regmap.c 80.3 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// Register map access API
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8

9
#include <linux/device.h>
10
#include <linux/slab.h>
11
#include <linux/export.h>
12 13
#include <linux/mutex.h>
#include <linux/err.h>
14
#include <linux/property.h>
15
#include <linux/rbtree.h>
16
#include <linux/sched.h>
17
#include <linux/delay.h>
18
#include <linux/log2.h>
19
#include <linux/hwspinlock.h>
20
#include <asm/unaligned.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

B
Ben Dooks 已提交
35 36 37 38 39 40 41 42 43 44
#ifdef LOG_DEVICE
static inline bool regmap_should_log(struct regmap *map)
{
	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
}
#else
static inline bool regmap_should_log(struct regmap *map) { return false; }
#endif


45 46
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
47
			       bool *change, bool force_write);
48

49 50
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
51 52
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
53 54
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
55 56
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
57 58
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

74 75
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
76 77 78 79 80 81 82 83 84 85 86 87
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
88
EXPORT_SYMBOL_GPL(regmap_check_range_table);
89

90 91 92 93 94 95 96 97
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

98
	if (map->wr_table)
99
		return regmap_check_range_table(map, reg, map->wr_table);
100

101 102 103
	return true;
}

104 105 106 107 108
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

109
	if (map->cache_type == REGCACHE_NONE)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

127 128
bool regmap_readable(struct regmap *map, unsigned int reg)
{
129 130 131
	if (!map->reg_read)
		return false;

132 133 134
	if (map->max_register && reg > map->max_register)
		return false;

135 136 137
	if (map->format.format_write)
		return false;

138 139 140
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

141
	if (map->rd_table)
142
		return regmap_check_range_table(map, reg, map->rd_table);
143

144 145 146 147 148
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
149
	if (!map->format.format_write && !regmap_readable(map, reg))
150 151 152 153 154
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

155
	if (map->volatile_table)
156
		return regmap_check_range_table(map, reg, map->volatile_table);
157

158 159 160 161
	if (map->cache_ops)
		return false;
	else
		return true;
162 163 164 165
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
166
	if (!regmap_readable(map, reg))
167 168 169 170 171
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

172
	if (map->precious_table)
173
		return regmap_check_range_table(map, reg, map->precious_table);
174

175 176 177
	return false;
}

B
Ben Whitten 已提交
178 179 180 181 182 183 184 185 186 187 188
bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->writeable_noinc_reg)
		return map->writeable_noinc_reg(map->dev, reg);

	if (map->wr_noinc_table)
		return regmap_check_range_table(map, reg, map->wr_noinc_table);

	return true;
}

189 190 191 192 193 194 195 196 197 198 199
bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->readable_noinc_reg)
		return map->readable_noinc_reg(map->dev, reg);

	if (map->rd_noinc_table)
		return regmap_check_range_table(map, reg, map->rd_noinc_table);

	return true;
}

200
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
201
	size_t num)
202 203 204 205
{
	unsigned int i;

	for (i = 0; i < num; i++)
206
		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 208 209 210 211
			return false;

	return true;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void regmap_format_12_20_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[0] = reg >> 4;
	out[1] = (reg << 4) | (val >> 16);
	out[2] = val >> 8;
	out[3] = val;
}


224 225 226 227 228 229 230 231
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

246 247 248 249 250 251 252 253 254 255
static void regmap_format_7_17_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = val >> 8;
	out[0] = (val >> 16) | (reg << 1);
}

256 257 258 259 260 261 262 263 264 265
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

266
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 268 269
{
	u8 *b = buf;

270
	b[0] = val << shift;
271 272
}

273
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274
{
275
	put_unaligned_be16(val << shift, buf);
276 277
}

278 279
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
280
	put_unaligned_le16(val << shift, buf);
281 282
}

283 284 285
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
286 287 288
	u16 v = val << shift;

	memcpy(buf, &v, sizeof(v));
289 290
}

291
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 293 294
{
	u8 *b = buf;

295 296
	val <<= shift;

297 298 299 300 301
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

302
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303
{
304
	put_unaligned_be32(val << shift, buf);
305 306
}

307 308
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
309
	put_unaligned_le32(val << shift, buf);
310 311
}

312 313 314
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
315 316 317
	u32 v = val << shift;

	memcpy(buf, &v, sizeof(v));
318 319
}

X
Xiubo Li 已提交
320 321 322
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
323
	put_unaligned_be64((u64) val << shift, buf);
X
Xiubo Li 已提交
324 325 326 327
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
328
	put_unaligned_le64((u64) val << shift, buf);
X
Xiubo Li 已提交
329 330 331 332 333
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
334 335 336
	u64 v = (u64) val << shift;

	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
337 338 339
}
#endif

340
static void regmap_parse_inplace_noop(void *buf)
341
{
342 343 344 345 346
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
347 348 349 350

	return b[0];
}

351 352
static unsigned int regmap_parse_16_be(const void *buf)
{
353
	return get_unaligned_be16(buf);
354 355
}

356 357
static unsigned int regmap_parse_16_le(const void *buf)
{
358
	return get_unaligned_le16(buf);
359 360
}

361
static void regmap_parse_16_be_inplace(void *buf)
362
{
363
	u16 v = get_unaligned_be16(buf);
364

365
	memcpy(buf, &v, sizeof(v));
366 367
}

368 369
static void regmap_parse_16_le_inplace(void *buf)
{
370
	u16 v = get_unaligned_le16(buf);
371

