regmap.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
40 41 42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
44

45 46 47 48 49 50 51 52 53
static void async_cleanup(struct work_struct *work)
{
	struct regmap_async *async = container_of(work, struct regmap_async,
						  cleanup);

	kfree(async->work_buf);
	kfree(async);
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

68 69
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
70 71 72 73 74 75 76 77 78 79 80 81
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
82
EXPORT_SYMBOL_GPL(regmap_check_range_table);
83

84 85 86 87 88 89 90 91
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

92
	if (map->wr_table)
93
		return regmap_check_range_table(map, reg, map->wr_table);
94

95 96 97 98 99 100 101 102
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

103 104 105
	if (map->format.format_write)
		return false;

106 107 108
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

109
	if (map->rd_table)
110
		return regmap_check_range_table(map, reg, map->rd_table);
111

112 113 114 115 116
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
117
	if (!regmap_readable(map, reg))
118 119 120 121 122
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

123
	if (map->volatile_table)
124
		return regmap_check_range_table(map, reg, map->volatile_table);
125

126 127 128 129
	if (map->cache_ops)
		return false;
	else
		return true;
130 131 132 133
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
134
	if (!regmap_readable(map, reg))
135 136 137 138 139
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

140
	if (map->precious_table)
141
		return regmap_check_range_table(map, reg, map->precious_table);
142

143 144 145
	return false;
}

146
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
147
	size_t num)
148 149 150 151 152 153 154 155 156 157
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

158 159 160 161 162 163 164 165
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

180 181 182 183 184 185 186 187 188 189
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

190
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 192 193
{
	u8 *b = buf;

194
	b[0] = val << shift;
195 196
}

197
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 199 200
{
	__be16 *b = buf;

201
	b[0] = cpu_to_be16(val << shift);
202 203
}

204 205 206 207 208 209
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

210
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
211 212 213
{
	u8 *b = buf;

214 215
	val <<= shift;

216 217 218 219 220
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

221
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
222 223 224
{
	__be32 *b = buf;

225
	b[0] = cpu_to_be32(val << shift);
226 227
}

228 229 230 231 232 233
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

234
static void regmap_parse_inplace_noop(void *buf)
235
{
236 237 238 239 240
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
241 242 243 244

	return b[0];
}

245 246 247 248 249 250 251 252
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
253 254 255 256 257 258
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

259
static unsigned int regmap_parse_16_native(const void *buf)
260 261 262 263
{
	return *(u16 *)buf;
}

264
static unsigned int regmap_parse_24(const void *buf)
265
{
266
	const u8 *b = buf;
267 268 269 270 271 272 273
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

274 275 276 277 278 279 280 281
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
282 283 284 285 286 287
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

288
static unsigned int regmap_parse_32_native(const void *buf)
289 290 291 292
{
	return *(u32 *)buf;
}

293
static void regmap_lock_mutex(void *__map)
294
{
295
	struct regmap *map = __map;
296 297 298
	mutex_lock(&map->mutex);
}

299
static void regmap_unlock_mutex(void *__map)
300
{
301
	struct regmap *map = __map;
302 303 304
	mutex_unlock(&map->mutex);
}

305
static void regmap_lock_spinlock(void *__map)
306
__acquires(&map->spinlock)
307
{
308
	struct regmap *map = __map;
309 310 311 312
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
313 314
}

315
static void regmap_unlock_spinlock(void *__map)
316
__releases(&map->spinlock)
317
{
318
	struct regmap *map = __map;
319
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
320 321
}

M
Mark Brown 已提交
322 323 324 325 326 327 328 329 330
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

392 393 394 395 396
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
397
 * @bus_context: Data passed to bus-specific callbacks
398 399 400 401 402 403 404 405
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
406
			   void *bus_context,
407 408
			   const struct regmap_config *config)
{
M
Mark Brown 已提交
409
	struct regmap *map, **m;
410
	int ret = -EINVAL;
411
	enum regmap_endian reg_endian, val_endian;
412
	int i, j;
413

