regmap.c 80.0 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// Register map access API
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8

9
#include <linux/device.h>
10
#include <linux/slab.h>
11
#include <linux/export.h>
12 13
#include <linux/mutex.h>
#include <linux/err.h>
14
#include <linux/property.h>
15
#include <linux/rbtree.h>
16
#include <linux/sched.h>
17
#include <linux/delay.h>
18
#include <linux/log2.h>
19
#include <linux/hwspinlock.h>
20
#include <asm/unaligned.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

B
Ben Dooks 已提交
35 36 37 38 39 40 41 42 43 44
#ifdef LOG_DEVICE
static inline bool regmap_should_log(struct regmap *map)
{
	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
}
#else
static inline bool regmap_should_log(struct regmap *map) { return false; }
#endif


45 46
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
47
			       bool *change, bool force_write);
48

49 50
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
51 52
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
53 54
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
55 56
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
57 58
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

74 75
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
76 77 78 79 80 81 82 83 84 85 86 87
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
88
EXPORT_SYMBOL_GPL(regmap_check_range_table);
89

90 91 92 93 94 95 96 97
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

98
	if (map->wr_table)
99
		return regmap_check_range_table(map, reg, map->wr_table);
100

101 102 103
	return true;
}

104 105 106 107 108
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

109
	if (map->cache_type == REGCACHE_NONE)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

127 128
bool regmap_readable(struct regmap *map, unsigned int reg)
{
129 130 131
	if (!map->reg_read)
		return false;

132 133 134
	if (map->max_register && reg > map->max_register)
		return false;

135 136 137
	if (map->format.format_write)
		return false;

138 139 140
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

141
	if (map->rd_table)
142
		return regmap_check_range_table(map, reg, map->rd_table);
143

144 145 146 147 148
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
149
	if (!map->format.format_write && !regmap_readable(map, reg))
150 151 152 153 154
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

155
	if (map->volatile_table)
156
		return regmap_check_range_table(map, reg, map->volatile_table);
157

158 159 160 161
	if (map->cache_ops)
		return false;
	else
		return true;
162 163 164 165
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
166
	if (!regmap_readable(map, reg))
167 168 169 170 171
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

172
	if (map->precious_table)
173
		return regmap_check_range_table(map, reg, map->precious_table);
174

175 176 177
	return false;
}

B
Ben Whitten 已提交
178 179 180 181 182 183 184 185 186 187 188
bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->writeable_noinc_reg)
		return map->writeable_noinc_reg(map->dev, reg);

	if (map->wr_noinc_table)
		return regmap_check_range_table(map, reg, map->wr_noinc_table);

	return true;
}

189 190 191 192 193 194 195 196 197 198 199
bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->readable_noinc_reg)
		return map->readable_noinc_reg(map->dev, reg);

	if (map->rd_noinc_table)
		return regmap_check_range_table(map, reg, map->rd_noinc_table);

	return true;
}

200
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
201
	size_t num)
202 203 204 205
{
	unsigned int i;

	for (i = 0; i < num; i++)
206
		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 208 209 210 211
			return false;

	return true;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void regmap_format_12_20_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[0] = reg >> 4;
	out[1] = (reg << 4) | (val >> 16);
	out[2] = val >> 8;
	out[3] = val;
}


224 225 226 227 228 229 230 231
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

246 247 248 249 250 251 252 253 254 255
static void regmap_format_7_17_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = val >> 8;
	out[0] = (val >> 16) | (reg << 1);
}

256 257 258 259 260 261 262 263 264 265
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

266
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 268 269
{
	u8 *b = buf;

270
	b[0] = val << shift;
271 272
}

273
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274
{
275
	put_unaligned_be16(val << shift, buf);
276 277
}

278 279
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
280
	put_unaligned_le16(val << shift, buf);
281 282
}

283 284 285
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
286 287 288
	u16 v = val << shift;

	memcpy(buf, &v, sizeof(v));
289 290
}

291
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 293 294
{
	u8 *b = buf;

295 296
	val <<= shift;

297 298 299 300 301
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

302
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303
{
304
	put_unaligned_be32(val << shift, buf);
305 306
}

307 308
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
309
	put_unaligned_le32(val << shift, buf);
310 311
}

312 313 314
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
315 316 317
	u32 v = val << shift;

	memcpy(buf, &v, sizeof(v));
318 319
}

X
Xiubo Li 已提交
320 321 322
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
323
	put_unaligned_be64((u64) val << shift, buf);
X
Xiubo Li 已提交
324 325 326 327
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
328
	put_unaligned_le64((u64) val << shift, buf);
X
Xiubo Li 已提交
329 330 331 332 333
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
334 335 336
	u64 v = (u64) val << shift;

	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
337 338 339
}
#endif

340
static void regmap_parse_inplace_noop(void *buf)
341
{
342 343 344 345 346
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
347 348 349 350

	return b[0];
}

351 352
static unsigned int regmap_parse_16_be(const void *buf)
{
353
	return get_unaligned_be16(buf);
354 355
}

356 357
static unsigned int regmap_parse_16_le(const void *buf)
{
358
	return get_unaligned_le16(buf);
359 360
}

361
static void regmap_parse_16_be_inplace(void *buf)
362
{
363
	u16 v = get_unaligned_be16(buf);
364

365
	memcpy(buf, &v, sizeof(v));
366 367
}

368 369
static void regmap_parse_16_le_inplace(void *buf)
{
370
	u16 v = get_unaligned_le16(buf);
371

