regmap.c 68.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22

M
Mark Brown 已提交
23
#define CREATE_TRACE_POINTS
24
#include "trace.h"
M
Mark Brown 已提交
25

26
#include "internal.h"
27

28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
38
			       bool *change, bool force_write);
39

40 41
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
42 43
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
44 45
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
46 47
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
48 49
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

65 66
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
67 68 69 70 71 72 73 74 75 76 77 78
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
79
EXPORT_SYMBOL_GPL(regmap_check_range_table);
80

81 82 83 84 85 86 87 88
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

89
	if (map->wr_table)
90
		return regmap_check_range_table(map, reg, map->wr_table);
91

92 93 94 95 96
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
97 98 99
	if (!map->reg_read)
		return false;

100 101 102
	if (map->max_register && reg > map->max_register)
		return false;

103 104 105
	if (map->format.format_write)
		return false;

106 107 108
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

109
	if (map->rd_table)
110
		return regmap_check_range_table(map, reg, map->rd_table);
111

112 113 114 115 116
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
117
	if (!map->format.format_write && !regmap_readable(map, reg))
118 119 120 121 122
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

123
	if (map->volatile_table)
124
		return regmap_check_range_table(map, reg, map->volatile_table);
125

126 127 128 129
	if (map->cache_ops)
		return false;
	else
		return true;
130 131 132 133
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
134
	if (!regmap_readable(map, reg))
135 136 137 138 139
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

140
	if (map->precious_table)
141
		return regmap_check_range_table(map, reg, map->precious_table);
142

143 144 145
	return false;
}

146
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
147
	size_t num)
148 149 150 151 152 153 154 155 156 157
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

158 159 160 161 162 163 164 165
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

180 181 182 183 184 185 186 187 188 189
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

190
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 192 193
{
	u8 *b = buf;

194
	b[0] = val << shift;
195 196
}

197
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 199 200
{
	__be16 *b = buf;

201
	b[0] = cpu_to_be16(val << shift);
202 203
}

204 205 206 207 208 209 210
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

211 212 213 214 215 216
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

217
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 219 220
{
	u8 *b = buf;

221 222
	val <<= shift;

223 224 225 226 227
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

228
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 230 231
{
	__be32 *b = buf;

232
	b[0] = cpu_to_be32(val << shift);
233 234
}

235 236 237 238 239 240 241
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

242 243 244 245 246 247
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

248
static void regmap_parse_inplace_noop(void *buf)
249
{
250 251 252 253 254
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
255 256 257 258

	return b[0];
}

259 260 261 262 263 264 265
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

266 267 268 269 270 271 272
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

273
static void regmap_parse_16_be_inplace(void *buf)
274 275 276 277 278 279
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

280 281 282 283 284 285 286
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

287
static unsigned int regmap_parse_16_native(const void *buf)
288 289 290 291
{
	return *(u16 *)buf;
}

292
static unsigned int regmap_parse_24(const void *buf)
293
{
294
	const u8 *b = buf;
295 296 297 298 299 300 301
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

302 303 304 305 306 307 308
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

309 310 311 312 313 314 315
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

316
static void regmap_parse_32_be_inplace(void *buf)
317 318 319 320 321 322
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

323 324 325 326 327 328 329
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

330
static unsigned int regmap_parse_32_native(const void *buf)
331 332 333 334
{
	return *(u32 *)buf;
}

335
static void regmap_lock_mutex(void *__map)
336
{
337
	struct regmap *map = __map;
338 339 340
	mutex_lock(&map->mutex);
}

341
static void regmap_unlock_mutex(void *__map)
342
{
343
	struct regmap *map = __map;
344 345 346
	mutex_unlock(&map->mutex);
}

347
static void regmap_lock_spinlock(void *__map)
348
__acquires(&map->spinlock)
349
{
350
	struct regmap *map = __map;
351 352 353 354
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
355 356
}

357
static void regmap_unlock_spinlock(void *__map)
358
__releases(&map->spinlock)
359
{
360
	struct regmap *map = __map;
361
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
362 363
}

M
Mark Brown 已提交
364 365 366 367 368 369 370 371 372
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
471

472 473 474 475 476 477 478 479
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