414
	if (!config)
415
		goto err;
416 417 418 419 420 421 422

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

423 424 425 426
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
427
	} else {
428 429
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
430 431 432 433 434 435 436 437 438
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
439
	}
440
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
441
	map->format.pad_bytes = config->pad_bits / 8;
442
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
443 444
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
445
	map->reg_shift = config->pad_bits % 8;
446 447 448 449
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
450
	map->use_single_rw = config->use_single_rw;
451 452
	map->dev = dev;
	map->bus = bus;
453
	map->bus_context = bus_context;
454
	map->max_register = config->max_register;
455 456 457 458
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
459 460 461
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
462
	map->precious_reg = config->precious_reg;
463
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
464
	map->name = config->name;
465

466 467 468 469
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
	init_waitqueue_head(&map->async_waitq);

470 471 472
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
473
	} else if (bus) {
474 475 476
		map->read_flag_mask = bus->read_flag_mask;
	}

477 478 479 480 481 482 483 484 485
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
486

487 488 489 490 491 492 493 494 495 496 497 498
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

499
	switch (config->reg_bits + map->reg_shift) {
500 501 502 503 504 505 506 507 508 509
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

530 531 532 533 534 535 536 537 538 539
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

540 541 542 543 544
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
545 546 547 548 549 550 551 552 553 554
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
555 556
		break;

557 558 559 560 561 562
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

563
	case 32:
564 565 566 567 568 569 570 571 572 573
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
574 575
		break;

576 577 578 579
	default:
		goto err_map;
	}

580 581 582
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

583 584 585 586
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
587
		map->format.parse_inplace = regmap_parse_inplace_noop;
588 589
		break;
	case 16:
590 591 592 593
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
594
			map->format.parse_inplace = regmap_parse_16_be_inplace;
595 596 597 598 599 600 601 602
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
603
		break;
604
	case 24:
605 606
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
607 608 609
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
610
	case 32:
611 612 613 614
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
615
			map->format.parse_inplace = regmap_parse_32_be_inplace;
616 617 618 619 620 621 622 623
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
624
		break;
625 626
	}

627 628 629 630
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
631
		map->use_single_rw = true;
632
	}
633

634 635 636 637
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

638
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
639 640
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
641
		goto err_map;
642 643
	}

644 645
	if (map->format.format_write) {
		map->defer_caching = false;
646
		map->reg_write = _regmap_bus_formatted_write;
647 648
	} else if (map->format.format_val) {
		map->defer_caching = true;
649
		map->reg_write = _regmap_bus_raw_write;
650 651 652
	}

skip_format_initialization:
653

654
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
655
	for (i = 0; i < config->num_ranges; i++) {
656 657 658 659
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
660 661 662
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
663
			goto err_range;
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
683 684 685

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
686
		for (j = 0; j < config->num_ranges; j++) {
687 688 689 690 691
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

692 693 694 695
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

696 697
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
698 699 700
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
701 702 703 704 705
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
706 707 708
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
709 710 711 712 713 714 715 716 717 718
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

719
		new->map = map;
M
Mark Brown 已提交
720
		new->name = range_cfg->name;
721 722 723 724 725 726 727 728 729
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

		if (_regmap_range_add(map, new) == false) {
730
			dev_err(map->dev, "Failed to add range %d\n", i);
731 732 733 734 735 736 737 738 739 740 741 742 743
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
744

745 746
	regmap_debugfs_init(map, config->name);

747
	ret = regcache_init(map, config);
748
	if (ret != 0)
749 750
		goto err_range;

M
Mark Brown 已提交
751 752 753 754
	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		ret = -ENOMEM;
755
		goto err_debugfs;
M
Mark Brown 已提交
756 757 758 759
	}
	*m = map;
	devres_add(dev, m);

760 761
	return map;

762 763
err_debugfs:
	regmap_debugfs_exit(map);
M
Mark Brown 已提交
764
	regcache_exit(map);
765 766
err_range:
	regmap_range_exit(map);
767
	kfree(map->work_buf);
768 769 770 771 772 773 774
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

775 776 777 778 779 780 781 782 783 784
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
785
 * @bus_context: Data passed to bus-specific callbacks
786 787 788 789 790 791 792 793 794
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
795
				void *bus_context,
796 797 798 799 800 801 802 803
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

804
	regmap = regmap_init(dev, bus, bus_context, config);
805 806 807 808 809 810 811 812 813 814 815
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