372
	memcpy(buf, &v, sizeof(v));
373 374
}

375
static unsigned int regmap_parse_16_native(const void *buf)
376
{
377 378 379 380
	u16 v;

	memcpy(&v, buf, sizeof(v));
	return v;
381 382
}

383
static unsigned int regmap_parse_24(const void *buf)
384
{
385
	const u8 *b = buf;
386 387 388 389 390 391 392
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

393 394
static unsigned int regmap_parse_32_be(const void *buf)
{
395
	return get_unaligned_be32(buf);
396 397
}

398 399
static unsigned int regmap_parse_32_le(const void *buf)
{
400
	return get_unaligned_le32(buf);
401 402
}

403
static void regmap_parse_32_be_inplace(void *buf)
404
{
405
	u32 v = get_unaligned_be32(buf);
406

407
	memcpy(buf, &v, sizeof(v));
408 409
}

410 411
static void regmap_parse_32_le_inplace(void *buf)
{
412
	u32 v = get_unaligned_le32(buf);
413

414
	memcpy(buf, &v, sizeof(v));
415 416
}

417
static unsigned int regmap_parse_32_native(const void *buf)
418
{
419 420 421 422
	u32 v;

	memcpy(&v, buf, sizeof(v));
	return v;
423 424
}

X
Xiubo Li 已提交
425 426 427
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
428
	return get_unaligned_be64(buf);
X
Xiubo Li 已提交
429 430 431 432
}

static unsigned int regmap_parse_64_le(const void *buf)
{
433
	return get_unaligned_le64(buf);
X
Xiubo Li 已提交
434 435 436 437
}

static void regmap_parse_64_be_inplace(void *buf)
{
438
	u64 v =  get_unaligned_be64(buf);
X
Xiubo Li 已提交
439

440
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
441 442 443 444
}

static void regmap_parse_64_le_inplace(void *buf)
{
445
	u64 v = get_unaligned_le64(buf);
X
Xiubo Li 已提交
446

447
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
448 449 450 451
}

static unsigned int regmap_parse_64_native(const void *buf)
{
452 453 454 455
	u64 v;

	memcpy(&v, buf, sizeof(v));
	return v;
X
Xiubo Li 已提交
456 457 458
}
#endif

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

502
static void regmap_lock_unlock_none(void *__map)
503 504 505
{

}
506

507
static void regmap_lock_mutex(void *__map)
508
{
509
	struct regmap *map = __map;
510 511 512
	mutex_lock(&map->mutex);
}

513
static void regmap_unlock_mutex(void *__map)
514
{
515
	struct regmap *map = __map;
516 517 518
	mutex_unlock(&map->mutex);
}

519
static void regmap_lock_spinlock(void *__map)
520
__acquires(&map->spinlock)
521
{
522
	struct regmap *map = __map;
523 524 525 526
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
527 528
}

529
static void regmap_unlock_spinlock(void *__map)
530
__releases(&map->spinlock)
531
{
532
	struct regmap *map = __map;
533
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void regmap_lock_raw_spinlock(void *__map)
__acquires(&map->raw_spinlock)
{
	struct regmap *map = __map;
	unsigned long flags;

	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
	map->raw_spinlock_flags = flags;
}

static void regmap_unlock_raw_spinlock(void *__map)
__releases(&map->raw_spinlock)
{
	struct regmap *map = __map;
	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
}

M
Mark Brown 已提交
553 554 555 556 557 558 559 560 561
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

562 563 564 565 566 567 568 569
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
570
			rb_entry(*new, struct regmap_range_node, node);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
594
			rb_entry(node, struct regmap_range_node, node);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
{
	if (config->name) {
		const char *name = kstrdup_const(config->name, GFP_KERNEL);

		if (!name)
			return -ENOMEM;

		kfree_const(map->name);
		map->name = name;
	}

	return 0;
}

638 639 640 641
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;
642
	int ret;
643 644 645

	map->dev = dev;

646 647 648 649 650
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
651 652 653 654 655 656 657 658 659 660 661 662 663 664

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
680

681 682 683 684 685 686 687 688
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

689 690 691
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
692
{
693
	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
694
	enum regmap_endian endian;
695

696
	/* Retrieve the endianness specification from the regmap config */
697
	endian = config->val_format_endian;
698

699
	/* If the regmap config specified a non-default value, use that */
700 701
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
702

703 704 705 706 707 708 709 710 711 712 713
	/* If the firmware node exist try to get endianness from it */
	if (fwnode_property_read_bool(fwnode, "big-endian"))
		endian = REGMAP_ENDIAN_BIG;
	else if (fwnode_property_read_bool(fwnode, "little-endian"))
		endian = REGMAP_ENDIAN_LITTLE;
	else if (fwnode_property_read_bool(fwnode, "native-endian"))
		endian = REGMAP_ENDIAN_NATIVE;

	/* If the endianness was specified in fwnode, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
714 715

	/* Retrieve the endianness specification from the bus config */
716 717
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
718

719
	/* If the bus specified a non-default value, use that */
720 721
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
722 723

	/* Use this if no other value was found */
724
	return REGMAP_ENDIAN_BIG;
725
}
726
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
727

728 729 730 731 732 733
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
734
{
735
	struct regmap *map;
736
	int ret = -EINVAL;
737
	enum regmap_endian reg_endian, val_endian;
738
	int i, j;
739