372
	memcpy(buf, &v, sizeof(v));
373 374
}

375
static unsigned int regmap_parse_16_native(const void *buf)
376
{
377 378 379 380
	u16 v;

	memcpy(&v, buf, sizeof(v));
	return v;
381 382
}

383
static unsigned int regmap_parse_24(const void *buf)
384
{
385
	const u8 *b = buf;
386 387 388 389 390 391 392
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

393 394
static unsigned int regmap_parse_32_be(const void *buf)
{
395
	return get_unaligned_be32(buf);
396 397
}

398 399
static unsigned int regmap_parse_32_le(const void *buf)
{
400
	return get_unaligned_le32(buf);
401 402
}

403
static void regmap_parse_32_be_inplace(void *buf)
404
{
405
	u32 v = get_unaligned_be32(buf);
406

407
	memcpy(buf, &v, sizeof(v));
408 409
}

410 411
static void regmap_parse_32_le_inplace(void *buf)
{
412
	u32 v = get_unaligned_le32(buf);
413

414
	memcpy(buf, &v, sizeof(v));
415 416
}

417
static unsigned int regmap_parse_32_native(const void *buf)
418
{
419 420 421 422
	u32 v;

	memcpy(&v, buf, sizeof(v));
	return v;
423 424
}

X
Xiubo Li 已提交
425 426 427
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
428
	return get_unaligned_be64(buf);
X
Xiubo Li 已提交
429 430 431 432
}

static unsigned int regmap_parse_64_le(const void *buf)
{
433
	return get_unaligned_le64(buf);
X
Xiubo Li 已提交
434 435 436 437
}

static void regmap_parse_64_be_inplace(void *buf)
{
438
	u64 v =  get_unaligned_be64(buf);
X
Xiubo Li 已提交
439

440
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
441 442 443 444
}

static void regmap_parse_64_le_inplace(void *buf)
{
445
	u64 v = get_unaligned_le64(buf);
X
Xiubo Li 已提交
446

447
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
448 449 450 451
}

static unsigned int regmap_parse_64_native(const void *buf)
{
452 453 454 455
	u64 v;

	memcpy(&v, buf, sizeof(v));
	return v;
X
Xiubo Li 已提交
456 457 458
}
#endif

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

502
static void regmap_lock_unlock_none(void *__map)
503 504 505
{

}
506

507
static void regmap_lock_mutex(void *__map)
508
{
509
	struct regmap *map = __map;
510 511 512
	mutex_lock(&map->mutex);
}

513
static void regmap_unlock_mutex(void *__map)
514
{
515
	struct regmap *map = __map;
516 517 518
	mutex_unlock(&map->mutex);
}

519
static void regmap_lock_spinlock(void *__map)
520
__acquires(&map->spinlock)
521
{
522
	struct regmap *map = __map;
523 524 525 526
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
527 528
}

529
static void regmap_unlock_spinlock(void *__map)
530
__releases(&map->spinlock)
531
{
532
	struct regmap *map = __map;
533
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void regmap_lock_raw_spinlock(void *__map)
__acquires(&map->raw_spinlock)
{
	struct regmap *map = __map;
	unsigned long flags;

	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
	map->raw_spinlock_flags = flags;
}

static void regmap_unlock_raw_spinlock(void *__map)
__releases(&map->raw_spinlock)
{
	struct regmap *map = __map;
	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
}

M
Mark Brown 已提交
553 554 555 556 557 558 559 560 561
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

562 563 564 565 566 567 568 569
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
570
			rb_entry(*new, struct regmap_range_node, node);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
594
			rb_entry(node, struct regmap_range_node, node);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
{
	if (config->name) {
		const char *name = kstrdup_const(config->name, GFP_KERNEL);

		if (!name)
			return -ENOMEM;

		kfree_const(map->name);
		map->name = name;
	}

	return 0;
}

638 639 640 641
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;
642
	int ret;
643 644 645

	map->dev = dev;

646 647 648 649
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

650
	regmap_debugfs_exit(map);
651
	regmap_debugfs_init(map);
652 653 654 655 656 657 658 659 660 661 662 663 664 665

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
681

682 683 684 685 686 687 688 689
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

690 691 692
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
693
{
694
	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695
	enum regmap_endian endian;
696

697
	/* Retrieve the endianness specification from the regmap config */
698
	endian = config->val_format_endian;
699

700
	/* If the regmap config specified a non-default value, use that */
701 702
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
703

704 705 706 707 708 709 710 711 712 713 714
	/* If the firmware node exist try to get endianness from it */
	if (fwnode_property_read_bool(fwnode, "big-endian"))
		endian = REGMAP_ENDIAN_BIG;
	else if (fwnode_property_read_bool(fwnode, "little-endian"))
		endian = REGMAP_ENDIAN_LITTLE;
	else if (fwnode_property_read_bool(fwnode, "native-endian"))
		endian = REGMAP_ENDIAN_NATIVE;

	/* If the endianness was specified in fwnode, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
715 716

	/* Retrieve the endianness specification from the bus config */
717 718
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
719

720
	/* If the bus specified a non-default value, use that */
721 722
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
723 724

	/* Use this if no other value was found */
725
	return REGMAP_ENDIAN_BIG;
726
}
727
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728

729 730 731 732 733 734
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
735
{
736
	struct regmap *map;
737
	int ret = -EINVAL;
738
	enum regmap_endian reg_endian, val_endian;
739
	int i, j;
740