905 906 907 908 909 910 911 912 913 914
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
915 916 917
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
918 919 920 921
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
922
	regmap_debugfs_exit(map);
923 924 925 926 927 928 929 930

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

931
	regmap_debugfs_init(map, config->name);
932

933 934 935
	map->cache_bypass = false;
	map->cache_only = false;

936
	return regcache_init(map, config);
937
}
938
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
939

940 941 942 943 944
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
945
	regcache_exit(map);
946
	regmap_debugfs_exit(map);
947
	regmap_range_exit(map);
948
	if (map->bus && map->bus->free_context)
949
		map->bus->free_context(map->bus_context);
950 951 952 953 954
	kfree(map->work_buf);
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

993
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
994
			       struct regmap_range_node *range,
995 996 997 998 999 1000 1001 1002
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1003 1004
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1005

1006 1007 1008 1009
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1010

1011 1012 1013 1014
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1015

1016 1017 1018 1019 1020 1021 1022 1023
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1024

1025 1026 1027 1028
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1029

1030
		map->work_buf = orig_work_buf;
1031

1032
		if (ret != 0)
1033
			return ret;
1034 1035
	}

1036 1037
	*reg = range->window_start + win_offset;

1038 1039 1040
	return 0;
}

1041 1042
int _regmap_raw_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len, bool async)
1043
{
1044
	struct regmap_range_node *range;
1045
	unsigned long flags;
1046
	u8 *u8 = map->work_buf;
1047 1048
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1049 1050 1051
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1052 1053
	int i;

1054
	WARN_ON(!map->bus);
1055

1056 1057 1058
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1059 1060
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1061
				return -EINVAL;
1062

1063 1064 1065 1066
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1067
			ival = map->format.parse_val(val + (i * val_bytes));
1068 1069
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1070 1071
			if (ret) {
				dev_err(map->dev,
1072
					"Error in caching of register: %x ret: %d\n",
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1083 1084
	range = _regmap_range_lookup(map, reg);
	if (range) {
1085 1086 1087 1088 1089 1090
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1091
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1092 1093
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1094
						map->format.val_bytes, async);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1109
		if (ret != 0)
1110 1111
			return ret;
	}
1112

1113
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1114

1115 1116
	u8[0] |= map->write_flag_mask;

1117 1118 1119 1120 1121
	if (async && map->bus->async_write) {
		struct regmap_async *async = map->bus->async_alloc();
		if (!async)
			return -ENOMEM;

1122 1123
		trace_regmap_async_write_start(map->dev, reg, val_len);

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		async->work_buf = kzalloc(map->format.buf_size,
					  GFP_KERNEL | GFP_DMA);
		if (!async->work_buf) {
			kfree(async);
			return -ENOMEM;
		}

		INIT_WORK(&async->cleanup, async_cleanup);
		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);
		if (val == work_val)
			val = async->work_buf + map->format.pad_bytes +
				map->format.reg_bytes;

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		ret = map->bus->async_write(map->bus_context, async->work_buf,
					    map->format.reg_bytes +
					    map->format.pad_bytes,
					    val, val_len, async);

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
			list_del(&async->list);
			spin_unlock_irqrestore(&map->async_lock, flags);

			kfree(async->work_buf);
			kfree(async);
		}
M
Mark Brown 已提交
1161 1162

		return ret;
1163 1164
	}

M
Mark Brown 已提交
1165 1166 1167
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1168 1169 1170 1171
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1172
	if (val == work_val)
1173
		ret = map->bus->write(map->bus_context, map->work_buf,
1174 1175 1176
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1177
	else if (map->bus->gather_write)
1178
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1179 1180
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1181 1182
					     val, val_len);

1183
	/* If that didn't work fall back on linearising by hand. */
1184
	if (ret == -ENOTSUPP) {
1185 1186
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1187 1188 1189 1190
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1191 1192
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1193
		ret = map->bus->write(map->bus_context, buf, len);
1194 1195 1196 1197

		kfree(buf);
	}

M
Mark Brown 已提交
1198 1199 1200
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1201 1202 1203
	return ret;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1215 1216 1217 1218 1219 1220 1221
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1222
	WARN_ON(!map->bus || !map->format.format_write);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1248
	WARN_ON(!map->bus || !map->format.format_val);
1249 1250 1251 1252 1253 1254 1255