740
	if (!config)
741
		goto err;
742 743 744 745 746 747 748

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

749 750 751
	ret = regmap_set_name(map, config);
	if (ret)
		goto err_map;
752

753 754
	ret = -EINVAL; /* Later error paths rely on this */

755
	if (config->disable_locking) {
756
		map->lock = map->unlock = regmap_lock_unlock_none;
757
		map->can_sleep = config->can_sleep;
758
		regmap_debugfs_disable(map);
759
	} else if (config->lock && config->unlock) {
760 761 762
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
763
		map->can_sleep = config->can_sleep;
764
	} else if (config->use_hwlock) {
765 766 767
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
768
			goto err_name;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
787
	} else {
788 789
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
790 791 792 793 794 795 796 797 798 799 800 801 802
			if (config->use_raw_spinlock) {
				raw_spin_lock_init(&map->raw_spinlock);
				map->lock = regmap_lock_raw_spinlock;
				map->unlock = regmap_unlock_raw_spinlock;
				lockdep_set_class_and_name(&map->raw_spinlock,
							   lock_key, lock_name);
			} else {
				spin_lock_init(&map->spinlock);
				map->lock = regmap_lock_spinlock;
				map->unlock = regmap_unlock_spinlock;
				lockdep_set_class_and_name(&map->spinlock,
							   lock_key, lock_name);
			}
803 804 805 806
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
807
			map->can_sleep = true;
808 809
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
810 811
		}
		map->lock_arg = map;
812
	}
813 814 815 816 817 818 819 820 821 822

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

823
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
824
	map->format.pad_bytes = config->pad_bits / 8;
825
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
826 827
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
828
	map->reg_shift = config->pad_bits % 8;
829 830 831 832
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
833 834 835 836
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
837 838
	map->use_single_read = config->use_single_read || !bus || !bus->read;
	map->use_single_write = config->use_single_write || !bus || !bus->write;
839
	map->can_multi_write = config->can_multi_write && bus && bus->write;
840 841 842 843
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
844 845
	map->dev = dev;
	map->bus = bus;
846
	map->bus_context = bus_context;
847
	map->max_register = config->max_register;
848 849 850 851
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
B
Ben Whitten 已提交
852
	map->wr_noinc_table = config->wr_noinc_table;
853
	map->rd_noinc_table = config->rd_noinc_table;
854 855 856
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
857
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
858
	map->writeable_noinc_reg = config->writeable_noinc_reg;
859
	map->readable_noinc_reg = config->readable_noinc_reg;
860
	map->cache_type = config->cache_type;
861

862 863
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
864
	INIT_LIST_HEAD(&map->async_free);
865 866
	init_waitqueue_head(&map->async_waitq);

867 868 869
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
870 871
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
872
	} else if (bus) {
873 874 875
		map->read_flag_mask = bus->read_flag_mask;
	}

876 877 878 879
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

880 881 882 883 884
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;
885
		map->reg_update_bits = bus->reg_update_bits;
886

887 888 889 890
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
891
		map->reg_update_bits = bus->reg_update_bits;
892
	}
893

894 895
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
896

897
	switch (config->reg_bits + map->reg_shift) {
898 899 900 901 902 903
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
904
			goto err_hwlock;
905 906 907
		}
		break;

908 909 910 911 912 913
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
914
			goto err_hwlock;
915 916 917 918 919 920 921 922
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
923 924 925
		case 17:
			map->format.format_write = regmap_format_7_17_write;
			break;
926
		default:
927
			goto err_hwlock;
928 929 930
		}
		break;

931 932 933 934 935 936
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
937
			goto err_hwlock;
938 939 940
		}
		break;

941 942 943 944 945 946 947 948 949 950
	case 12:
		switch (config->val_bits) {
		case 20:
			map->format.format_write = regmap_format_12_20_write;
			break;
		default:
			goto err_hwlock;
		}
		break;

951 952 953 954 955
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
956 957 958 959
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
960 961 962
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
963 964 965 966
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
967
			goto err_hwlock;
968
		}
969 970
		break;

971 972
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
973
			goto err_hwlock;
974 975 976
		map->format.format_reg = regmap_format_24;
		break;

977
	case 32:
978 979 980 981
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
982 983 984
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
985 986 987 988
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
989
			goto err_hwlock;
990
		}
991 992
		break;

X
Xiubo Li 已提交
993 994 995 996 997 998
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
999 1000 1001
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
1002 1003 1004 1005
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
1006
			goto err_hwlock;
X
Xiubo Li 已提交
1007 1008 1009 1010
		}
		break;
#endif

1011
	default:
1012
		goto err_hwlock;
1013 1014
	}

1015 1016 1017
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

1018 1019 1020 1021
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
1022
		map->format.parse_inplace = regmap_parse_inplace_noop;
1023 1024
		break;
	case 16:
1025 1026 1027 1028
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
1029
			map->format.parse_inplace = regmap_parse_16_be_inplace;
1030
			break;
1031 1032 1033 1034 1035
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
1036 1037 1038 1039 1040
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
1041
			goto err_hwlock;
1042
		}
1043
		break;
1044
	case 24:
1045
		if (val_endian != REGMAP_ENDIAN_BIG)
1046
			goto err_hwlock;
1047 1048 1049
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
1050
	case 32:
1051 1052 1053 1054
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
1055
			map->format.parse_inplace = regmap_parse_32_be_inplace;
1056
			break;
1057 1058 1059 1060 1061
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
1062 1063 1064 1065 1066
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
1067
			goto err_hwlock;
1068
		}
1069
		break;
X
Xiubo Li 已提交
1070
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
1071
	case 64:
X
Xiubo Li 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
1088
			goto err_hwlock;
X
Xiubo Li 已提交
1089 1090 1091
		}
		break;
#endif
1092 1093
	}

