regmap.c 66.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
96 97 98
	if (!map->reg_read)
		return false;

99 100 101
	if (map->max_register && reg > map->max_register)
		return false;

102 103 104
	if (map->format.format_write)
		return false;

105 106 107
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

108
	if (map->rd_table)
109
		return regmap_check_range_table(map, reg, map->rd_table);
110

111 112 113 114 115
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
116
	if (!map->format.format_write && !regmap_readable(map, reg))
117 118 119 120 121
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

122
	if (map->volatile_table)
123
		return regmap_check_range_table(map, reg, map->volatile_table);
124

125 126 127 128
	if (map->cache_ops)
		return false;
	else
		return true;
129 130 131 132
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
133
	if (!regmap_readable(map, reg))
134 135 136 137 138
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

139
	if (map->precious_table)
140
		return regmap_check_range_table(map, reg, map->precious_table);
141

142 143 144
	return false;
}

145
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
146
	size_t num)
147 148 149 150 151 152 153 154 155 156
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

157 158 159 160 161 162 163 164
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

179 180 181 182 183 184 185 186 187 188
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

189
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
190 191 192
{
	u8 *b = buf;

193
	b[0] = val << shift;
194 195
}

196
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
197 198 199
{
	__be16 *b = buf;

200
	b[0] = cpu_to_be16(val << shift);
201 202
}

203 204 205 206 207 208 209
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

210 211 212 213 214 215
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

216
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
217 218 219
{
	u8 *b = buf;

220 221
	val <<= shift;

222 223 224 225 226
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

227
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
228 229 230
{
	__be32 *b = buf;

231
	b[0] = cpu_to_be32(val << shift);
232 233
}

234 235 236 237 238 239 240
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

241 242 243 244 245 246
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

247
static void regmap_parse_inplace_noop(void *buf)
248
{
249 250 251 252 253
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
254 255 256 257

	return b[0];
}

258 259 260 261 262 263 264
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

265 266 267 268 269 270 271
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

272
static void regmap_parse_16_be_inplace(void *buf)
273 274 275 276 277 278
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

279 280 281 282 283 284 285
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

286
static unsigned int regmap_parse_16_native(const void *buf)
287 288 289 290
{
	return *(u16 *)buf;
}

291
static unsigned int regmap_parse_24(const void *buf)
292
{
293
	const u8 *b = buf;
294 295 296 297 298 299 300
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

301 302 303 304 305 306 307
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

308 309 310 311 312 313 314
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

315
static void regmap_parse_32_be_inplace(void *buf)
316 317 318 319 320 321
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

322 323 324 325 326 327 328
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

329
static unsigned int regmap_parse_32_native(const void *buf)
330 331 332 333
{
	return *(u32 *)buf;
}

334
static void regmap_lock_mutex(void *__map)
335
{
336
	struct regmap *map = __map;
337 338 339
	mutex_lock(&map->mutex);
}

340
static void regmap_unlock_mutex(void *__map)
341
{
342
	struct regmap *map = __map;
343 344 345
	mutex_unlock(&map->mutex);
}

346
static void regmap_lock_spinlock(void *__map)
347
__acquires(&map->spinlock)
348
{
349
	struct regmap *map = __map;
350 351 352 353
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
354 355
}

356
static void regmap_unlock_spinlock(void *__map)
357
__releases(&map->spinlock)
358
{
359
	struct regmap *map = __map;
360
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
361 362
}

M
Mark Brown 已提交
363 364 365 366 367 368 369 370 371
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
470

471 472 473 474 475 476 477 478
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

479 480 481
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
482
{
483
	struct device_node *np;
484
	enum regmap_endian endian;
485

486
	/* Retrieve the endianness specification from the regmap config */
487
	endian = config->val_format_endian;
488

489
	/* If the regmap config specified a non-default value, use that */
490 491
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
492

493 494 495
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
496

497 498 499 500 501 502 503 504 505 506
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
507 508

