising by hand. */
1376
	if (ret == -ENOTSUPP) {
1377 1378
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1379 1380 1381 1382
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1383 1384
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1385
		ret = map->bus->write(map->bus_context, buf, len);
1386 1387 1388 1389

		kfree(buf);
	}

M
Mark Brown 已提交
1390 1391 1392
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1393 1394 1395
	return ret;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1407 1408 1409 1410 1411 1412 1413
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1414
	WARN_ON(!map->bus || !map->format.format_write);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1435 1436 1437 1438 1439 1440 1441 1442
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1443 1444 1445 1446 1447
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1448
	WARN_ON(!map->bus || !map->format.format_val);
1449 1450 1451 1452 1453 1454 1455

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1456
				 map->format.val_bytes);
1457 1458
}

1459 1460 1461 1462 1463
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1464 1465
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1466
{
M
Mark Brown 已提交
1467
	int ret;
1468
	void *context = _regmap_map_get_context(map);
1469

1470 1471 1472
	if (!regmap_writeable(map, reg))
		return -EIO;

1473
	if (!map->cache_bypass && !map->defer_caching) {
1474 1475 1476
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1477 1478
		if (map->cache_only) {
			map->cache_dirty = true;
1479
			return 0;
1480
		}
1481 1482
	}

1483 1484 1485 1486 1487
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1488 1489
	trace_regmap_reg_write(map->dev, reg, val);

1490
	return map->reg_write(context, reg, val);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1507 1508 1509
	if (reg % map->reg_stride)
		return -EINVAL;

1510
	map->lock(map->lock_arg);
1511 1512 1513

	ret = _regmap_write(map, reg, val);

1514
	map->unlock(map->lock_arg);
1515 1516 1517 1518 1519

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1572
	if (!regmap_can_raw_write(map))
1573
		return -EINVAL;
1574 1575 1576
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1577
	map->lock(map->lock_arg);
1578

1579
	ret = _regmap_raw_write(map, reg, val, val_len);
1580

1581
	map->unlock(map->lock_arg);
1582 1583 1584 1585 1586

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1671 1672 1673 1674 1675 1676 1677 1678 1679
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1680
 * data to the device either in single transfer or multiple transfer.
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1691
	if (map->bus && !map->format.parse_inplace)
1692
		return -EINVAL;
1693 1694
	if (reg % map->reg_stride)
		return -EINVAL;
1695

1696 1697 1698 1699 1700
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1701
		map->lock(map->lock_arg);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1724

1725 1726 1727 1728 1729
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1730 1731
out:
		map->unlock(map->lock_arg);
1732
	} else {
1733 1734
		void *wval;

1735 1736 1737
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1738
			return -ENOMEM;
1739 1740
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1741
			map->format.parse_inplace(wval + i);
1742

1743
		map->lock(map->lock_arg);
1744
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1745
		map->unlock(map->lock_arg);
1746 1747

		kfree(wval);
1748
	}
1749 1750 1751 1752
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1774 1775 1776
	if (!len)
		return -EINVAL;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1824
	unsigned int this_page = 0;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1860 1861
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1862
				   size_t num_regs)
1863
{
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1907 1908

	for (i = 0; i < num_regs; i++) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1922 1923 1924
			return ret;
		}
	}
1925
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1926 1927
}

1928 1929 1930
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1931 1932
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1933 1934 1935 1936 1937
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1938 1939 1940 1941 1942
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1943
 *
1944 1945
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1946
 */
1947 1948
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1949
{
1950
	int ret;
1951 1952 1953

	map->lock(map->lock_arg);

1954 1955
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1956 1957 1958 1959 1960 1961
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1962 1963 1964 1965
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1979 1980 1981
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1982
{
1983 1984
	int ret;
	bool bypass;
1985 1986 1987

	map->lock(map->lock_arg);

1988 1989 1990 1991 1992 1993 1994
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1995 1996 1997 1998
	map->unlock(map->lock_arg);

	return ret;
}
1999
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2035 2036 2037 2038 2039
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2040 2041 2042 2043 2044 2045 2046

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2047 2048 2049
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2050
	struct regmap_range_node *range;
2051 2052 2053
	u8 *u8 = map->work_buf;
	int ret;

2054
	WARN_ON(!map->bus);
2055

2056 2057 2058 2059
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2060
		if (ret != 0)
2061 2062
			return ret;
	}
2063

2064
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2065 2066

	/*
2067
	 * Some buses or devices flag reads by setting the high bits in the
2068 2069 2070 2071
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2072
	u8[0] |= map->read_flag_mask;
2073

M
Mark Brown 已提交
2074 2075 2076
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2077
	ret = map->bus->read(map->bus_context, map->work_buf,
2078
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2079
			     val, val_len);
2080

M
Mark Brown 已提交
2081 2082 2083 2084
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2085 2086
}