1094 1095 1096
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
1097
			goto err_hwlock;
1098
		map->use_single_write = true;
1099
	}
1100

1101 1102
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1103
		goto err_hwlock;
1104

1105
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1106 1107
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1108
		goto err_hwlock;
1109 1110
	}

1111 1112
	if (map->format.format_write) {
		map->defer_caching = false;
1113
		map->reg_write = _regmap_bus_formatted_write;
1114 1115
	} else if (map->format.format_val) {
		map->defer_caching = true;
1116
		map->reg_write = _regmap_bus_raw_write;
1117 1118 1119
	}

skip_format_initialization:
1120

1121
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1122
	for (i = 0; i < config->num_ranges; i++) {
1123 1124 1125 1126
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1127 1128 1129
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1130
			goto err_range;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1150 1151 1152

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1153
		for (j = 0; j < config->num_ranges; j++) {
1154 1155 1156 1157
			unsigned int sel_reg = config->ranges[j].selector_reg;
			unsigned int win_min = config->ranges[j].window_start;
			unsigned int win_max = win_min +
					       config->ranges[j].window_len - 1;
1158

1159 1160 1161 1162
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1163 1164
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1165 1166 1167
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1168 1169 1170 1171 1172
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1173 1174 1175
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1186
		new->map = map;
M
Mark Brown 已提交
1187
		new->name = range_cfg->name;
1188 1189 1190 1191 1192 1193 1194 1195
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1196
		if (!_regmap_range_add(map, new)) {
1197
			dev_err(map->dev, "Failed to add range %d\n", i);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1211

1212
	ret = regcache_init(map, config);
1213
	if (ret != 0)
1214 1215
		goto err_range;

1216
	if (dev) {
1217 1218 1219
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1220
	} else {
1221
		regmap_debugfs_init(map);
1222
	}
M
Mark Brown 已提交
1223

1224 1225
	return map;

1226
err_regcache:
M
Mark Brown 已提交
1227
	regcache_exit(map);
1228 1229
err_range:
	regmap_range_exit(map);
1230
	kfree(map->work_buf);
1231
err_hwlock:
1232
	if (map->hwlock)
1233
		hwspin_lock_free(map->hwlock);
1234 1235
err_name:
	kfree_const(map->name);
1236 1237 1238 1239 1240
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1241
EXPORT_SYMBOL_GPL(__regmap_init);
1242

1243 1244 1245 1246 1247
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1248 1249 1250 1251 1252 1253
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1254 1255 1256 1257 1258 1259 1260
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1261 1262
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1272
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1273

1274 1275 1276 1277 1278 1279
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1280
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1281 1282
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1283 1284 1285
}

/**
1286
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

/**
 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
 *
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields should be freed by calling
 * regmap_field_bulk_free()
 */
int regmap_field_bulk_alloc(struct regmap *regmap,
			    struct regmap_field **rm_field,
1326
			    const struct reg_field *reg_field,
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
			    int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);

/**
 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
 * fields.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields will be automatically freed by the
 * device management code.
 */
int devm_regmap_field_bulk_alloc(struct device *dev,
				 struct regmap *regmap,
				 struct regmap_field **rm_field,
1362
				 const struct reg_field *reg_field,
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
				 int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);

/**
 * regmap_field_bulk_free() - Free register field allocated using
 *                       regmap_field_bulk_alloc.
 *
 * @field: regmap fields which should be freed.
 */
void regmap_field_bulk_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_free);

/**
 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
 *                            devm_regmap_field_bulk_alloc.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 *
 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cycle.
 */
void devm_regmap_field_bulk_free(struct device *dev,
				 struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);

1411
/**
1412 1413
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1414 1415 1416
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1417 1418 1419 1420
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1421 1422 1423 1424 1425 1426 1427 1428 1429
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1430
 * regmap_field_alloc() - Allocate and initialise a register field.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1454 1455
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1456 1457 1458 1459 1460 1461 1462 1463 1464
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1465
/**
1466
 * regmap_reinit_cache() - Reinitialise the current register cache
1467 1468 1469 1470 1471 1472 1473 1474
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1475 1476 1477
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1478 1479 1480
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
1481 1482
	int ret;

1483
	regcache_exit(map);
1484
	regmap_debugfs_exit(map);
1485 1486 1487 1488 1489 1490

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
1491
	map->writeable_noinc_reg = config->writeable_noinc_reg;
1492
	map->readable_noinc_reg = config->readable_noinc_reg;
1493 1494
	map->cache_type = config->cache_type;

1495 1496 1497 1498 1499
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
1500

1501 1502 1503
	map->cache_bypass = false;
	map->cache_only = false;

1504
	return regcache_init(map, config);
1505
}
1506
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1507

1508
/**
1509 1510 1511
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1512 1513 1514
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1515 1516
	struct regmap_async *async;

1517
	regcache_exit(map);
1518
	regmap_debugfs_exit(map);
1519
	regmap_range_exit(map);
1520
	if (map->bus && map->bus->free_context)
1521
		map->bus->free_context(map->bus_context);
1522
	kfree(map->work_buf);
M
Mark Brown 已提交
1523 1524 1525 1526 1527 1528 1529 1530
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1531
	if (map->hwlock)
1532
		hwspin_lock_free(map->hwlock);
1533 1534
	if (map->lock == regmap_lock_mutex)
		mutex_destroy(&map->mutex);
1535
	kfree_const(map->name);
1536
	kfree(map->patch);
1537 1538
	if (map->bus && map->bus->free_on_exit)
		kfree(map->bus);
1539 1540 1541 1542
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
1553
		return !strcmp((*r)->name, data);
M
Mark Brown 已提交
1554 1555 1556 1557 1558
	else
		return 1;
}