480 481 482
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
483
{
484
	struct device_node *np;
485
	enum regmap_endian endian;
486

487
	/* Retrieve the endianness specification from the regmap config */
488
	endian = config->val_format_endian;
489

490
	/* If the regmap config specified a non-default value, use that */
491 492
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
493

494 495 496
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
497

498 499 500 501 502 503 504 505 506 507
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
508 509

	/* Retrieve the endianness specification from the bus config */
510 511
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
512

513
	/* If the bus specified a non-default value, use that */
514 515
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
516 517

	/* Use this if no other value was found */
518
	return REGMAP_ENDIAN_BIG;
519
}
520
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
521

522 523 524 525 526 527
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
528
{
529
	struct regmap *map;
530
	int ret = -EINVAL;
531
	enum regmap_endian reg_endian, val_endian;
532
	int i, j;
533

534
	if (!config)
535
		goto err;
536 537 538 539 540 541 542

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

543 544 545 546
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
547
	} else {
548 549
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
550 551 552
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
553 554
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
555 556 557 558
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
559 560
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
561 562
		}
		map->lock_arg = map;
563
	}
564
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
565
	map->format.pad_bytes = config->pad_bits / 8;
566
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
567 568
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
569
	map->reg_shift = config->pad_bits % 8;
570 571 572 573
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
574 575
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
576
	map->can_multi_write = config->can_multi_write && bus && bus->write;
577 578 579 580
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
581 582
	map->dev = dev;
	map->bus = bus;
583
	map->bus_context = bus_context;
584
	map->max_register = config->max_register;
585 586 587 588
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
589 590 591
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
592
	map->precious_reg = config->precious_reg;
593
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
594
	map->name = config->name;
595

596 597
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
598
	INIT_LIST_HEAD(&map->async_free);
599 600
	init_waitqueue_head(&map->async_waitq);

601 602 603
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
604
	} else if (bus) {
605 606 607
		map->read_flag_mask = bus->read_flag_mask;
	}

608 609 610 611
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

612 613 614 615 616 617
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

618 619 620 621 622
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
623

624 625
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
626

627
	switch (config->reg_bits + map->reg_shift) {
628 629 630 631 632 633 634 635 636 637
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

658 659 660 661 662 663 664 665 666 667
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

668 669 670 671 672
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
673 674 675 676 677 678 679 680 681 682
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
683 684
		break;

685 686 687 688 689 690
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

691
	case 32:
692 693 694 695 696 697 698 699 700 701
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
702 703
		break;

704 705 706 707
	default:
		goto err_map;
	}

708 709 710
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

711 712 713 714
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
715
		map->format.parse_inplace = regmap_parse_inplace_noop;
716 717
		break;
	case 16:
718 719 720 721
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
722
			map->format.parse_inplace = regmap_parse_16_be_inplace;
723
			break;
724 725 726 727 728
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
729 730 731 732 733 734 735
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
736
		break;
737
	case 24:
738 739
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
740 741 742
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
743
	case 32:
744 745 746 747
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
748
			map->format.parse_inplace = regmap_parse_32_be_inplace;
749
			break;
750 751 752 753 754
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
755 756 757 758 759 760 761
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
762
		break;
763 764
	}

765 766 767 768
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
769
		map->use_single_write = true;
770
	}
771

772 773 774 775
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

776
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
777 778
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
779
		goto err_map;
780 781
	}

782 783
	if (map->format.format_write) {
		map->defer_caching = false;
784
		map->reg_write = _regmap_bus_formatted_write;
785 786
	} else if (map->format.format_val) {
		map->defer_caching = true;
787
		map->reg_write = _regmap_bus_raw_write;
788 789 790
	}

skip_format_initialization:
791

792
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
793
	for (i = 0; i < config->num_ranges; i++) {
794 795 796 797
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
798 799 800
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
801
			goto err_range;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
821 822 823

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
824
		for (j = 0; j < config->num_ranges; j++) {
825 826 827 828 829
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

830 831 832 833
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

834 835
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
836 837 838
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
839 840 841 842 843
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
844 845 846
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
847 848 849 850 851 852 853 854 855 856
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