	/* Retrieve the endianness specification from the bus config */
509 510
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
511

512
	/* If the bus specified a non-default value, use that */
513 514
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
515 516

	/* Use this if no other value was found */
517
	return REGMAP_ENDIAN_BIG;
518
}
519
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
520

521 522 523 524 525
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
526
 * @bus_context: Data passed to bus-specific callbacks
527 528 529 530 531 532 533 534
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
535
			   void *bus_context,
536 537
			   const struct regmap_config *config)
{
538
	struct regmap *map;
539
	int ret = -EINVAL;
540
	enum regmap_endian reg_endian, val_endian;
541
	int i, j;
542

543
	if (!config)
544
		goto err;
545 546 547 548 549 550 551

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

552 553 554 555
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
556
	} else {
557 558
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
559 560 561 562 563 564 565 566 567
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
568
	}
569
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
570
	map->format.pad_bytes = config->pad_bits / 8;
571
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
572 573
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
574
	map->reg_shift = config->pad_bits % 8;
575 576 577 578
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
579 580
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
581
	map->can_multi_write = config->can_multi_write && bus && bus->write;
582 583
	map->max_raw_read = bus->max_raw_read;
	map->max_raw_write = bus->max_raw_write;
584 585
	map->dev = dev;
	map->bus = bus;
586
	map->bus_context = bus_context;
587
	map->max_register = config->max_register;
588 589 590 591
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
592 593 594
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
595
	map->precious_reg = config->precious_reg;
596
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
597
	map->name = config->name;
598

599 600
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
601
	INIT_LIST_HEAD(&map->async_free);
602 603
	init_waitqueue_head(&map->async_waitq);

604 605 606
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
607
	} else if (bus) {
608 609 610
		map->read_flag_mask = bus->read_flag_mask;
	}

611 612 613 614
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

615 616 617 618 619 620
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

621 622 623 624 625
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
626

627 628
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
629

630
	switch (config->reg_bits + map->reg_shift) {
631 632 633 634 635 636 637 638 639 640
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

661 662 663 664 665 666 667 668 669 670
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

671 672 673 674 675
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
676 677 678 679 680 681 682 683 684 685
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
686 687
		break;

688 689 690 691 692 693
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

694
	case 32:
695 696 697 698 699 700 701 702 703 704
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
705 706
		break;

707 708 709 710
	default:
		goto err_map;
	}

711 712 713
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

714 715 716 717
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
718
		map->format.parse_inplace = regmap_parse_inplace_noop;
719 720
		break;
	case 16:
721 722 723 724
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
725
			map->format.parse_inplace = regmap_parse_16_be_inplace;
726
			break;
727 728 729 730 731
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
732 733 734 735 736 737 738
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
739
		break;
740
	case 24:
741 742
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
743 744 745
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
746
	case 32:
747 748 749 750
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
751
			map->format.parse_inplace = regmap_parse_32_be_inplace;
752
			break;
753 754 755 756 757
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
758 759 760 761 762 763 764
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
765
		break;
766 767
	}

768 769 770 771
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
772
		map->use_single_write = true;
773
	}
774

775 776 777 778
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

779
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
780 781
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
782
		goto err_map;
783 784
	}

785 786
	if (map->format.format_write) {
		map->defer_caching = false;
787
		map->reg_write = _regmap_bus_formatted_write;
788 789
	} else if (map->format.format_val) {
		map->defer_caching = true;
790
		map->reg_write = _regmap_bus_raw_write;
791 792 793
	}

skip_format_initialization:
794

795
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
796
	for (i = 0; i < config->num_ranges; i++) {
797 798 799 800
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
801 802 803
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
804
			goto err_range;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
824 825 826

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
827
		for (j = 0; j < config->num_ranges; j++) {
828 829 830 831 832
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