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1256
				 map->format.val_bytes, false);
1257 1258
}

1259 1260 1261 1262 1263
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1264 1265
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1266
{
M
Mark Brown 已提交
1267
	int ret;
1268
	void *context = _regmap_map_get_context(map);
1269

1270 1271 1272
	if (!regmap_writeable(map, reg))
		return -EIO;

1273
	if (!map->cache_bypass && !map->defer_caching) {
1274 1275 1276
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1277 1278
		if (map->cache_only) {
			map->cache_dirty = true;
1279
			return 0;
1280
		}
1281 1282
	}

1283 1284 1285 1286 1287
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1288 1289
	trace_regmap_reg_write(map->dev, reg, val);

1290
	return map->reg_write(context, reg, val);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1307 1308 1309
	if (reg % map->reg_stride)
		return -EINVAL;

1310
	map->lock(map->lock_arg);
1311 1312 1313

	ret = _regmap_write(map, reg, val);

1314
	map->unlock(map->lock_arg);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1341
	if (!regmap_can_raw_write(map))
1342
		return -EINVAL;
1343 1344 1345
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1346
	map->lock(map->lock_arg);
1347

1348
	ret = _regmap_raw_write(map, reg, val, val_len, false);
1349

1350
	map->unlock(map->lock_arg);
1351 1352 1353 1354 1355

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1381
 * data to the device either in single transfer or multiple transfer.
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
	void *wval;

1393 1394
	if (!map->bus)
		return -EINVAL;
1395
	if (!map->format.parse_inplace)
1396
		return -EINVAL;
1397 1398
	if (reg % map->reg_stride)
		return -EINVAL;
1399

1400
	map->lock(map->lock_arg);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	/* No formatting is require if val_byte is 1 */
	if (val_bytes == 1) {
		wval = (void *)val;
	} else {
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			ret = -ENOMEM;
			dev_err(map->dev, "Error in memory allocation\n");
			goto out;
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1413
			map->format.parse_inplace(wval + i);
1414
	}
1415 1416 1417 1418 1419 1420 1421
	/*
	 * Some devices does not support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (map->use_single_rw) {
		for (i = 0; i < val_count; i++) {
			ret = regmap_raw_write(map,
1422 1423 1424
					       reg + (i * map->reg_stride),
					       val + (i * val_bytes),
					       val_bytes);
1425 1426 1427 1428
			if (ret != 0)
				return ret;
		}
	} else {
1429 1430
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
					false);
1431
	}
1432 1433 1434 1435 1436

	if (val_bytes != 1)
		kfree(wval);

out:
1437
	map->unlock(map->lock_arg);
1438 1439 1440 1441
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	ret = _regmap_raw_write(map, reg, val, val_len, true);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1484 1485 1486
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1487
	struct regmap_range_node *range;
1488 1489 1490
	u8 *u8 = map->work_buf;
	int ret;

1491
	WARN_ON(!map->bus);
1492

1493 1494 1495 1496
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1497
		if (ret != 0)
1498 1499
			return ret;
	}
1500

1501
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1502 1503

	/*
1504
	 * Some buses or devices flag reads by setting the high bits in the
1505 1506 1507 1508
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1509
	u8[0] |= map->read_flag_mask;
1510

M
Mark Brown 已提交
1511 1512 1513
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

1514
	ret = map->bus->read(map->bus_context, map->work_buf,
1515
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
1516
			     val, val_len);
1517

M
Mark Brown 已提交
1518 1519 1520 1521
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

1540 1541 1542 1543
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
1544 1545
	void *context = _regmap_map_get_context(map);

1546
	WARN_ON(!map->reg_read);
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

1557
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
1558
	if (ret == 0) {
1559 1560 1561 1562 1563
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
1564
		trace_regmap_reg_read(map->dev, reg, *val);
1565

1566 1567 1568
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
 * @map: Register map to write to
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

1587 1588 1589
	if (reg % map->reg_stride)
		return -EINVAL;

1590
	map->lock(map->lock_arg);
1591 1592 1593

	ret = _regmap_read(map, reg, val);

1594
	map->unlock(map->lock_arg);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
 * @map: Register map to write to
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
1614 1615 1616 1617
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
1618

