Kconfig 54.8 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
8
#
D
Dan Williams 已提交
9
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
10
#
D
Dan Williams 已提交
11
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
12

D
Dan Williams 已提交
13 14 15
#
# Cryptographic API Configuration
#
16
menuconfig CRYPTO
17
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
18 19 20
	help
	  This option provides the core Cryptographic API.

21 22
if CRYPTO

23 24
comment "Crypto core or helper"

N
Neil Horman 已提交
25 26
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
27
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28
	depends on (MODULE_SIG || !MODULES)
N
Neil Horman 已提交
29
	help
30 31
	  This option enables the fips boot option which is
	  required if you want the system to operate in a FIPS 200
N
Neil Horman 已提交
32
	  certification.  You should say no unless you know what
33
	  this is.
N
Neil Horman 已提交
34

35 36
config CRYPTO_ALGAPI
	tristate
37
	select CRYPTO_ALGAPI2
38 39 40
	help
	  This option provides the API for cryptographic algorithms.

41 42 43
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
44 45
config CRYPTO_AEAD
	tristate
46
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
47 48
	select CRYPTO_ALGAPI

49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2
52 53
	select CRYPTO_NULL2
	select CRYPTO_RNG2
54

55
config CRYPTO_SKCIPHER
56
	tristate
57
	select CRYPTO_SKCIPHER2
58
	select CRYPTO_ALGAPI
59

60
config CRYPTO_SKCIPHER2
61 62 63
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
64

65 66
config CRYPTO_HASH
	tristate
67
	select CRYPTO_HASH2
68 69
	select CRYPTO_ALGAPI

70 71 72 73
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

74 75
config CRYPTO_RNG
	tristate
76
	select CRYPTO_RNG2
77 78
	select CRYPTO_ALGAPI

79 80 81 82
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

83 84 85 86
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

T
Tadeusz Struk 已提交
87 88 89 90 91 92 93 94 95
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

96 97 98 99 100 101 102 103 104
config CRYPTO_KPP2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_KPP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_KPP2

105 106 107
config CRYPTO_ACOMP2
	tristate
	select CRYPTO_ALGAPI2
108
	select SGL_ALLOC
109 110 111 112 113 114

config CRYPTO_ACOMP
	tristate
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2

H
Herbert Xu 已提交
115 116
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
117
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
118 119 120 121
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

122 123 124 125
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
126
	select CRYPTO_SKCIPHER2
127
	select CRYPTO_AKCIPHER2
128
	select CRYPTO_KPP2
129
	select CRYPTO_ACOMP2
130

131 132
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
133
	depends on NET
134 135
	select CRYPTO_MANAGER
	help
136
	  Userspace configuration for cryptographic instantiations such as
137 138
	  cbc(aes).

139 140
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
141
	default y
142
	help
143 144
	  Disable run-time self tests that normally take place at
	  algorithm registration.
145

146 147 148 149 150 151 152 153 154 155
config CRYPTO_MANAGER_EXTRA_TESTS
	bool "Enable extra run-time crypto self tests"
	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
	help
	  Enable extra run-time self tests of registered crypto algorithms,
	  including randomized fuzz tests.

	  This is intended for developer use only, as these tests take much
	  longer to run than the normal self tests.

156
config CRYPTO_GF128MUL
157
	tristate
K
Kazunori MIYAZAWA 已提交
158

L
Linus Torvalds 已提交
159 160
config CRYPTO_NULL
	tristate "Null algorithms"
161
	select CRYPTO_NULL2
L
Linus Torvalds 已提交
162 163 164
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

165
config CRYPTO_NULL2
166
	tristate
167
	select CRYPTO_ALGAPI2
168
	select CRYPTO_SKCIPHER2
169 170
	select CRYPTO_HASH2

171
config CRYPTO_PCRYPT
172 173
	tristate "Parallel crypto engine"
	depends on SMP
174 175 176 177 178 179 180
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

181 182
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
183
	select CRYPTO_SKCIPHER
184
	select CRYPTO_HASH
185
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
186
	help
187 188 189
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
190

191 192 193
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
194
	select CRYPTO_SKCIPHER
195 196
	select CRYPTO_MANAGER
	select CRYPTO_HASH
197
	select CRYPTO_NULL
L
Linus Torvalds 已提交
198
	help
199 200
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
201

202 203 204
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
205
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
206
	help
207
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
208

209 210
config CRYPTO_SIMD
	tristate
211 212
	select CRYPTO_CRYPTD

213 214 215
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
216
	select CRYPTO_SKCIPHER
217

218 219 220
config CRYPTO_ENGINE
	tristate

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
comment "Public-key cryptography"

config CRYPTO_RSA
	tristate "RSA algorithm"
	select CRYPTO_AKCIPHER
	select CRYPTO_MANAGER
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

config CRYPTO_DH
	tristate "Diffie-Hellman algorithm"
	select CRYPTO_KPP
	select MPILIB
	help
	  Generic implementation of the Diffie-Hellman algorithm.