2087 2088 2089 2090 2091 2092 2093 2094
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2111 2112 2113 2114
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2115 2116
	void *context = _regmap_map_get_context(map);

2117
	WARN_ON(!map->reg_read);
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2128 2129 2130
	if (!regmap_readable(map, reg))
		return -EIO;

2131
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2132
	if (ret == 0) {
2133 2134 2135 2136 2137
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2138
		trace_regmap_reg_read(map->dev, reg, *val);
2139

2140 2141 2142
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2143

2144 2145 2146 2147 2148 2149
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2150
 * @map: Register map to read from
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2161 2162 2163
	if (reg % map->reg_stride)
		return -EINVAL;

2164
	map->lock(map->lock_arg);
2165 2166 2167

	ret = _regmap_read(map, reg, val);

2168
	map->unlock(map->lock_arg);
2169 2170 2171 2172 2173 2174 2175 2176

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2177
 * @map: Register map to read from
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2188 2189 2190 2191
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2192

2193 2194
	if (!map->bus)
		return -EINVAL;
2195 2196
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2197 2198
	if (reg % map->reg_stride)
		return -EINVAL;
2199

2200
	map->lock(map->lock_arg);
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2212 2213
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2214 2215 2216
			if (ret != 0)
				goto out;

2217
			map->format.format_val(val + (i * val_bytes), v, 0);
2218 2219
		}
	}
2220

2221
 out:
2222
	map->unlock(map->lock_arg);
2223 2224 2225 2226 2227

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2286 2287 2288
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2289
 * @map: Register map to read from
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2302
	bool vol = regmap_volatile_range(map, reg, val_count);
2303

2304 2305
	if (reg % map->reg_stride)
		return -EINVAL;
2306

2307
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2327 2328

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2329
			map->format.parse_inplace(val + i);
2330 2331
	} else {
		for (i = 0; i < val_count; i++) {
2332
			unsigned int ival;
2333
			ret = regmap_read(map, reg + (i * map->reg_stride),
2334
					  &ival);
2335 2336
			if (ret != 0)
				return ret;
2337
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2338 2339
		}
	}
2340 2341 2342 2343 2344

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2345 2346 2347
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2348 2349
{
	int ret;
2350
	unsigned int tmp, orig;
2351

2352
	ret = _regmap_read(map, reg, &orig);
2353
	if (ret != 0)
2354
		return ret;
2355

2356
	tmp = orig & ~mask;
2357 2358
	tmp |= val & mask;

2359
	if (tmp != orig) {
2360
		ret = _regmap_write(map, reg, tmp);
2361 2362
		if (change)
			*change = true;
2363
	} else {
2364 2365
		if (change)
			*change = false;
2366
	}
2367 2368 2369

	return ret;
}
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2384 2385
	int ret;

2386
	map->lock(map->lock_arg);
2387
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2388
	map->unlock(map->lock_arg);
2389 2390

	return ret;
2391
}
2392
EXPORT_SYMBOL_GPL(regmap_update_bits);
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2418
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2419 2420 2421 2422 2423 2424 2425 2426 2427

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2444 2445
	int ret;

2446
	map->lock(map->lock_arg);
2447
	ret = _regmap_update_bits(map, reg, mask, val, change);
2448
	map->unlock(map->lock_arg);
2449
	return ret;
2450 2451 2452
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2490 2491 2492 2493 2494
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2495 2496
	trace_regmap_async_io_complete(map->dev);

2497
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2498
	list_move(&async->list, &map->async_free);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2509
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2537
	if (!map->bus || !map->bus->async_write)
2538 2539
		return 0;

2540 2541
	trace_regmap_async_complete_start(map->dev);

2542 2543 2544 2545 2546 2547 2548
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2549 2550
	trace_regmap_async_complete_done(map->dev);

2551 2552
	return ret;
}
2553
EXPORT_SYMBOL_GPL(regmap_async_complete);
2554

M
Mark Brown 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2568 2569 2570
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2571 2572 2573 2574
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2575
	struct reg_default *p;
2576
	int ret;
M
Mark Brown 已提交
2577 2578
	bool bypass;

2579 2580 2581 2582
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2583 2584 2585 2586 2587 2588 2589
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2590
	} else {
2591
		return -ENOMEM;
M
Mark Brown 已提交
2592 2593
	}

2594
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2595 2596 2597 2598

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2599
	map->async = true;
M
Mark Brown 已提交
2600

2601 2602 2603
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2604 2605

out:
2606
	map->async = false;
M
Mark Brown 已提交
2607 2608
	map->cache_bypass = bypass;

2609
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2610

2611 2612
	regmap_async_complete(map);

M
Mark Brown 已提交
2613 2614 2615 2616
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2617
/*
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2644 2645 2646 2647 2648 2649 2650
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);