/**
1559
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1581
/**
1582
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1592
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1593

1594
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1595
			       struct regmap_range_node *range,
1596 1597 1598 1599 1600 1601 1602 1603
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1604 1605
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1606

1607 1608 1609 1610
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1611

1612 1613 1614 1615
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1616

1617 1618 1619 1620 1621 1622 1623 1624
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1625

1626 1627 1628
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1629
					  &page_chg, false);
1630

1631
		map->work_buf = orig_work_buf;
1632

1633
		if (ret != 0)
1634
			return ret;
1635 1636
	}

1637 1638
	*reg = range->window_start + win_offset;

1639 1640 1641
	return 0;
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1657
static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1658
				  const void *val, size_t val_len, bool noinc)
1659
{
1660
	struct regmap_range_node *range;
1661 1662 1663
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1664 1665 1666
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1667 1668
	int i;

1669
	WARN_ON(!map->bus);
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/* Check for unwritable or noinc registers in range
	 * before we start
	 */
	if (!regmap_writeable_noinc(map, reg)) {
		for (i = 0; i < val_len / map->format.val_bytes; i++) {
			unsigned int element =
				reg + regmap_get_offset(map, i);
			if (!regmap_writeable(map, element) ||
				regmap_writeable_noinc(map, element))
				return -EINVAL;
		}
	}
1683

1684 1685 1686 1687
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1688
			ival = map->format.parse_val(val + (i * val_bytes));
1689 1690
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1691
					     ival);
1692 1693
			if (ret) {
				dev_err(map->dev,
1694
					"Error in caching of register: %x ret: %d\n",
1695
					reg + regmap_get_offset(map, i), ret);
1696 1697 1698 1699 1700 1701 1702 1703 1704
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1705 1706
	range = _regmap_range_lookup(map, reg);
	if (range) {
1707 1708 1709 1710 1711 1712
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1713
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1714
				win_residue, val_len / map->format.val_bytes);
1715 1716
			ret = _regmap_raw_write_impl(map, reg, val,
						     win_residue *
1717
						     map->format.val_bytes, noinc);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

1731
		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1732
		if (ret != 0)
1733 1734
			return ret;
	}
1735

1736
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1737 1738
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1750
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1751
		struct regmap_async *async;
1752

1753
		trace_regmap_async_write_start(map, reg, val_len);
1754

M
Mark Brown 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1798 1799 1800 1801 1802 1803

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1804
			list_move(&async->list, &map->async_free);
1805 1806
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1807 1808

		return ret;
1809 1810
	}

1811
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1812

1813 1814 1815 1816
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1817
	if (val == work_val)
1818
		ret = map->bus->write(map->bus_context, map->work_buf,
1819 1820 1821
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1822
	else if (map->bus->gather_write)
1823
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1824 1825
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1826
					     val, val_len);
1827 1828
	else
		ret = -ENOTSUPP;
1829

1830
	/* If that didn't work fall back on linearising by hand. */
1831
	if (ret == -ENOTSUPP) {
1832 1833
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1834 1835 1836 1837
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1838 1839
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1840
		ret = map->bus->write(map->bus_context, buf, len);
1841 1842

		kfree(buf);
1843
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1844 1845 1846 1847 1848
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1849 1850
	}

1851
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1852

1853 1854 1855
	return ret;
}

1856 1857 1858 1859 1860 1861 1862
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1863 1864
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1865 1866 1867
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1890 1891 1892 1893 1894 1895 1896
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1897
	WARN_ON(!map->bus || !map->format.format_write);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1908
	trace_regmap_hw_write_start(map, reg, 1);
1909 1910 1911 1912

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1913
	trace_regmap_hw_write_done(map, reg, 1);
1914 1915 1916 1917

	return ret;
}

1918 1919 1920 1921 1922 1923 1924 1925
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1926 1927 1928 1929 1930
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1931
	WARN_ON(!map->bus || !map->format.format_val);
1932 1933 1934

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
1935 1936 1937 1938
	return _regmap_raw_write_impl(map, reg,
				      map->work_buf +
				      map->format.reg_bytes +
				      map->format.pad_bytes,
1939 1940
				      map->format.val_bytes,
				      false);
1941 1942
}

1943 1944 1945 1946 1947
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1948 1949
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1950
{
M
Mark Brown 已提交
1951
	int ret;
1952
	void *context = _regmap_map_get_context(map);
1953

1954 1955 1956
	if (!regmap_writeable(map, reg))
		return -EIO;

1957
	if (!map->cache_bypass && !map->defer_caching) {
1958 1959 1960
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1961 1962
		if (map->cache_only) {
			map->cache_dirty = true;
1963
			return 0;
1964
		}
1965 1966
	}

1967 1968 1969 1970
	ret = map->reg_write(context, reg, val);
	if (ret == 0) {
		if (regmap_should_log(map))
			dev_info(map->dev, "%x <= %x\n", reg, val);
1971

1972 1973
		trace_regmap_reg_write(map, reg, val);
	}
M
Mark Brown 已提交
1974

1975
	return ret;
1976 1977 1978
}

/**
1979
 * regmap_write() - Write a value to a single register
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1992
	if (!IS_ALIGNED(reg, map->reg_stride))
1993 1994
		return -EINVAL;