239 240 241
config CRYPTO_ECC
	tristate

242 243
config CRYPTO_ECDH
	tristate "ECDH algorithm"
244
	select CRYPTO_ECC
245 246 247 248 249
	select CRYPTO_KPP
	select CRYPTO_RNG_DEFAULT
	help
	  Generic implementation of the ECDH algorithm

250 251 252 253 254
config CRYPTO_ECRDSA
	tristate "EC-RDSA (GOST 34.10) algorithm"
	select CRYPTO_ECC
	select CRYPTO_AKCIPHER
	select CRYPTO_STREEBOG
255 256
	select OID_REGISTRY
	select ASN1
257 258 259 260 261 262
	help
	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
	  standard algorithms (called GOST algorithms). Only signature verification
	  is implemented.

263 264 265 266 267
config CRYPTO_CURVE25519
	tristate "Curve25519 algorithm"
	select CRYPTO_KPP
	select CRYPTO_LIB_CURVE25519_GENERIC

268 269 270 271 272 273
config CRYPTO_CURVE25519_X86
	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
	depends on X86 && 64BIT
	select CRYPTO_LIB_CURVE25519_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_CURVE25519

274
comment "Authenticated Encryption with Associated Data"
275

276 277 278
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
279
	select CRYPTO_HASH
280
	select CRYPTO_AEAD
281
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
282
	help
283
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
284

285 286 287 288
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
289
	select CRYPTO_GHASH
290
	select CRYPTO_NULL
291
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
292
	help
293 294
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
295

296 297 298 299 300
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
301
	select CRYPTO_MANAGER
302 303 304 305 306 307 308
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

309 310 311 312 313 314 315
config CRYPTO_AEGIS128
	tristate "AEGIS-128 AEAD algorithm"
	select CRYPTO_AEAD
	select CRYPTO_AES  # for AES S-box tables
	help
	 Support for the AEGIS-128 dedicated AEAD algorithm.

316 317 318 319 320
config CRYPTO_AEGIS128_SIMD
	bool "Support SIMD acceleration for AEGIS-128"
	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
	default y

321 322 323 324
config CRYPTO_AEGIS128_AESNI_SSE2
	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_AEAD
325
	select CRYPTO_SIMD
326
	help
327
	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
328

329 330 331
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
332
	select CRYPTO_SKCIPHER
333
	select CRYPTO_NULL
334
	select CRYPTO_RNG_DEFAULT
335
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
336
	help
337 338
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
339

340 341 342 343
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
344
	select CRYPTO_RNG_DEFAULT
345
	select CRYPTO_MANAGER
346 347 348 349 350
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

351
comment "Block modes"
352

353 354
config CRYPTO_CBC
	tristate "CBC support"
355
	select CRYPTO_SKCIPHER
356
	select CRYPTO_MANAGER
357
	help
358 359
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
360

361 362
config CRYPTO_CFB
	tristate "CFB support"
363
	select CRYPTO_SKCIPHER
364 365 366 367 368
	select CRYPTO_MANAGER
	help
	  CFB: Cipher FeedBack mode
	  This block cipher algorithm is required for TPM2 Cryptography.

369 370
config CRYPTO_CTR
	tristate "CTR support"
371
	select CRYPTO_SKCIPHER
372
	select CRYPTO_MANAGER
373
	help
374
	  CTR: Counter mode
375 376
	  This block cipher algorithm is required for IPSec.

377 378
config CRYPTO_CTS
	tristate "CTS support"
379
	select CRYPTO_SKCIPHER
380
	select CRYPTO_MANAGER
381 382 383
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
384 385 386
	  Section 8 of rfc2040 and referenced by rfc3962
	  (rfc3962 includes errata information in its Appendix A) or
	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
387 388 389
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

390 391
	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final

392 393
config CRYPTO_ECB
	tristate "ECB support"
394
	select CRYPTO_SKCIPHER
395 396
	select CRYPTO_MANAGER
	help
397 398 399
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
400

401
config CRYPTO_LRW
402
	tristate "LRW support"
403
	select CRYPTO_SKCIPHER
404 405 406 407 408 409 410 411 412
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

413 414
config CRYPTO_OFB
	tristate "OFB support"
415
	select CRYPTO_SKCIPHER
416 417 418 419 420 421 422 423 424
	select CRYPTO_MANAGER
	help
	  OFB: the Output Feedback mode makes a block cipher into a synchronous
	  stream cipher. It generates keystream blocks, which are then XORed
	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
	  ciphertext produces a flipped bit in the plaintext at the same
	  location. This property allows many error correcting codes to function
	  normally even when applied before encryption.