857
		new->map = map;
M
Mark Brown 已提交
858
		new->name = range_cfg->name;
859 860 861 862 863 864 865 866
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
867
		if (!_regmap_range_add(map, new)) {
868
			dev_err(map->dev, "Failed to add range %d\n", i);
869 870 871 872 873 874 875 876 877 878 879 880 881
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
882

883
	ret = regcache_init(map, config);
884
	if (ret != 0)
885 886
		goto err_range;

887
	if (dev) {
888 889 890
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
891
	}
M
Mark Brown 已提交
892

893 894
	return map;

895
err_regcache:
M
Mark Brown 已提交
896
	regcache_exit(map);
897 898
err_range:
	regmap_range_exit(map);
899
	kfree(map->work_buf);
900 901 902 903 904
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
905
EXPORT_SYMBOL_GPL(__regmap_init);
906

907 908 909 910 911
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

912 913 914 915 916 917
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
918 919 920 921 922 923 924
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

925 926
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
927 928 929 930 931 932 933 934 935
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
936
EXPORT_SYMBOL_GPL(__devm_regmap_init);
937

938 939 940 941 942 943
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
944
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
945 946
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1038 1039 1040
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1041 1042 1043 1044
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1045
	regmap_debugfs_exit(map);
1046 1047 1048 1049 1050 1051 1052 1053

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1054
	regmap_debugfs_init(map, config->name);
1055

1056 1057 1058
	map->cache_bypass = false;
	map->cache_only = false;

1059
	return regcache_init(map, config);
1060
}
1061
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1062

1063 1064 1065 1066 1067
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1068 1069
	struct regmap_async *async;

1070
	regcache_exit(map);
1071
	regmap_debugfs_exit(map);
1072
	regmap_range_exit(map);
1073
	if (map->bus && map->bus->free_context)
1074
		map->bus->free_context(map->bus_context);
1075
	kfree(map->work_buf);
M
Mark Brown 已提交
1076 1077 1078 1079 1080 1081 1082 1083
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1084 1085 1086 1087
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1137
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1138

1139
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1140
			       struct regmap_range_node *range,
1141 1142 1143 1144 1145 1146 1147 1148
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1149 1150
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1151

1152 1153 1154 1155
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1156

1157 1158 1159 1160
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1161

1162 1163 1164 1165 1166 1167 1168 1169
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1170

1171 1172 1173
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1174
					  &page_chg, false);
1175

1176
		map->work_buf = orig_work_buf;
1177

1178
		if (ret != 0)
1179
			return ret;
1180 1181
	}

1182 1183
	*reg = range->window_start + win_offset;

1184 1185 1186
	return 0;
}

1187
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1188
		      const void *val, size_t val_len)
1189
{
1190
	struct regmap_range_node *range;
1191
	unsigned long flags;
1192
	u8 *u8 = map->work_buf;
1193 1194
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1195 1196 1197
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1198 1199
	int i;

1200
	WARN_ON(!map->bus);
1201

1202 1203 1204
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1205 1206
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1207
				return -EINVAL;
1208

1209 1210 1211 1212
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1213
			ival = map->format.parse_val(val + (i * val_bytes));
1214 1215
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1216 1217
			if (ret) {
				dev_err(map->dev,
1218
					"Error in caching of register: %x ret: %d\n",
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1229 1230
	range = _regmap_range_lookup(map, reg);
	if (range) {
1231 1232 1233 1234 1235 1236
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1237
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1238 1239
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1240
						map->format.val_bytes);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1255
		if (ret != 0)
1256 1257
			return ret;
	}
1258

1259
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1260

1261 1262
	u8[0] |= map->write_flag_mask;

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1273
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1274
		struct regmap_async *async;
1275

1276
		trace_regmap_async_write_start(map, reg, val_len);
1277

M
Mark Brown 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1321 1322 1323 1324 1325 1326

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1327
			list_move(&async->list, &map->async_free);
1328 1329
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1330 1331

		return ret;
1332 1333
	}

1334
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1335

1336 1337 1338 1339
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1340
	if (val == work_val)
1341
		ret = map->bus->write(map->bus_context, map->work_buf,
1342 1343 1344
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1345
	else if (map->bus->gather_write)
1346
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1347 1348
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1349 1350
					     val, val_len);