741
	if (!config)
742
		goto err;
743 744 745 746 747 748 749

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

750 751 752
	ret = regmap_set_name(map, config);
	if (ret)
		goto err_map;
753

754 755
	ret = -EINVAL; /* Later error paths rely on this */

756
	if (config->disable_locking) {
757
		map->lock = map->unlock = regmap_lock_unlock_none;
758
		map->can_sleep = config->can_sleep;
759
		regmap_debugfs_disable(map);
760
	} else if (config->lock && config->unlock) {
761 762 763
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
764
		map->can_sleep = config->can_sleep;
765
	} else if (config->use_hwlock) {
766 767 768
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
769
			goto err_name;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
788
	} else {
789 790
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
791 792 793 794 795 796 797 798 799 800 801 802 803
			if (config->use_raw_spinlock) {
				raw_spin_lock_init(&map->raw_spinlock);
				map->lock = regmap_lock_raw_spinlock;
				map->unlock = regmap_unlock_raw_spinlock;
				lockdep_set_class_and_name(&map->raw_spinlock,
							   lock_key, lock_name);
			} else {
				spin_lock_init(&map->spinlock);
				map->lock = regmap_lock_spinlock;
				map->unlock = regmap_unlock_spinlock;
				lockdep_set_class_and_name(&map->spinlock,
							   lock_key, lock_name);
			}
804 805 806 807
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
808
			map->can_sleep = true;
809 810
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
811 812
		}
		map->lock_arg = map;
813
	}
814 815 816 817 818 819 820 821 822 823

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

824
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825
	map->format.pad_bytes = config->pad_bits / 8;
826
	map->format.reg_downshift = config->reg_downshift;
827
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
828 829
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
830
	map->reg_shift = config->pad_bits % 8;
831 832 833 834
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
835 836 837 838
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
839 840
	map->use_single_read = config->use_single_read || !bus || !bus->read;
	map->use_single_write = config->use_single_write || !bus || !bus->write;
841
	map->can_multi_write = config->can_multi_write && bus && bus->write;
842 843 844 845
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
846 847
	map->dev = dev;
	map->bus = bus;
848
	map->bus_context = bus_context;
849
	map->max_register = config->max_register;
850 851 852 853
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
B
Ben Whitten 已提交
854
	map->wr_noinc_table = config->wr_noinc_table;
855
	map->rd_noinc_table = config->rd_noinc_table;
856 857 858
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
859
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
860
	map->writeable_noinc_reg = config->writeable_noinc_reg;
861
	map->readable_noinc_reg = config->readable_noinc_reg;
862
	map->cache_type = config->cache_type;
863

864 865
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
866
	INIT_LIST_HEAD(&map->async_free);
867 868
	init_waitqueue_head(&map->async_waitq);

869 870 871
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
872 873
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
874
	} else if (bus) {
875 876 877
		map->read_flag_mask = bus->read_flag_mask;
	}

878 879 880
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;
881
		map->reg_update_bits = config->reg_update_bits;
882

883 884 885 886 887
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;
888
		map->reg_update_bits = bus->reg_update_bits;
889

890 891 892 893
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
894
		map->reg_update_bits = bus->reg_update_bits;
895
	}
896

897 898
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
899

900
	switch (config->reg_bits + map->reg_shift) {
901 902 903 904 905 906
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
907
			goto err_hwlock;
908 909 910
		}
		break;

911 912 913 914 915 916
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
917
			goto err_hwlock;
918 919 920 921 922 923 924 925
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
926 927 928
		case 17:
			map->format.format_write = regmap_format_7_17_write;
			break;
929
		default:
930
			goto err_hwlock;
931 932 933
		}
		break;

934 935 936 937 938 939
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
940
			goto err_hwlock;
941 942 943
		}
		break;

944 945 946 947 948 949 950 951 952 953
	case 12:
		switch (config->val_bits) {
		case 20:
			map->format.format_write = regmap_format_12_20_write;
			break;
		default:
			goto err_hwlock;
		}
		break;

954 955 956 957 958
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
959 960 961 962
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
963 964 965
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
966 967 968 969
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
970
			goto err_hwlock;
971
		}
972 973
		break;

974 975
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
976
			goto err_hwlock;
977 978 979
		map->format.format_reg = regmap_format_24;
		break;

980
	case 32:
981 982 983 984
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
985 986 987
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
988 989 990 991
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
992
			goto err_hwlock;
993
		}
994 995
		break;

X
Xiubo Li 已提交
996 997 998 999 1000 1001
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
1002 1003 1004
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
1005 1006 1007 1008
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
1009
			goto err_hwlock;
X
Xiubo Li 已提交
1010 1011 1012 1013
		}
		break;
#endif

1014
	default:
1015
		goto err_hwlock;
1016 1017
	}

1018 1019 1020
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

1021 1022 1023 1024
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
1025
		map->format.parse_inplace = regmap_parse_inplace_noop;
1026 1027
		break;
	case 16:
1028 1029 1030 1031
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
1032
			map->format.parse_inplace = regmap_parse_16_be_inplace;
1033
			break;
1034 1035 1036 1037 1038
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
1039 1040 1041 1042 1043
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
1044
			goto err_hwlock;
1045
		}
1046
		break;
1047
	case 24:
1048
		if (val_endian != REGMAP_ENDIAN_BIG)
1049
			goto err_hwlock;
1050 1051 1052
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
1053
	case 32:
1054 1055 1056 1057
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
1058
			map->format.parse_inplace = regmap_parse_32_be_inplace;
1059
			break;
1060 1061 1062 1063 1064
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
1065 1066 1067 1068 1069
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
1070
			goto err_hwlock;
1071
		}
1072
		break;
X
Xiubo Li 已提交
1073
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
1074
	case 64:
X
Xiubo Li 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
1091
			goto err_hwlock;
X
Xiubo Li 已提交
1092 1093 1094
		}
		break;
#endif
1095 1096
	}