425 426
config CRYPTO_PCBC
	tristate "PCBC support"
427
	select CRYPTO_SKCIPHER
428 429 430 431 432
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

433
config CRYPTO_XTS
434
	tristate "XTS support"
435
	select CRYPTO_SKCIPHER
436
	select CRYPTO_MANAGER
M
Milan Broz 已提交
437
	select CRYPTO_ECB
438 439 440 441 442
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

443 444
config CRYPTO_KEYWRAP
	tristate "Key wrapping support"
445
	select CRYPTO_SKCIPHER
446
	select CRYPTO_MANAGER
447 448 449 450
	help
	  Support for key wrapping (NIST SP800-38F / RFC3394) without
	  padding.

451 452 453
config CRYPTO_NHPOLY1305
	tristate
	select CRYPTO_HASH
454
	select CRYPTO_LIB_POLY1305_GENERIC
455

456 457 458 459 460 461 462 463
config CRYPTO_NHPOLY1305_SSE2
	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  SSE2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

464 465 466 467 468 469 470 471
config CRYPTO_NHPOLY1305_AVX2
	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
	depends on X86 && 64BIT
	select CRYPTO_NHPOLY1305
	help
	  AVX2 optimized implementation of the hash function used by the
	  Adiantum encryption mode.

472 473 474
config CRYPTO_ADIANTUM
	tristate "Adiantum support"
	select CRYPTO_CHACHA20
475
	select CRYPTO_LIB_POLY1305_GENERIC
476
	select CRYPTO_NHPOLY1305
477
	select CRYPTO_MANAGER
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	help
	  Adiantum is a tweakable, length-preserving encryption mode
	  designed for fast and secure disk encryption, especially on
	  CPUs without dedicated crypto instructions.  It encrypts
	  each sector using the XChaCha12 stream cipher, two passes of
	  an ε-almost-∆-universal hash function, and an invocation of
	  the AES-256 block cipher on a single 16-byte block.  On CPUs
	  without AES instructions, Adiantum is much faster than
	  AES-XTS.

	  Adiantum's security is provably reducible to that of its
	  underlying stream and block ciphers, subject to a security
	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
	  mode, so it actually provides an even stronger notion of
	  security than XTS, subject to the security bound.

	  If unsure, say N.

496 497 498 499 500 501 502 503 504 505 506 507
config CRYPTO_ESSIV
	tristate "ESSIV support for block encryption"
	select CRYPTO_AUTHENC
	help
	  Encrypted salt-sector initialization vector (ESSIV) is an IV
	  generation method that is used in some cases by fscrypt and/or
	  dm-crypt. It uses the hash of the block encryption key as the
	  symmetric key for a block encryption pass applied to the input
	  IV, making low entropy IV sources more suitable for block
	  encryption.

	  This driver implements a crypto API template that can be
508
	  instantiated either as an skcipher or as an AEAD (depending on the
509 510
	  type of the first template argument), and which defers encryption
	  and decryption requests to the encapsulated cipher after applying
511
	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
512 513 514 515 516 517 518 519 520 521 522 523
	  that the keys are presented in the same format used by the authenc
	  template, and that the IV appears at the end of the authenticated
	  associated data (AAD) region (which is how dm-crypt uses it.)

	  Note that the use of ESSIV is not recommended for new deployments,
	  and so this only needs to be enabled when interoperability with
	  existing encrypted volumes of filesystems is required, or when
	  building for a particular system that requires it (e.g., when
	  the SoC in question has accelerated CBC but not XTS, making CBC
	  combined with ESSIV the only feasible mode for h/w accelerated
	  block encryption)

524 525
comment "Hash modes"

526 527 528 529 530 531 532 533 534 535 536
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

537 538 539
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
540 541
	select CRYPTO_MANAGER
	help
542 543
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
544

545 546 547 548
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
549
	help
550 551 552 553
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
554

555 556 557 558 559 560 561 562 563 564 565
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

566
comment "Digest"
M
Mikko Herranen 已提交
567

568 569
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
570
	select CRYPTO_HASH
571
	select CRC32
J
Joy Latten 已提交
572
	help
573 574
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
575
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

589
config CRYPTO_CRC32C_VPMSUM
590
	tristate "CRC32c CRC algorithm (powerpc64)"
591
	depends on PPC64 && ALTIVEC
592 593 594 595 596 597 598 599
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


600 601 602 603 604 605 606 607 608
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
H
haco 已提交
626
	  instruction. This option will create 'crc32-pclmul' module,
627 628 629
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

630 631 632 633 634 635 636 637 638
config CRYPTO_CRC32_MIPS
	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
	depends on MIPS_CRC_SUPPORT
	select CRYPTO_HASH
	help
	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
	  instructions, when available.