1351
	/* If that didn't work fall back on linearising by hand. */
1352
	if (ret == -ENOTSUPP) {
1353 1354
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1355 1356 1357 1358
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1359 1360
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1361
		ret = map->bus->write(map->bus_context, buf, len);
1362 1363 1364 1365

		kfree(buf);
	}

1366
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1367

1368 1369 1370
	return ret;
}

1371 1372 1373 1374 1375 1376 1377
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1378 1379
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1380 1381 1382
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1405 1406 1407 1408 1409 1410 1411
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1412
	WARN_ON(!map->bus || !map->format.format_write);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1423
	trace_regmap_hw_write_start(map, reg, 1);
1424 1425 1426 1427

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1428
	trace_regmap_hw_write_done(map, reg, 1);
1429 1430 1431 1432

	return ret;
}

1433 1434 1435 1436 1437 1438 1439 1440
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1441 1442 1443 1444 1445
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1446
	WARN_ON(!map->bus || !map->format.format_val);
1447 1448 1449 1450 1451 1452 1453

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1454
				 map->format.val_bytes);
1455 1456
}

1457 1458 1459 1460 1461
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1462 1463
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1464
{
M
Mark Brown 已提交
1465
	int ret;
1466
	void *context = _regmap_map_get_context(map);
1467

1468 1469 1470
	if (!regmap_writeable(map, reg))
		return -EIO;

1471
	if (!map->cache_bypass && !map->defer_caching) {
1472 1473 1474
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1475 1476
		if (map->cache_only) {
			map->cache_dirty = true;
1477
			return 0;
1478
		}
1479 1480
	}

1481
#ifdef LOG_DEVICE
1482
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1483 1484 1485
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1486
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1487

1488
	return map->reg_write(context, reg, val);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1505 1506 1507
	if (reg % map->reg_stride)
		return -EINVAL;

1508
	map->lock(map->lock_arg);
1509 1510 1511

	ret = _regmap_write(map, reg, val);

1512
	map->unlock(map->lock_arg);
1513 1514 1515 1516 1517

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1570
	if (!regmap_can_raw_write(map))
1571
		return -EINVAL;
1572 1573
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1574 1575
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1576

1577
	map->lock(map->lock_arg);
1578

1579
	ret = _regmap_raw_write(map, reg, val, val_len);
1580

1581
	map->unlock(map->lock_arg);
1582 1583 1584 1585 1586

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_write_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_force_write);

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1683 1684 1685 1686 1687 1688 1689 1690 1691
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1692
 * data to the device either in single transfer or multiple transfer.
1693 1694 1695 1696 1697 1698 1699 1700 1701
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1702
	size_t total_size = val_bytes * val_count;
1703

1704
	if (map->bus && !map->format.parse_inplace)
1705
		return -EINVAL;
1706 1707
	if (reg % map->reg_stride)
		return -EINVAL;
1708

1709 1710
	/*
	 * Some devices don't support bulk write, for
1711 1712 1713 1714 1715 1716 1717
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1718
	 */
1719
	if (!map->bus) {
1720
		map->lock(map->lock_arg);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1743

1744 1745 1746 1747 1748
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1749 1750
out:
		map->unlock(map->lock_arg);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1765
		map->lock(map->lock_arg);
1766 1767
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1768
			ret = _regmap_raw_write(map,
1769 1770 1771
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1772 1773 1774
			if (ret)
				break;
		}
1775 1776 1777 1778 1779 1780 1781

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1782
		map->unlock(map->lock_arg);
1783
	} else {
1784 1785
		void *wval;

1786 1787 1788
		if (!val_count)
			return -EINVAL;

1789 1790 1791
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1792
			return -ENOMEM;
1793 1794
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1795
			map->format.parse_inplace(wval + i);
1796

1797
		map->lock(map->lock_arg);
1798
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1799
		map->unlock(map->lock_arg);
1800 1801

		kfree(wval);
1802
	}
1803 1804 1805 1806
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1807 1808 1809 1810 1811
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1812
 * relative. The page register has been written if that was necessary.
1813 1814
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
1815
				       const struct reg_sequence *regs,
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1828 1829 1830
	if (!len)
		return -EINVAL;