1097 1098 1099
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
1100
			goto err_hwlock;
1101
		map->use_single_write = true;
1102
	}
1103

1104 1105
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1106
		goto err_hwlock;
1107

1108
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1109 1110
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1111
		goto err_hwlock;
1112 1113
	}

1114 1115
	if (map->format.format_write) {
		map->defer_caching = false;
1116
		map->reg_write = _regmap_bus_formatted_write;
1117 1118
	} else if (map->format.format_val) {
		map->defer_caching = true;
1119
		map->reg_write = _regmap_bus_raw_write;
1120 1121 1122
	}

skip_format_initialization:
1123

1124
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1125
	for (i = 0; i < config->num_ranges; i++) {
1126 1127 1128 1129
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1130 1131 1132
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1133
			goto err_range;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1153 1154 1155

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1156
		for (j = 0; j < config->num_ranges; j++) {
1157 1158 1159 1160
			unsigned int sel_reg = config->ranges[j].selector_reg;
			unsigned int win_min = config->ranges[j].window_start;
			unsigned int win_max = win_min +
					       config->ranges[j].window_len - 1;
1161

1162 1163 1164 1165
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1166 1167
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1168 1169 1170
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1171 1172 1173 1174 1175
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1176 1177 1178
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1189
		new->map = map;
M
Mark Brown 已提交
1190
		new->name = range_cfg->name;
1191 1192 1193 1194 1195 1196 1197 1198
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1199
		if (!_regmap_range_add(map, new)) {
1200
			dev_err(map->dev, "Failed to add range %d\n", i);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1214

1215
	ret = regcache_init(map, config);
1216
	if (ret != 0)
1217 1218
		goto err_range;

1219
	if (dev) {
1220 1221 1222
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1223
	} else {
1224
		regmap_debugfs_init(map);
1225
	}
M
Mark Brown 已提交
1226

1227 1228
	return map;

1229
err_regcache:
M
Mark Brown 已提交
1230
	regcache_exit(map);
1231 1232
err_range:
	regmap_range_exit(map);
1233
	kfree(map->work_buf);
1234
err_hwlock:
1235
	if (map->hwlock)
1236
		hwspin_lock_free(map->hwlock);
1237 1238
err_name:
	kfree_const(map->name);
1239 1240 1241 1242 1243
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1244
EXPORT_SYMBOL_GPL(__regmap_init);
1245

1246 1247 1248 1249 1250
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1251 1252 1253 1254 1255 1256
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1257 1258 1259 1260 1261 1262 1263
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1264 1265
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1275
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1276

1277 1278 1279 1280 1281 1282
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1283
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1284 1285
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1286 1287 1288
}

/**
1289
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

/**
 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
 *
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields should be freed by calling
 * regmap_field_bulk_free()
 */
int regmap_field_bulk_alloc(struct regmap *regmap,
			    struct regmap_field **rm_field,
1329
			    const struct reg_field *reg_field,
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			    int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);

/**
 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
 * fields.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields will be automatically freed by the
 * device management code.
 */
int devm_regmap_field_bulk_alloc(struct device *dev,
				 struct regmap *regmap,
				 struct regmap_field **rm_field,
1365
				 const struct reg_field *reg_field,
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
				 int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);

/**
 * regmap_field_bulk_free() - Free register field allocated using
 *                       regmap_field_bulk_alloc.
 *
 * @field: regmap fields which should be freed.
 */
void regmap_field_bulk_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_free);

/**
 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
 *                            devm_regmap_field_bulk_alloc.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 *
 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cycle.
 */
void devm_regmap_field_bulk_free(struct device *dev,
				 struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);

1414
/**
1415 1416
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1417 1418 1419
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1420 1421 1422 1423
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1424 1425 1426 1427 1428 1429 1430 1431 1432
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1433
 * regmap_field_alloc() - Allocate and initialise a register field.
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1457 1458
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1459 1460 1461 1462 1463 1464 1465 1466 1467
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1468
/**
1469
 * regmap_reinit_cache() - Reinitialise the current register cache
1470 1471 1472 1473 1474 1475 1476 1477
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1478 1479 1480
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1481 1482 1483
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
1484 1485
	int ret;

1486
	regcache_exit(map);
1487
	regmap_debugfs_exit(map);
1488 1489 1490 1491 1492 1493

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
1494
	map->writeable_noinc_reg = config->writeable_noinc_reg;
1495
	map->readable_noinc_reg = config->readable_noinc_reg;
1496 1497
	map->cache_type = config->cache_type;

1498 1499 1500 1501 1502
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
1503

1504 1505 1506
	map->cache_bypass = false;
	map->cache_only = false;

1507
	return regcache_init(map, config);
1508
}
1509
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1510

1511
/**
1512 1513 1514
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1515 1516 1517
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1518 1519
	struct regmap_async *async;

1520
	regcache_exit(map);
1521
	regmap_debugfs_exit(map);
1522
	regmap_range_exit(map);
1523
	if (map->bus && map->bus->free_context)
1524
		map->bus->free_context(map->bus_context);
1525
	kfree(map->work_buf);
M
Mark Brown 已提交
1526 1527 1528 1529 1530 1531 1532 1533
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1534
	if (map->hwlock)
1535
		hwspin_lock_free(map->hwlock);
1536 1537
	if (map->lock == regmap_lock_mutex)
		mutex_destroy(&map->mutex);
1538
	kfree_const(map->name);
1539
	kfree(map->patch);
1540 1541
	if (map->bus && map->bus->free_on_exit)
		kfree(map->bus);
1542 1543 1544 1545
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
1556
		return !strcmp((*r)->name, data);
M
Mark Brown 已提交
1557 1558 1559 1560 1561
	else
		return 1;
}