833 834 835 836
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

837 838
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
839 840 841
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
842 843 844 845 846
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
847 848 849
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
850 851 852 853 854 855 856 857 858 859
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

860
		new->map = map;
M
Mark Brown 已提交
861
		new->name = range_cfg->name;
862 863 864 865 866 867 868 869
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
870
		if (!_regmap_range_add(map, new)) {
871
			dev_err(map->dev, "Failed to add range %d\n", i);
872 873 874 875 876 877 878 879 880 881 882 883 884
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
885

886
	ret = regcache_init(map, config);
887
	if (ret != 0)
888 889
		goto err_range;

890
	if (dev) {
891 892 893
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
894
	}
M
Mark Brown 已提交
895

896 897
	return map;

898
err_regcache:
M
Mark Brown 已提交
899
	regcache_exit(map);
900 901
err_range:
	regmap_range_exit(map);
902
	kfree(map->work_buf);
903 904 905 906 907 908 909
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

910 911 912 913 914 915 916 917 918 919
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
920
 * @bus_context: Data passed to bus-specific callbacks
921 922 923 924 925 926 927 928 929
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
930
				void *bus_context,
931 932 933 934 935 936 937 938
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

939
	regmap = regmap_init(dev, bus, bus_context, config);
940 941 942 943 944 945 946 947 948 949 950
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

951 952 953 954 955 956
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
957
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
958 959
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1051 1052 1053
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1054 1055 1056 1057
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1058
	regmap_debugfs_exit(map);
1059 1060 1061 1062 1063 1064 1065 1066

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1067
	regmap_debugfs_init(map, config->name);
1068

1069 1070 1071
	map->cache_bypass = false;
	map->cache_only = false;

1072
	return regcache_init(map, config);
1073
}
1074
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1075

1076 1077 1078 1079 1080
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1081 1082
	struct regmap_async *async;

1083
	regcache_exit(map);
1084
	regmap_debugfs_exit(map);
1085
	regmap_range_exit(map);
1086
	if (map->bus && map->bus->free_context)
1087
		map->bus->free_context(map->bus_context);
1088
	kfree(map->work_buf);
M
Mark Brown 已提交
1089 1090 1091 1092 1093 1094 1095 1096
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1097 1098 1099 1100
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1150
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1151

1152
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1153
			       struct regmap_range_node *range,
1154 1155 1156 1157 1158 1159 1160 1161
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1162 1163
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1164

1165 1166 1167 1168
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1169

1170 1171 1172 1173
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1174

1175 1176 1177 1178 1179 1180 1181 1182
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1183

1184 1185 1186 1187
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1188

1189
		map->work_buf = orig_work_buf;
1190

1191
		if (ret != 0)
1192
			return ret;
1193 1194
	}

1195 1196
	*reg = range->window_start + win_offset;

1197 1198 1199
	return 0;
}

1200
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1201
		      const void *val, size_t val_len)
1202
{
1203
	struct regmap_range_node *range;
1204
	unsigned long flags;
1205
	u8 *u8 = map->work_buf;
1206 1207
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1208 1209 1210
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1211 1212
	int i;

1213
	WARN_ON(!map->bus);
1214

1215 1216 1217
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1218 1219
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1220
				return -EINVAL;
1221

1222 1223 1224 1225
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1226
			ival = map->format.parse_val(val + (i * val_bytes));
1227 1228
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1229 1230
			if (ret) {
				dev_err(map->dev,
1231
					"Error in caching of register: %x ret: %d\n",
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1242 1243
	range = _regmap_range_lookup(map, reg);
	if (range) {
1244 1245 1246 1247 1248 1249
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1250
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1251 1252
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1253
						map->format.val_bytes);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1268
		if (ret != 0)
1269 1270
			return ret;
	}
1271

1272
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1273

1274 1275
	u8[0] |= map->write_flag_mask;

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1286
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1287
		struct regmap_async *async;
1288