1831 1832 1833 1834 1835 1836 1837 1838 1839
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
1840 1841
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
1842
		trace_regmap_hw_write_start(map, reg, 1);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1857
		trace_regmap_hw_write_done(map, reg, 1);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1872
					       struct reg_sequence *regs,
1873 1874 1875 1876
					       size_t num_regs)
{
	int ret;
	int i, n;
1877
	struct reg_sequence *base;
1878
	unsigned int this_page = 0;
1879
	unsigned int page_change = 0;
1880 1881 1882
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
1883 1884
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

1920 1921 1922
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
1923 1924 1925 1926

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

1927 1928
				base += n;
				n = 0;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

1940
		}
1941

1942 1943 1944 1945 1946 1947
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1948
static int _regmap_multi_reg_write(struct regmap *map,
1949
				   const struct reg_sequence *regs,
1950
				   size_t num_regs)
1951
{
1952 1953 1954 1955 1956 1957 1958 1959
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
1960 1961 1962

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1998 1999

	for (i = 0; i < num_regs; i++) {
2000 2001
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2002 2003 2004 2005

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2006
		range = _regmap_range_lookup(map, reg);
2007
		if (range || regs[i].delay_us) {
2008 2009
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2010 2011 2012 2013 2014 2015 2016
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2017 2018 2019
			return ret;
		}
	}
2020
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2021 2022
}

2023 2024 2025
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
2026 2027
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
2028 2029 2030 2031 2032
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2033 2034 2035 2036 2037
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2038
 *
2039 2040
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2041
 */
2042
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2043
			   int num_regs)
2044
{
2045
	int ret;
2046 2047 2048

	map->lock(map->lock_arg);

2049 2050
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2051 2052 2053 2054 2055 2056
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2057 2058 2059 2060
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2074
int regmap_multi_reg_write_bypassed(struct regmap *map,
2075
				    const struct reg_sequence *regs,
2076
				    int num_regs)
2077
{
2078 2079
	int ret;
	bool bypass;
2080 2081 2082

	map->lock(map->lock_arg);

2083 2084 2085 2086 2087 2088 2089
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2090 2091 2092 2093
	map->unlock(map->lock_arg);

	return ret;
}
2094
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2130 2131 2132 2133 2134
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2135 2136 2137 2138 2139 2140 2141

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2142 2143 2144
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2145
	struct regmap_range_node *range;
2146 2147 2148
	u8 *u8 = map->work_buf;
	int ret;

2149
	WARN_ON(!map->bus);
2150

2151 2152 2153 2154
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2155
		if (ret != 0)
2156 2157
			return ret;
	}
2158

2159
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2160 2161

	/*
2162
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2163
	 * register address; since it's always the high bits for all
2164 2165 2166
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2167
	u8[0] |= map->read_flag_mask;
2168

2169
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2170

2171
	ret = map->bus->read(map->bus_context, map->work_buf,
2172
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2173
			     val, val_len);
2174

2175
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2176 2177

	return ret;
2178 2179
}

2180 2181 2182 2183 2184 2185 2186 2187
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2204 2205 2206 2207
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2208 2209
	void *context = _regmap_map_get_context(map);

2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2219 2220 2221
	if (!regmap_readable(map, reg))
		return -EIO;

2222
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2223
	if (ret == 0) {
2224
#ifdef LOG_DEVICE
2225
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2226 2227 2228
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2229
		trace_regmap_reg_read(map, reg, *val);
2230

2231 2232 2233
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2234

2235 2236 2237 2238 2239 2240
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2241
 * @map: Register map to read from
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2252 2253 2254
	if (reg % map->reg_stride)
		return -EINVAL;

2255
	map->lock(map->lock_arg);
2256 2257 2258

	ret = _regmap_read(map, reg, val);

2259
	map->unlock(map->lock_arg);
2260 2261 2262 2263 2264 2265 2266 2267

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2268
 * @map: Register map to read from
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2279 2280 2281 2282
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2283

2284 2285
	if (!map->bus)
		return -EINVAL;
2286 2287
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2288 2289
	if (reg % map->reg_stride)
		return -EINVAL;
2290 2291
	if (val_count == 0)
		return -EINVAL;
2292