/**
1562
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1584
/**
1585
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1595
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1596

1597
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1598
			       struct regmap_range_node *range,
1599 1600 1601 1602 1603 1604 1605 1606
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1607 1608
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1609

1610 1611 1612 1613
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1614

1615 1616 1617 1618
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1619

1620 1621 1622 1623 1624 1625 1626 1627
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1628

1629 1630 1631
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1632
					  &page_chg, false);
1633

1634
		map->work_buf = orig_work_buf;
1635

1636
		if (ret != 0)
1637
			return ret;
1638 1639
	}

1640 1641
	*reg = range->window_start + win_offset;

1642 1643 1644
	return 0;
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1660
static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1661
				  const void *val, size_t val_len, bool noinc)
1662
{
1663
	struct regmap_range_node *range;
1664 1665 1666
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1667 1668 1669
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1670 1671
	int i;

1672
	WARN_ON(!map->bus);
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/* Check for unwritable or noinc registers in range
	 * before we start
	 */
	if (!regmap_writeable_noinc(map, reg)) {
		for (i = 0; i < val_len / map->format.val_bytes; i++) {
			unsigned int element =
				reg + regmap_get_offset(map, i);
			if (!regmap_writeable(map, element) ||
				regmap_writeable_noinc(map, element))
				return -EINVAL;
		}
	}
1686

1687 1688 1689 1690
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1691
			ival = map->format.parse_val(val + (i * val_bytes));
1692 1693
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1694
					     ival);
1695 1696
			if (ret) {
				dev_err(map->dev,
1697
					"Error in caching of register: %x ret: %d\n",
1698
					reg + regmap_get_offset(map, i), ret);
1699 1700 1701 1702 1703 1704 1705 1706 1707
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1708 1709
	range = _regmap_range_lookup(map, reg);
	if (range) {
1710 1711 1712 1713 1714 1715
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1716
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1717
				win_residue, val_len / map->format.val_bytes);
1718 1719
			ret = _regmap_raw_write_impl(map, reg, val,
						     win_residue *
1720
						     map->format.val_bytes, noinc);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

1734
		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1735
		if (ret != 0)
1736 1737
			return ret;
	}
1738

1739
	reg >>= map->format.reg_downshift;
1740
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1741 1742
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1754
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1755
		struct regmap_async *async;
1756

1757
		trace_regmap_async_write_start(map, reg, val_len);
1758

M
Mark Brown 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1802 1803 1804 1805 1806 1807

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1808
			list_move(&async->list, &map->async_free);
1809 1810
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1811 1812

		return ret;
1813 1814
	}

1815
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1816

1817 1818 1819 1820
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1821
	if (val == work_val)
1822
		ret = map->bus->write(map->bus_context, map->work_buf,
1823 1824 1825
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1826
	else if (map->bus->gather_write)
1827
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1828 1829
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1830
					     val, val_len);
1831 1832
	else
		ret = -ENOTSUPP;
1833

1834
	/* If that didn't work fall back on linearising by hand. */
1835
	if (ret == -ENOTSUPP) {
1836 1837
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1838 1839 1840 1841
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1842 1843
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1844
		ret = map->bus->write(map->bus_context, buf, len);
1845 1846

		kfree(buf);
1847
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1848 1849 1850 1851 1852
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1853 1854
	}

1855
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1856

1857 1858 1859
	return ret;
}

1860 1861 1862 1863 1864 1865 1866
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1867 1868
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1869 1870 1871
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1894 1895 1896 1897 1898 1899 1900
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1901
	WARN_ON(!map->bus || !map->format.format_write);
1902 1903 1904 1905 1906 1907 1908 1909

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

1910
	reg >>= map->format.reg_downshift;
1911 1912
	map->format.format_write(map, reg, val);

1913
	trace_regmap_hw_write_start(map, reg, 1);
1914 1915 1916 1917

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1918
	trace_regmap_hw_write_done(map, reg, 1);
1919 1920 1921 1922

	return ret;
}

1923 1924 1925 1926 1927 1928 1929 1930
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1931 1932 1933 1934 1935
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1936
	WARN_ON(!map->bus || !map->format.format_val);
1937 1938 1939

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
1940 1941 1942 1943
	return _regmap_raw_write_impl(map, reg,
				      map->work_buf +
				      map->format.reg_bytes +
				      map->format.pad_bytes,
1944 1945
				      map->format.val_bytes,
				      false);
1946 1947
}

1948 1949 1950 1951 1952
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1953 1954
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1955
{
M
Mark Brown 已提交
1956
	int ret;
1957
	void *context = _regmap_map_get_context(map);
1958

1959 1960 1961
	if (!regmap_writeable(map, reg))
		return -EIO;

1962
	if (!map->cache_bypass && !map->defer_caching) {
1963 1964 1965
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1966 1967
		if (map->cache_only) {
			map->cache_dirty = true;
1968
			return 0;
1969
		}
1970 1971
	}

1972 1973 1974 1975
	ret = map->reg_write(context, reg, val);
	if (ret == 0) {
		if (regmap_should_log(map))
			dev_info(map->dev, "%x <= %x\n", reg, val);
1976