1289
		trace_regmap_async_write_start(map, reg, val_len);
1290

M
Mark Brown 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1334 1335 1336 1337 1338 1339

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1340
			list_move(&async->list, &map->async_free);
1341 1342
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1343 1344

		return ret;
1345 1346
	}

1347
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1348

1349 1350 1351 1352
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1353
	if (val == work_val)
1354
		ret = map->bus->write(map->bus_context, map->work_buf,
1355 1356 1357
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1358
	else if (map->bus->gather_write)
1359
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1360 1361
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1362 1363
					     val, val_len);

1364
	/* If that didn't work fall back on linearising by hand. */
1365
	if (ret == -ENOTSUPP) {
1366 1367
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1368 1369 1370 1371
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1372 1373
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1374
		ret = map->bus->write(map->bus_context, buf, len);
1375 1376 1377 1378

		kfree(buf);
	}

1379
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1380

1381 1382 1383
	return ret;
}

1384 1385 1386 1387 1388 1389 1390
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1391 1392
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1393 1394 1395
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1396 1397 1398 1399 1400 1401 1402
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1403
	WARN_ON(!map->bus || !map->format.format_write);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1414
	trace_regmap_hw_write_start(map, reg, 1);
1415 1416 1417 1418

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1419
	trace_regmap_hw_write_done(map, reg, 1);
1420 1421 1422 1423

	return ret;
}

1424 1425 1426 1427 1428 1429 1430 1431
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1432 1433 1434 1435 1436
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1437
	WARN_ON(!map->bus || !map->format.format_val);
1438 1439 1440 1441 1442 1443 1444

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1445
				 map->format.val_bytes);
1446 1447
}

1448 1449 1450 1451 1452
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1453 1454
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1455
{
M
Mark Brown 已提交
1456
	int ret;
1457
	void *context = _regmap_map_get_context(map);
1458

1459 1460 1461
	if (!regmap_writeable(map, reg))
		return -EIO;

1462
	if (!map->cache_bypass && !map->defer_caching) {
1463 1464 1465
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1466 1467
		if (map->cache_only) {
			map->cache_dirty = true;
1468
			return 0;
1469
		}
1470 1471
	}

1472
#ifdef LOG_DEVICE
1473
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1474 1475 1476
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1477
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1478

1479
	return map->reg_write(context, reg, val);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1496 1497 1498
	if (reg % map->reg_stride)
		return -EINVAL;

1499
	map->lock(map->lock_arg);
1500 1501 1502

	ret = _regmap_write(map, reg, val);

1503
	map->unlock(map->lock_arg);
1504 1505 1506 1507 1508

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1561
	if (!regmap_can_raw_write(map))
1562
		return -EINVAL;
1563 1564 1565
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1566
	map->lock(map->lock_arg);
1567

1568
	ret = _regmap_raw_write(map, reg, val, val_len);
1569

1570
	map->unlock(map->lock_arg);
1571 1572 1573 1574 1575

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1660 1661 1662 1663 1664 1665 1666 1667 1668
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1669
 * data to the device either in single transfer or multiple transfer.
1670 1671 1672 1673 1674 1675 1676 1677 1678
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1679
	size_t total_size = val_bytes * val_count;
1680

1681
	if (map->bus && !map->format.parse_inplace)
1682
		return -EINVAL;
1683 1684
	if (reg % map->reg_stride)
		return -EINVAL;
1685

1686 1687
	/*
	 * Some devices don't support bulk write, for
1688 1689 1690 1691 1692 1693 1694
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1695
	 */
1696
	if (!map->bus) {
1697
		map->lock(map->lock_arg);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1720

1721 1722 1723 1724 1725
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1726 1727
out:
		map->unlock(map->lock_arg);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1742
		map->lock(map->lock_arg);
1743 1744
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1745
			ret = _regmap_raw_write(map,
1746 1747 1748
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1749 1750 1751
			if (ret)
				break;
		}
1752 1753 1754 1755 1756 1757 1758