1619 1620
	if (!map->bus)
		return -EINVAL;
1621 1622
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1623 1624
	if (reg % map->reg_stride)
		return -EINVAL;
1625

1626
	map->lock(map->lock_arg);
1627

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
1638 1639
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
1640 1641 1642
			if (ret != 0)
				goto out;

1643
			map->format.format_val(val + (i * val_bytes), v, 0);
1644 1645
		}
	}
1646

1647
 out:
1648
	map->unlock(map->lock_arg);
1649 1650 1651 1652 1653

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
 * @map: Register map to write to
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
1695
	bool vol = regmap_volatile_range(map, reg, val_count);
1696

1697 1698
	if (!map->bus)
		return -EINVAL;
1699
	if (!map->format.parse_inplace)
1700
		return -EINVAL;
1701 1702
	if (reg % map->reg_stride)
		return -EINVAL;
1703

1704
	if (vol || map->cache_type == REGCACHE_NONE) {
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
1724 1725

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726
			map->format.parse_inplace(val + i);
1727 1728
	} else {
		for (i = 0; i < val_count; i++) {
1729
			unsigned int ival;
1730
			ret = regmap_read(map, reg + (i * map->reg_stride),
1731
					  &ival);
1732 1733
			if (ret != 0)
				return ret;
1734
			memcpy(val + (i * val_bytes), &ival, val_bytes);
1735 1736
		}
	}
1737 1738 1739 1740 1741

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

1742 1743 1744
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
1745 1746
{
	int ret;
1747
	unsigned int tmp, orig;
1748

1749
	ret = _regmap_read(map, reg, &orig);
1750
	if (ret != 0)
1751
		return ret;
1752

1753
	tmp = orig & ~mask;
1754 1755
	tmp |= val & mask;

1756
	if (tmp != orig) {
1757
		ret = _regmap_write(map, reg, tmp);
1758 1759 1760 1761
		*change = true;
	} else {
		*change = false;
	}
1762 1763 1764

	return ret;
}
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
	bool change;
1780 1781
	int ret;

1782
	map->lock(map->lock_arg);
1783
	ret = _regmap_update_bits(map, reg, mask, val, &change);
1784
	map->unlock(map->lock_arg);
1785 1786

	return ret;
1787
}
1788
EXPORT_SYMBOL_GPL(regmap_update_bits);
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
1806 1807
	int ret;

1808
	map->lock(map->lock_arg);
1809
	ret = _regmap_update_bits(map, reg, mask, val, change);
1810
	map->unlock(map->lock_arg);
1811
	return ret;
1812 1813 1814
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

1815 1816 1817 1818 1819
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

1820 1821
	trace_regmap_async_io_complete(map->dev);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	spin_lock(&map->async_lock);

	list_del(&async->list);
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	schedule_work(&async->cleanup);

	if (wake)
		wake_up(&map->async_waitq);
}
1837
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
1865
	if (!map->bus || !map->bus->async_write)
1866 1867
		return 0;

1868 1869
	trace_regmap_async_complete_start(map->dev);

1870 1871 1872 1873 1874 1875 1876
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

1877 1878
	trace_regmap_async_complete_done(map->dev);

1879 1880
	return ret;
}
1881
EXPORT_SYMBOL_GPL(regmap_async_complete);
1882

M
Mark Brown 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
1900
	struct reg_default *p;
M
Mark Brown 已提交
1901 1902 1903
	int i, ret;
	bool bypass;

1904
	map->lock(map->lock_arg);
M
Mark Brown 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	bypass = map->cache_bypass;

	map->cache_bypass = true;

	/* Write out first; it's useful to apply even if we fail later. */
	for (i = 0; i < num_regs; i++) {
		ret = _regmap_write(map, regs[i].reg, regs[i].def);
		if (ret != 0) {
			dev_err(map->dev, "Failed to write %x = %x: %d\n",
				regs[i].reg, regs[i].def, ret);
			goto out;
		}
	}

1920 1921 1922 1923 1924 1925 1926
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
1927 1928 1929 1930 1931 1932 1933
	} else {
		ret = -ENOMEM;
	}

out:
	map->cache_bypass = bypass;

1934
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
1935 1936 1937 1938 1939

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

1940
/*
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

1955 1956 1957 1958 1959 1960 1961
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);