1995
	map->lock(map->lock_arg);
1996 1997 1998

	ret = _regmap_write(map, reg, val);

1999
	map->unlock(map->lock_arg);
2000 2001 2002 2003 2004

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

2005
/**
2006
 * regmap_write_async() - Write a value to a single register asynchronously
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

2019
	if (!IS_ALIGNED(reg, map->reg_stride))
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

2036
int _regmap_raw_write(struct regmap *map, unsigned int reg,
2037
		      const void *val, size_t val_len, bool noinc)
2038 2039 2040
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
2041 2042
	size_t chunk_count, chunk_bytes;
	size_t chunk_regs = val_count;
2043 2044 2045 2046 2047
	int ret, i;

	if (!val_count)
		return -EINVAL;

2048 2049 2050 2051 2052 2053 2054
	if (map->use_single_write)
		chunk_regs = 1;
	else if (map->max_raw_write && val_len > map->max_raw_write)
		chunk_regs = map->max_raw_write / val_bytes;

	chunk_count = val_count / chunk_regs;
	chunk_bytes = chunk_regs * val_bytes;
2055 2056 2057

	/* Write as many bytes as possible with chunk_size */
	for (i = 0; i < chunk_count; i++) {
2058
		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2059 2060
		if (ret)
			return ret;
2061 2062 2063 2064

		reg += regmap_get_offset(map, chunk_regs);
		val += chunk_bytes;
		val_len -= chunk_bytes;
2065 2066 2067
	}

	/* Write remaining bytes */
2068
	if (val_len)
2069
		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2070 2071 2072 2073

	return ret;
}

2074
/**
2075
 * regmap_raw_write() - Write raw values to one or more registers
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

2095
	if (!regmap_can_raw_write(map))
2096
		return -EINVAL;
2097 2098 2099
	if (val_len % map->format.val_bytes)
		return -EINVAL;

2100
	map->lock(map->lock_arg);
2101

2102
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2103

2104
	map->unlock(map->lock_arg);
2105 2106 2107 2108 2109

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

B
Ben Whitten 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/**
 * regmap_noinc_write(): Write data from a register without incrementing the
 *			register number
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus write operations will write a
 * range of registers. Some devices have certain registers for which a write
 * operation can write to an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple writes as required to write val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	size_t write_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->write)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_write && map->max_raw_write < val_len)
			write_len = map->max_raw_write;
		else
			write_len = val_len;
2160
		ret = _regmap_raw_write(map, reg, val, write_len, true);
B
Ben Whitten 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + write_len;
		val_len -= write_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_write);

2173
/**
2174 2175
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
2176 2177 2178 2179
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
2180 2181 2182
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2183
 *
2184 2185 2186
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
2187 2188 2189
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2190 2191 2192
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
2193 2194 2195
{
	mask = (mask << field->shift) & field->mask;

2196 2197 2198
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
2199
}
2200
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2201

2202
/**
2203 2204
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
2205 2206 2207 2208 2209
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
2210 2211 2212
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2213 2214 2215 2216
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
B
Bartosz Golaszewski 已提交
2217
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2218 2219
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
2220 2221 2222 2223 2224 2225
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

2226 2227 2228 2229
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
2230
}
2231
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2232

2233 2234
/**
 * regmap_bulk_write() - Write multiple registers to the device
2235 2236 2237 2238 2239 2240 2241
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
2242
 * data to the device either in single transfer or multiple transfer.
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

2253
	if (!IS_ALIGNED(reg, map->reg_stride))
2254
		return -EINVAL;
2255

2256
	/*
2257 2258
	 * Some devices don't support bulk write, for them we have a series of
	 * single write operations.
2259
	 */
2260
	if (!map->bus || !map->format.parse_inplace) {
2261
		map->lock(map->lock_arg);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
2284

2285 2286 2287
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
2288 2289 2290
			if (ret != 0)
				goto out;
		}
2291 2292
out:
		map->unlock(map->lock_arg);
2293
	} else {
2294 2295
		void *wval;

2296
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2297
		if (!wval)
2298
			return -ENOMEM;
2299

2300
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2301
			map->format.parse_inplace(wval + i);
2302

2303
		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2304 2305

		kfree(wval);
2306
	}
2307 2308 2309 2310
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2311 2312 2313 2314 2315
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2316
 * relative. The page register has been written if that was necessary.
2317 2318
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2319
				       const struct reg_sequence *regs,
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2332 2333 2334
	if (!len)
		return -EINVAL;

2335 2336 2337 2338 2339 2340 2341 2342 2343
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2344 2345
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2346
		trace_regmap_hw_write_start(map, reg, 1);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2361
		trace_regmap_hw_write_done(map, reg, 1);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2376
					       struct reg_sequence *regs,
2377 2378 2379 2380
					       size_t num_regs)
{
	int ret;
	int i, n;
2381
	struct reg_sequence *base;
2382
	unsigned int this_page = 0;
2383
	unsigned int page_change = 0;
2384 2385 2386
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2387 2388
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2424 2425 2426
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2427

2428 2429 2430 2431 2432 2433
				if (regs[i].delay_us) {
					if (map->can_sleep)
						fsleep(regs[i].delay_us);
					else
						udelay(regs[i].delay_us);
				}
2434

2435 2436
				base += n;
				n = 0;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2448
		}
2449