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1759
		map->unlock(map->lock_arg);
1760
	} else {
1761 1762
		void *wval;

1763 1764 1765
		if (!val_count)
			return -EINVAL;

1766 1767 1768
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1769
			return -ENOMEM;
1770 1771
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1772
			map->format.parse_inplace(wval + i);
1773

1774
		map->lock(map->lock_arg);
1775
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1776
		map->unlock(map->lock_arg);
1777 1778

		kfree(wval);
1779
	}
1780 1781 1782 1783
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1784 1785 1786 1787 1788
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1789
 * relative. The page register has been written if that was necessary.
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1805 1806 1807
	if (!len)
		return -EINVAL;

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
1819
		trace_regmap_hw_write_start(map, reg, 1);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1834
		trace_regmap_hw_write_done(map, reg, 1);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1855
	unsigned int this_page = 0;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1891 1892
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1893
				   size_t num_regs)
1894
{
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1938 1939

	for (i = 0; i < num_regs; i++) {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1953 1954 1955
			return ret;
		}
	}
1956
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1957 1958
}

1959 1960 1961
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1962 1963
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1964 1965 1966 1967 1968
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1969 1970 1971 1972 1973
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1974
 *
1975 1976
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1977
 */
1978 1979
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1980
{
1981
	int ret;
1982 1983 1984

	map->lock(map->lock_arg);

1985 1986
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1987 1988 1989 1990 1991 1992
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1993 1994 1995 1996
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2010 2011 2012
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
2013
{
2014 2015
	int ret;
	bool bypass;
2016 2017 2018

	map->lock(map->lock_arg);

2019 2020 2021 2022 2023 2024 2025
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2026 2027 2028 2029
	map->unlock(map->lock_arg);

	return ret;
}
2030
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2066 2067 2068 2069 2070
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2071 2072 2073 2074 2075 2076 2077

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2078 2079 2080
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2081
	struct regmap_range_node *range;
2082 2083 2084
	u8 *u8 = map->work_buf;
	int ret;

2085
	WARN_ON(!map->bus);
2086

2087 2088 2089 2090
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2091
		if (ret != 0)
2092 2093
			return ret;
	}
2094

2095
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2096 2097

	/*
2098
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2099
	 * register address; since it's always the high bits for all
2100 2101 2102
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2103
	u8[0] |= map->read_flag_mask;
2104

2105
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2106

2107
	ret = map->bus->read(map->bus_context, map->work_buf,
2108
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2109
			     val, val_len);
2110

2111
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2112 2113

	return ret;
2114 2115
}

2116 2117 2118 2119 2120 2121 2122 2123
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2140 2141 2142 2143
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2144 2145
	void *context = _regmap_map_get_context(map);

2146 2147 2148 2149 2150 2151 2152 2153 2154
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2155 2156 2157
	if (!regmap_readable(map, reg))
		return -EIO;

2158
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2159
	if (ret == 0) {
2160
#ifdef LOG_DEVICE
2161
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2162 2163 2164
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2165
		trace_regmap_reg_read(map, reg, *val);
2166

2167 2168 2169
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2170

2171 2172 2173 2174 2175 2176
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2177
 * @map: Register map to read from
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2188 2189 2190
	if (reg % map->reg_stride)
		return -EINVAL;

2191
	map->lock(map->lock_arg);
2192 2193 2194

	ret = _regmap_read(map, reg, val);

2195
	map->unlock(map->lock_arg);
2196 2197 2198 2199 2200 2201 2202 2203

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2204
 * @map: Register map to read from
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2215 2216 2217 2218
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2219

2220 2221
	if (!map->bus)
		return -EINVAL;
2222 2223
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2224 2225
	if (reg % map->reg_stride)
		return -EINVAL;
2226 2227
	if (val_count == 0)
		return -EINVAL;
2228