1977 1978
		trace_regmap_reg_write(map, reg, val);
	}
M
Mark Brown 已提交
1979

1980
	return ret;
1981 1982 1983
}

/**
1984
 * regmap_write() - Write a value to a single register
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1997
	if (!IS_ALIGNED(reg, map->reg_stride))
1998 1999
		return -EINVAL;

2000
	map->lock(map->lock_arg);
2001 2002 2003

	ret = _regmap_write(map, reg, val);

2004
	map->unlock(map->lock_arg);
2005 2006 2007 2008 2009

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

2010
/**
2011
 * regmap_write_async() - Write a value to a single register asynchronously
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

2024
	if (!IS_ALIGNED(reg, map->reg_stride))
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

2041
int _regmap_raw_write(struct regmap *map, unsigned int reg,
2042
		      const void *val, size_t val_len, bool noinc)
2043 2044 2045
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
2046 2047
	size_t chunk_count, chunk_bytes;
	size_t chunk_regs = val_count;
2048 2049 2050 2051 2052
	int ret, i;

	if (!val_count)
		return -EINVAL;

2053 2054 2055 2056 2057 2058 2059
	if (map->use_single_write)
		chunk_regs = 1;
	else if (map->max_raw_write && val_len > map->max_raw_write)
		chunk_regs = map->max_raw_write / val_bytes;

	chunk_count = val_count / chunk_regs;
	chunk_bytes = chunk_regs * val_bytes;
2060 2061 2062

	/* Write as many bytes as possible with chunk_size */
	for (i = 0; i < chunk_count; i++) {
2063
		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2064 2065
		if (ret)
			return ret;
2066 2067 2068 2069

		reg += regmap_get_offset(map, chunk_regs);
		val += chunk_bytes;
		val_len -= chunk_bytes;
2070 2071 2072
	}

	/* Write remaining bytes */
2073
	if (val_len)
2074
		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2075 2076 2077 2078

	return ret;
}

2079
/**
2080
 * regmap_raw_write() - Write raw values to one or more registers
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

2100
	if (!regmap_can_raw_write(map))
2101
		return -EINVAL;
2102 2103 2104
	if (val_len % map->format.val_bytes)
		return -EINVAL;

2105
	map->lock(map->lock_arg);
2106

2107
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2108

2109
	map->unlock(map->lock_arg);
2110 2111 2112 2113 2114

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

B
Ben Whitten 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
/**
 * regmap_noinc_write(): Write data from a register without incrementing the
 *			register number
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus write operations will write a
 * range of registers. Some devices have certain registers for which a write
 * operation can write to an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple writes as required to write val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	size_t write_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->write)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_write && map->max_raw_write < val_len)
			write_len = map->max_raw_write;
		else
			write_len = val_len;
2165
		ret = _regmap_raw_write(map, reg, val, write_len, true);
B
Ben Whitten 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + write_len;
		val_len -= write_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_write);

2178
/**
2179 2180
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
2181 2182 2183 2184
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
2185 2186 2187
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2188
 *
2189 2190 2191
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
2192 2193 2194
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2195 2196 2197
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
2198 2199 2200
{
	mask = (mask << field->shift) & field->mask;

2201 2202 2203
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
2204
}
2205
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2206

2207
/**
2208 2209
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
2210 2211 2212 2213 2214
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
2215 2216 2217
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2218 2219 2220 2221
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
B
Bartosz Golaszewski 已提交
2222
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2223 2224
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
2225 2226 2227 2228 2229 2230
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

2231 2232 2233 2234
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
2235
}
2236
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2237

2238 2239
/**
 * regmap_bulk_write() - Write multiple registers to the device
2240 2241 2242 2243 2244 2245 2246
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
2247
 * data to the device either in single transfer or multiple transfer.
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

2258
	if (!IS_ALIGNED(reg, map->reg_stride))
2259
		return -EINVAL;
2260

2261
	/*
2262 2263
	 * Some devices don't support bulk write, for them we have a series of
	 * single write operations.
2264
	 */
2265
	if (!map->bus || !map->format.parse_inplace) {
2266
		map->lock(map->lock_arg);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
2289

2290 2291 2292
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
2293 2294 2295
			if (ret != 0)
				goto out;
		}
2296 2297
out:
		map->unlock(map->lock_arg);
2298
	} else {
2299 2300
		void *wval;

2301
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2302
		if (!wval)
2303
			return -ENOMEM;
2304

2305
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2306
			map->format.parse_inplace(wval + i);
2307

2308
		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2309 2310

		kfree(wval);
2311
	}
2312 2313 2314 2315
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2316 2317 2318 2319 2320
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2321
 * relative. The page register has been written if that was necessary.
2322 2323
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2324
				       const struct reg_sequence *regs,
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2337 2338 2339
	if (!len)
		return -EINVAL;

2340 2341 2342 2343 2344 2345 2346 2347 2348
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2349 2350
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2351
		trace_regmap_hw_write_start(map, reg, 1);
2352
		reg >>= map->format.reg_downshift;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2367
		trace_regmap_hw_write_done(map, reg, 1);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2382
					       struct reg_sequence *regs,
2383 2384 2385 2386
					       size_t num_regs)
{
	int ret;
	int i, n;
2387
	struct reg_sequence *base;
2388
	unsigned int this_page = 0;
2389
	unsigned int page_change = 0;
2390 2391 2392
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2393 2394
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2430 2431 2432
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2433

2434 2435 2436 2437 2438 2439
				if (regs[i].delay_us) {
					if (map->can_sleep)
						fsleep(regs[i].delay_us);
					else
						udelay(regs[i].delay_us);
				}
2440

2441 2442
				base += n;
				n = 0;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2454
		}
2455