2450 2451 2452 2453 2454 2455
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2456
static int _regmap_multi_reg_write(struct regmap *map,
2457
				   const struct reg_sequence *regs,
2458
				   size_t num_regs)
2459
{
2460 2461 2462 2463 2464 2465 2466 2467
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2468

2469 2470 2471 2472 2473 2474
			if (regs[i].delay_us) {
				if (map->can_sleep)
					fsleep(regs[i].delay_us);
				else
					udelay(regs[i].delay_us);
			}
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2487
			if (!IS_ALIGNED(reg, map->reg_stride))
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2510 2511

	for (i = 0; i < num_regs; i++) {
2512 2513
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2514 2515 2516 2517

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2518
		range = _regmap_range_lookup(map, reg);
2519
		if (range || regs[i].delay_us) {
2520 2521
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2522 2523 2524 2525 2526 2527 2528
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2529 2530 2531
			return ret;
		}
	}
2532
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2533 2534
}

2535 2536
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2537 2538 2539 2540 2541
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2542 2543 2544
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2545
 * The 'normal' block write mode will send ultimately send data on the
2546
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2547 2548 2549
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2550
 *
2551 2552
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2553
 */
2554
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2555
			   int num_regs)
2556
{
2557
	int ret;
2558 2559 2560

	map->lock(map->lock_arg);

2561 2562
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2563 2564 2565 2566 2567 2568
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2569 2570 2571
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2572 2573 2574 2575 2576
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2577 2578 2579
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2580 2581 2582 2583 2584 2585 2586
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2587
int regmap_multi_reg_write_bypassed(struct regmap *map,
2588
				    const struct reg_sequence *regs,
2589
				    int num_regs)
2590
{
2591 2592
	int ret;
	bool bypass;
2593 2594 2595

	map->lock(map->lock_arg);

2596 2597 2598 2599 2600 2601 2602
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2603 2604 2605 2606
	map->unlock(map->lock_arg);

	return ret;
}
2607
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2608

2609
/**
2610 2611
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2638
	if (!IS_ALIGNED(reg, map->reg_stride))
2639 2640 2641 2642
		return -EINVAL;

	map->lock(map->lock_arg);

2643 2644
	map->async = true;

2645
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2646 2647

	map->async = false;
2648 2649 2650 2651 2652 2653 2654

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2655
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2656
			    unsigned int val_len, bool noinc)
2657
{
2658
	struct regmap_range_node *range;
2659 2660
	int ret;

2661
	WARN_ON(!map->bus);
2662

2663 2664 2665
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2666 2667 2668
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
2669
					  noinc ? 1 : val_len / map->format.val_bytes);
2670
		if (ret != 0)
2671 2672
			return ret;
	}
2673

2674
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2675 2676
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2677
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2678

2679
	ret = map->bus->read(map->bus_context, map->work_buf,
2680
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2681
			     val, val_len);
2682

2683
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2684 2685

	return ret;
2686 2687
}

2688 2689 2690 2691 2692 2693 2694 2695
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2696 2697 2698 2699 2700
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2701 2702
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2703 2704 2705 2706

	if (!map->format.parse_val)
		return -EINVAL;

2707
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2708
	if (ret == 0)
2709
		*val = map->format.parse_val(work_val);
2710 2711 2712 2713

	return ret;
}

2714 2715 2716 2717
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2718 2719
	void *context = _regmap_map_get_context(map);

2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2729 2730 2731
	if (!regmap_readable(map, reg))
		return -EIO;

2732
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2733
	if (ret == 0) {
B
Ben Dooks 已提交
2734
		if (regmap_should_log(map))
2735 2736
			dev_info(map->dev, "%x => %x\n", reg, *val);

2737
		trace_regmap_reg_read(map, reg, *val);
2738

2739 2740 2741
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2742

2743 2744 2745 2746
	return ret;
}

/**
2747
 * regmap_read() - Read a value from a single register
2748
 *
2749
 * @map: Register map to read from
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2760
	if (!IS_ALIGNED(reg, map->reg_stride))
2761 2762
		return -EINVAL;

2763
	map->lock(map->lock_arg);
2764 2765 2766

	ret = _regmap_read(map, reg, val);

2767
	map->unlock(map->lock_arg);
2768 2769 2770 2771 2772 2773

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2774
 * regmap_raw_read() - Read raw data from the device
2775
 *
2776
 * @map: Register map to read from
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2787 2788 2789 2790
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2791

2792 2793
	if (!map->bus)
		return -EINVAL;
2794 2795
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2796
	if (!IS_ALIGNED(reg, map->reg_stride))
2797
		return -EINVAL;
2798 2799
	if (val_count == 0)
		return -EINVAL;
2800

2801
	map->lock(map->lock_arg);
2802

2803 2804
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2805 2806
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2807

2808 2809 2810 2811 2812
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}

2813 2814 2815 2816
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2817

2818 2819 2820 2821
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2822
		for (i = 0; i < chunk_count; i++) {
2823
			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2824
			if (ret != 0)
2825 2826 2827 2828 2829
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2830
		}
2831

2832
		/* Read remaining bytes */
2833
		if (val_len) {
2834
			ret = _regmap_raw_read(map, reg, val, val_len, false);
2835
			if (ret != 0)
2836
				goto out;
2837
		}
2838 2839 2840 2841 2842
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2843
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844
					   &v);
2845 2846 2847
			if (ret != 0)
				goto out;

2848
			map->format.format_val(val + (i * val_bytes), v, 0);
2849 2850
		}
	}
2851