2229
	map->lock(map->lock_arg);
2230

2231 2232
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2233 2234 2235 2236 2237
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}

2238 2239 2240 2241 2242 2243 2244 2245
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2246 2247
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2248 2249 2250
			if (ret != 0)
				goto out;

2251
			map->format.format_val(val + (i * val_bytes), v, 0);
2252 2253
		}
	}
2254

2255
 out:
2256
	map->unlock(map->lock_arg);
2257 2258 2259 2260 2261

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2320 2321 2322
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2323
 * @map: Register map to read from
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2336
	bool vol = regmap_volatile_range(map, reg, val_count);
2337

2338 2339
	if (reg % map->reg_stride)
		return -EINVAL;
2340

2341
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2342 2343 2344 2345
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2346 2347 2348 2349
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2350 2351 2352 2353
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2391
		}
2392 2393

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2394
			map->format.parse_inplace(val + i);
2395 2396
	} else {
		for (i = 0; i < val_count; i++) {
2397
			unsigned int ival;
2398
			ret = regmap_read(map, reg + (i * map->reg_stride),
2399
					  &ival);
2400 2401
			if (ret != 0)
				return ret;
2402
			map->format.format_val(val + (i * val_bytes), ival, 0);
2403 2404
		}
	}
2405 2406 2407 2408 2409

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2410 2411 2412
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2413 2414
{
	int ret;
2415
	unsigned int tmp, orig;
2416

2417
	ret = _regmap_read(map, reg, &orig);
2418
	if (ret != 0)
2419
		return ret;
2420

2421
	tmp = orig & ~mask;
2422 2423
	tmp |= val & mask;

2424
	if (tmp != orig) {
2425
		ret = _regmap_write(map, reg, tmp);
2426 2427
		if (change)
			*change = true;
2428
	} else {
2429 2430
		if (change)
			*change = false;
2431
	}
2432 2433 2434

	return ret;
}
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2449 2450
	int ret;

2451
	map->lock(map->lock_arg);
2452
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2453
	map->unlock(map->lock_arg);
2454 2455

	return ret;
2456
}
2457
EXPORT_SYMBOL_GPL(regmap_update_bits);
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2483
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2484 2485 2486 2487 2488 2489 2490 2491 2492

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2509 2510
	int ret;

2511
	map->lock(map->lock_arg);
2512
	ret = _regmap_update_bits(map, reg, mask, val, change);
2513
	map->unlock(map->lock_arg);
2514
	return ret;
2515 2516 2517
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2555 2556 2557 2558 2559
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2560
	trace_regmap_async_io_complete(map);
2561

2562
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2563
	list_move(&async->list, &map->async_free);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2574
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2602
	if (!map->bus || !map->bus->async_write)
2603 2604
		return 0;

2605
	trace_regmap_async_complete_start(map);
2606

2607 2608 2609 2610 2611 2612 2613
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2614
	trace_regmap_async_complete_done(map);
2615

2616 2617
	return ret;
}
2618
EXPORT_SYMBOL_GPL(regmap_async_complete);
2619

M
Mark Brown 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2633 2634 2635
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2636 2637 2638 2639
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2640
	struct reg_default *p;
2641
	int ret;
M
Mark Brown 已提交
2642 2643
	bool bypass;

2644 2645 2646 2647
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2648 2649 2650 2651 2652 2653 2654
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2655
	} else {
2656
		return -ENOMEM;
M
Mark Brown 已提交
2657 2658
	}

2659
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2660 2661 2662 2663

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2664
	map->async = true;
M
Mark Brown 已提交
2665

2666
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2667

2668
	map->async = false;
M
Mark Brown 已提交
2669 2670
	map->cache_bypass = bypass;

2671
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2672

2673 2674
	regmap_async_complete(map);

M
Mark Brown 已提交
2675 2676 2677 2678
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2679
/*
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2730 2731 2732 2733 2734 2735 2736
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);