2456 2457 2458 2459 2460 2461
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2462
static int _regmap_multi_reg_write(struct regmap *map,
2463
				   const struct reg_sequence *regs,
2464
				   size_t num_regs)
2465
{
2466 2467 2468 2469 2470 2471 2472 2473
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2474

2475 2476 2477 2478 2479 2480
			if (regs[i].delay_us) {
				if (map->can_sleep)
					fsleep(regs[i].delay_us);
				else
					udelay(regs[i].delay_us);
			}
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2493
			if (!IS_ALIGNED(reg, map->reg_stride))
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2516 2517

	for (i = 0; i < num_regs; i++) {
2518 2519
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2520 2521 2522 2523

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2524
		range = _regmap_range_lookup(map, reg);
2525
		if (range || regs[i].delay_us) {
2526 2527
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2528 2529 2530 2531 2532 2533 2534
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2535 2536 2537
			return ret;
		}
	}
2538
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2539 2540
}

2541 2542
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2543 2544 2545 2546 2547
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2548 2549 2550
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2551
 * The 'normal' block write mode will send ultimately send data on the
2552
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2553 2554 2555
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2556
 *
2557 2558
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2559
 */
2560
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2561
			   int num_regs)
2562
{
2563
	int ret;
2564 2565 2566

	map->lock(map->lock_arg);

2567 2568
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2569 2570 2571 2572 2573 2574
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2575 2576 2577
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2578 2579 2580 2581 2582
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2583 2584 2585
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2586 2587 2588 2589 2590 2591 2592
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2593
int regmap_multi_reg_write_bypassed(struct regmap *map,
2594
				    const struct reg_sequence *regs,
2595
				    int num_regs)
2596
{
2597 2598
	int ret;
	bool bypass;
2599 2600 2601

	map->lock(map->lock_arg);

2602 2603 2604 2605 2606 2607 2608
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2609 2610 2611 2612
	map->unlock(map->lock_arg);

	return ret;
}
2613
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2614

2615
/**
2616 2617
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2644
	if (!IS_ALIGNED(reg, map->reg_stride))
2645 2646 2647 2648
		return -EINVAL;

	map->lock(map->lock_arg);

2649 2650
	map->async = true;

2651
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2652 2653

	map->async = false;
2654 2655 2656 2657 2658 2659 2660

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2661
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2662
			    unsigned int val_len, bool noinc)
2663
{
2664
	struct regmap_range_node *range;
2665 2666
	int ret;

2667
	WARN_ON(!map->bus);
2668

2669 2670 2671
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2672 2673 2674
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
2675
					  noinc ? 1 : val_len / map->format.val_bytes);
2676
		if (ret != 0)
2677 2678
			return ret;
	}
2679

2680
	reg >>= map->format.reg_downshift;
2681
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2682 2683
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2684
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2685

2686
	ret = map->bus->read(map->bus_context, map->work_buf,
2687
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2688
			     val, val_len);
2689

2690
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2691 2692

	return ret;
2693 2694
}

2695 2696 2697 2698 2699 2700 2701 2702
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2703 2704 2705 2706 2707
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2708 2709
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2710 2711 2712 2713

	if (!map->format.parse_val)
		return -EINVAL;

2714
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2715
	if (ret == 0)
2716
		*val = map->format.parse_val(work_val);
2717 2718 2719 2720

	return ret;
}

2721 2722 2723 2724
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2725 2726
	void *context = _regmap_map_get_context(map);

2727 2728 2729 2730 2731 2732 2733 2734 2735
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2736 2737 2738
	if (!regmap_readable(map, reg))
		return -EIO;

2739
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2740
	if (ret == 0) {
B
Ben Dooks 已提交
2741
		if (regmap_should_log(map))
2742 2743
			dev_info(map->dev, "%x => %x\n", reg, *val);

2744
		trace_regmap_reg_read(map, reg, *val);
2745

2746 2747 2748
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2749

2750 2751 2752 2753
	return ret;
}

/**
2754
 * regmap_read() - Read a value from a single register
2755
 *
2756
 * @map: Register map to read from
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2767
	if (!IS_ALIGNED(reg, map->reg_stride))
2768 2769
		return -EINVAL;

2770
	map->lock(map->lock_arg);
2771 2772 2773

	ret = _regmap_read(map, reg, val);

2774
	map->unlock(map->lock_arg);
2775 2776 2777 2778 2779 2780

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2781
 * regmap_raw_read() - Read raw data from the device
2782
 *
2783
 * @map: Register map to read from
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2794 2795 2796 2797
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2798

2799 2800
	if (!map->bus)
		return -EINVAL;
2801 2802
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2803
	if (!IS_ALIGNED(reg, map->reg_stride))
2804
		return -EINVAL;
2805 2806
	if (val_count == 0)
		return -EINVAL;
2807

2808
	map->lock(map->lock_arg);
2809

2810 2811
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2812 2813
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2814

2815 2816 2817 2818 2819
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}

2820 2821 2822 2823
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2824

2825 2826 2827 2828
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2829
		for (i = 0; i < chunk_count; i++) {
2830
			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2831
			if (ret != 0)
2832 2833 2834 2835 2836
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2837
		}
2838

2839
		/* Read remaining bytes */
2840
		if (val_len) {
2841
			ret = _regmap_raw_read(map, reg, val, val_len, false);
2842
			if (ret != 0)
2843
				goto out;
2844
		}
2845 2846 2847 2848 2849
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2850
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2851
					   &v);
2852 2853 2854
			if (ret != 0)
				goto out;