2852
 out:
2853
	map->unlock(map->lock_arg);
2854 2855 2856 2857 2858

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2859
/**
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
 * regmap_noinc_read(): Read data from a register without incrementing the
 *			register number
 *
 * @map: Register map to read from
 * @reg: Register to read from
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus read operations will read a
 * range of registers. Some devices have certain registers for which a read
 * operation read will read from an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple reads as required to read val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_read(struct regmap *map, unsigned int reg,
		      void *val, size_t val_len)
{
	size_t read_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->read)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_read && map->max_raw_read < val_len)
			read_len = map->max_raw_read;
		else
			read_len = val_len;
2909
		ret = _regmap_raw_read(map, reg, val, read_len, true);
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + read_len;
		val_len -= read_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_read);

/**
 * regmap_field_read(): Read a value to a single register field
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2947
/**
2948
 * regmap_fields_read() - Read a value to a single register field with port ID
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2980
/**
2981
 * regmap_bulk_read() - Read multiple registers from the device
2982
 *
2983
 * @map: Register map to read from
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2996
	bool vol = regmap_volatile_range(map, reg, val_count);
2997

2998
	if (!IS_ALIGNED(reg, map->reg_stride))
2999
		return -EINVAL;
3000 3001
	if (val_count == 0)
		return -EINVAL;
3002

3003
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3004 3005 3006
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
3007 3008

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3009
			map->format.parse_inplace(val + i);
3010
	} else {
3011 3012 3013 3014 3015 3016 3017
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

3018 3019
		map->lock(map->lock_arg);

3020
		for (i = 0; i < val_count; i++) {
3021
			unsigned int ival;
3022

3023 3024
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
3025
			if (ret != 0)
3026
				goto out;
3027

3028
			switch (map->format.val_bytes) {
X
Xiubo Li 已提交
3029
#ifdef CONFIG_64BIT
3030 3031 3032
			case 8:
				u64[i] = ival;
				break;
X
Xiubo Li 已提交
3033
#endif
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
3044 3045
				ret = -EINVAL;
				goto out;
3046
			}
3047
		}
3048 3049 3050

out:
		map->unlock(map->lock_arg);
3051
	}
3052

3053
	return ret;
3054 3055 3056
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

3057 3058
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
3059
			       bool *change, bool force_write)
3060 3061
{
	int ret;
3062
	unsigned int tmp, orig;
3063

3064 3065
	if (change)
		*change = false;
3066

3067 3068 3069
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
3070
			*change = true;
3071
	} else {
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
3084
	}
3085 3086 3087

	return ret;
}
3088 3089

/**
3090
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3091 3092 3093 3094 3095 3096
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
3097 3098
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
3099
 *
3100 3101 3102 3103 3104 3105 3106 3107
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
3108 3109 3110
 *
 * Returns zero for success, a negative number on error.
 */
3111 3112 3113
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
3114 3115 3116 3117 3118
{
	int ret;

	map->lock(map->lock_arg);

3119
	map->async = async;
3120

3121
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3122 3123 3124 3125 3126 3127 3128

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
3129
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3130

3131 3132 3133 3134 3135 3136 3137
/**
 * regmap_test_bits() - Check if all specified bits are set in a register.
 *
 * @map: Register map to operate on
 * @reg: Register to read from
 * @bits: Bits to test
 *
3138 3139 3140
 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
 * bits are set and a negative error number if the underlying regmap_read()
 * fails.
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
 */
int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
{
	unsigned int val, ret;

	ret = regmap_read(map, reg, &val);
	if (ret)
		return ret;

	return (val & bits) == bits;
}
EXPORT_SYMBOL_GPL(regmap_test_bits);

3154 3155 3156 3157 3158
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

3159
	trace_regmap_async_io_complete(map);
3160

3161
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
3162
	list_move(&async->list, &map->async_free);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
3173
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
3188
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
3201
	if (!map->bus || !map->bus->async_write)
3202 3203
		return 0;

3204
	trace_regmap_async_complete_start(map);
3205

3206 3207 3208 3209 3210 3211 3212
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

3213
	trace_regmap_async_complete_done(map);
3214

3215 3216
	return ret;
}
3217
EXPORT_SYMBOL_GPL(regmap_async_complete);
3218

M
Mark Brown 已提交
3219
/**
3220 3221
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
3232 3233 3234
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
3235
 */
3236
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
3237 3238
			  int num_regs)
{
3239
	struct reg_sequence *p;
3240
	int ret;
M
Mark Brown 已提交
3241 3242
	bool bypass;

3243 3244 3245 3246
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

3247
	p = krealloc(map->patch,
3248
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3249 3250 3251 3252 3253
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
3254
	} else {
3255
		return -ENOMEM;
M
Mark Brown 已提交
3256 3257
	}

3258
	map->lock(map->lock_arg);
M
Mark Brown 已提交
3259 3260 3261 3262

	bypass = map->cache_bypass;

	map->cache_bypass = true;
3263
	map->async = true;
M
Mark Brown 已提交
3264

3265
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
3266

3267
	map->async = false;
M
Mark Brown 已提交
3268 3269
	map->cache_bypass = bypass;

3270
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
3271

3272 3273
	regmap_async_complete(map);

M
Mark Brown 已提交
3274 3275 3276 3277
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

3278 3279 3280 3281
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

3295
/**
3296 3297 3298
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

3309
/**
3310 3311 3312
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3335 3336 3337 3338 3339 3340 3341
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);