2293
	map->lock(map->lock_arg);
2294

2295 2296
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2297 2298 2299 2300
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2301 2302 2303 2304
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2305

2306 2307 2308 2309 2310 2311 2312 2313
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2314 2315
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2316 2317 2318
			if (ret != 0)
				goto out;

2319
			map->format.format_val(val + (i * val_bytes), v, 0);
2320 2321
		}
	}
2322

2323
 out:
2324
	map->unlock(map->lock_arg);
2325 2326 2327 2328 2329

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2388 2389 2390
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2391
 * @map: Register map to read from
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2404
	bool vol = regmap_volatile_range(map, reg, val_count);
2405

2406 2407
	if (reg % map->reg_stride)
		return -EINVAL;
2408

2409
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2410 2411 2412 2413
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2414 2415 2416 2417
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2418 2419 2420 2421
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2459
		}
2460 2461

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2462
			map->format.parse_inplace(val + i);
2463 2464
	} else {
		for (i = 0; i < val_count; i++) {
2465
			unsigned int ival;
2466
			ret = regmap_read(map, reg + (i * map->reg_stride),
2467
					  &ival);
2468 2469
			if (ret != 0)
				return ret;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2498 2499
		}
	}
2500 2501 2502 2503 2504

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2505 2506
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2507
			       bool *change, bool force_write)
2508 2509
{
	int ret;
2510
	unsigned int tmp, orig;
2511

2512
	ret = _regmap_read(map, reg, &orig);
2513
	if (ret != 0)
2514
		return ret;
2515

2516
	tmp = orig & ~mask;
2517 2518
	tmp |= val & mask;

2519
	if (force_write || (tmp != orig)) {
2520
		ret = _regmap_write(map, reg, tmp);
2521 2522
		if (change)
			*change = true;
2523
	} else {
2524 2525
		if (change)
			*change = false;
2526
	}
2527 2528 2529

	return ret;
}
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2544 2545
	int ret;

2546
	map->lock(map->lock_arg);
2547
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2548
	map->unlock(map->lock_arg);
2549 2550

	return ret;
2551
}
2552
EXPORT_SYMBOL_GPL(regmap_update_bits);
2553

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * regmap_write_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_write_bits(struct regmap *map, unsigned int reg,
		      unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);
	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_bits);

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2601
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2602 2603 2604 2605 2606 2607 2608 2609 2610

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2627 2628
	int ret;

2629
	map->lock(map->lock_arg);
2630
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2631
	map->unlock(map->lock_arg);
2632
	return ret;
2633 2634 2635
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2663
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2664 2665 2666 2667 2668 2669 2670 2671 2672

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2673 2674 2675 2676 2677
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2678
	trace_regmap_async_io_complete(map);
2679

2680
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2681
	list_move(&async->list, &map->async_free);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2692
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2720
	if (!map->bus || !map->bus->async_write)
2721 2722
		return 0;

2723
	trace_regmap_async_complete_start(map);
2724

2725 2726 2727 2728 2729 2730 2731
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2732
	trace_regmap_async_complete_done(map);
2733

2734 2735
	return ret;
}
2736
EXPORT_SYMBOL_GPL(regmap_async_complete);
2737

M
Mark Brown 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2751 2752 2753
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2754
 */
2755
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2756 2757
			  int num_regs)
{
2758
	struct reg_sequence *p;
2759
	int ret;
M
Mark Brown 已提交
2760 2761
	bool bypass;

2762 2763 2764 2765
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2766
	p = krealloc(map->patch,
2767
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2768 2769 2770 2771 2772
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2773
	} else {
2774
		return -ENOMEM;
M
Mark Brown 已提交
2775 2776
	}

2777
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2778 2779 2780 2781

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2782
	map->async = true;
M
Mark Brown 已提交
2783

2784
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2785

2786
	map->async = false;
M
Mark Brown 已提交
2787 2788
	map->cache_bypass = bypass;

2789
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2790

2791 2792
	regmap_async_complete(map);

M
Mark Brown 已提交
2793 2794 2795 2796
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2797
/*
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2848 2849 2850 2851 2852 2853 2854
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);