2855
			map->format.format_val(val + (i * val_bytes), v, 0);
2856 2857
		}
	}
2858

2859
 out:
2860
	map->unlock(map->lock_arg);
2861 2862 2863 2864 2865

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2866
/**
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
 * regmap_noinc_read(): Read data from a register without incrementing the
 *			register number
 *
 * @map: Register map to read from
 * @reg: Register to read from
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus read operations will read a
 * range of registers. Some devices have certain registers for which a read
 * operation read will read from an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple reads as required to read val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_read(struct regmap *map, unsigned int reg,
		      void *val, size_t val_len)
{
	size_t read_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->read)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_read && map->max_raw_read < val_len)
			read_len = map->max_raw_read;
		else
			read_len = val_len;
2916
		ret = _regmap_raw_read(map, reg, val, read_len, true);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + read_len;
		val_len -= read_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_read);

/**
 * regmap_field_read(): Read a value to a single register field
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2954
/**
2955
 * regmap_fields_read() - Read a value to a single register field with port ID
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2987
/**
2988
 * regmap_bulk_read() - Read multiple registers from the device
2989
 *
2990
 * @map: Register map to read from
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
3003
	bool vol = regmap_volatile_range(map, reg, val_count);
3004

3005
	if (!IS_ALIGNED(reg, map->reg_stride))
3006
		return -EINVAL;
3007 3008
	if (val_count == 0)
		return -EINVAL;
3009

3010
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3011 3012 3013
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
3014 3015

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3016
			map->format.parse_inplace(val + i);
3017
	} else {
3018 3019 3020 3021 3022 3023 3024
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

3025 3026
		map->lock(map->lock_arg);

3027
		for (i = 0; i < val_count; i++) {
3028
			unsigned int ival;
3029

3030 3031
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
3032
			if (ret != 0)
3033
				goto out;
3034

3035
			switch (map->format.val_bytes) {
X
Xiubo Li 已提交
3036
#ifdef CONFIG_64BIT
3037 3038 3039
			case 8:
				u64[i] = ival;
				break;
X
Xiubo Li 已提交
3040
#endif
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
3051 3052
				ret = -EINVAL;
				goto out;
3053
			}
3054
		}
3055 3056 3057

out:
		map->unlock(map->lock_arg);
3058
	}
3059

3060
	return ret;
3061 3062 3063
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

3064 3065
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
3066
			       bool *change, bool force_write)
3067 3068
{
	int ret;
3069
	unsigned int tmp, orig;
3070

3071 3072
	if (change)
		*change = false;
3073

3074 3075 3076
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
3077
			*change = true;
3078
	} else {
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
3091
	}
3092 3093 3094

	return ret;
}
3095 3096

/**
3097
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3098 3099 3100 3101 3102 3103
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
3104 3105
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
3106
 *
3107 3108 3109 3110 3111 3112 3113 3114
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
3115 3116 3117
 *
 * Returns zero for success, a negative number on error.
 */
3118 3119 3120
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
3121 3122 3123 3124 3125
{
	int ret;

	map->lock(map->lock_arg);

3126
	map->async = async;
3127

3128
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3129 3130 3131 3132 3133 3134 3135

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
3136
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3137

3138 3139 3140 3141 3142 3143 3144
/**
 * regmap_test_bits() - Check if all specified bits are set in a register.
 *
 * @map: Register map to operate on
 * @reg: Register to read from
 * @bits: Bits to test
 *
3145 3146 3147
 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
 * bits are set and a negative error number if the underlying regmap_read()
 * fails.
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
 */
int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
{
	unsigned int val, ret;

	ret = regmap_read(map, reg, &val);
	if (ret)
		return ret;

	return (val & bits) == bits;
}
EXPORT_SYMBOL_GPL(regmap_test_bits);

3161 3162 3163 3164 3165
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

3166
	trace_regmap_async_io_complete(map);
3167

3168
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
3169
	list_move(&async->list, &map->async_free);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
3180
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
3195
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
3208
	if (!map->bus || !map->bus->async_write)
3209 3210
		return 0;

3211
	trace_regmap_async_complete_start(map);
3212

3213 3214 3215 3216 3217 3218 3219
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

3220
	trace_regmap_async_complete_done(map);
3221

3222 3223
	return ret;
}
3224
EXPORT_SYMBOL_GPL(regmap_async_complete);
3225

M
Mark Brown 已提交
3226
/**
3227 3228
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
3239 3240 3241
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
3242
 */
3243
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
3244 3245
			  int num_regs)
{
3246
	struct reg_sequence *p;
3247
	int ret;
M
Mark Brown 已提交
3248 3249
	bool bypass;

3250 3251 3252 3253
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

3254
	p = krealloc(map->patch,
3255
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3256 3257 3258 3259 3260
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
3261
	} else {
3262
		return -ENOMEM;
M
Mark Brown 已提交
3263 3264
	}

3265
	map->lock(map->lock_arg);
M
Mark Brown 已提交
3266 3267 3268 3269

	bypass = map->cache_bypass;

	map->cache_bypass = true;
3270
	map->async = true;
M
Mark Brown 已提交
3271

3272
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
3273

3274
	map->async = false;
M
Mark Brown 已提交
3275 3276
	map->cache_bypass = bypass;

3277
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
3278

3279 3280
	regmap_async_complete(map);

M
Mark Brown 已提交
3281 3282 3283 3284
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

3285 3286 3287 3288
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

3302
/**
3303 3304 3305
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

3316
/**
3317 3318 3319
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3342 3343 3344 3345 3346 3347 3348
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);