639 640 641 642 643 644 645 646
config CRYPTO_XXHASH
	tristate "xxHash hash algorithm"
	select CRYPTO_HASH
	select XXHASH
	help
	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
	  speeds close to RAM limits.

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
config CRYPTO_BLAKE2B
	tristate "BLAKE2b digest algorithm"
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
	  optimized for 64bit platforms and can produce digests of any size
	  between 1 to 64.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2b-160
	  - blake2b-256
	  - blake2b-384
	  - blake2b-512

	  See https://blake2.net for further information.

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
config CRYPTO_BLAKE2S
	tristate "BLAKE2s digest algorithm"
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_HASH
	help
	  Implementation of cryptographic hash function BLAKE2s
	  optimized for 8-32bit platforms and can produce digests of any size
	  between 1 to 32.  The keyed hash is also implemented.

	  This module provides the following algorithms:

	  - blake2s-128
	  - blake2s-160
	  - blake2s-224
	  - blake2s-256

	  See https://blake2.net for further information.

682 683 684 685 686 687
config CRYPTO_BLAKE2S_X86
	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
	depends on X86 && 64BIT
	select CRYPTO_LIB_BLAKE2S_GENERIC
	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
H
haco 已提交
704
	  'crct10dif-pclmul' module, which is faster when computing the
705 706
	  crct10dif checksum as compared with the generic table implementation.

707 708 709 710 711 712 713 714 715
config CRYPTO_CRCT10DIF_VPMSUM
	tristate "CRC32T10DIF powerpc64 hardware acceleration"
	depends on PPC64 && ALTIVEC && CRC_T10DIF
	select CRYPTO_HASH
	help
	  CRC10T10DIF algorithm implemented using vector polynomial
	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
	  POWER8 and newer processors for improved performance.

716 717 718 719 720 721 722 723
config CRYPTO_VPMSUM_TESTER
	tristate "Powerpc64 vpmsum hardware acceleration tester"
	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
	help
	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
	  POWER8 vpmsum instructions.
	  Unless you are testing these algorithms, you don't need this.

724
config CRYPTO_GHASH
725
	tristate "GHASH hash function"
726
	select CRYPTO_GF128MUL
727
	select CRYPTO_HASH
728
	help
729 730
	  GHASH is the hash function used in GCM (Galois/Counter Mode).
	  It is not a general-purpose cryptographic hash function.
731

732 733
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
734
	select CRYPTO_HASH
735
	select CRYPTO_LIB_POLY1305_GENERIC
736 737 738 739 740 741 742
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

743
config CRYPTO_POLY1305_X86_64
744
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
745
	depends on X86 && 64BIT
746
	select CRYPTO_LIB_POLY1305_GENERIC
747
	select CRYPTO_ARCH_HAVE_LIB_POLY1305
748 749 750 751 752 753 754 755
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

756 757 758 759 760
config CRYPTO_POLY1305_MIPS
	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
	select CRYPTO_ARCH_HAVE_LIB_POLY1305

761 762
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
763
	select CRYPTO_HASH
764
	help
765
	  MD4 message digest algorithm (RFC1320).
766

767 768
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
769
	select CRYPTO_HASH
L
Linus Torvalds 已提交
770
	help
771
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
772

773 774 775 776 777 778 779 780 781
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

782 783 784 785 786 787 788 789
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

790 791 792 793 794 795 796 797 798
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

799 800
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
801
	select CRYPTO_HASH
802
	help
803 804 805 806
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
807

808
config CRYPTO_RMD128
809
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
810
	select CRYPTO_HASH
811 812
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
813

814
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
815
	  be used as a secure replacement for RIPEMD. For other use cases,
816
	  RIPEMD-160 should be used.
817

818
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
819
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
820 821

config CRYPTO_RMD160
822
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
823
	select CRYPTO_HASH
824 825
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
826

827 828 829 830
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
831

832 833
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
834

835
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
836
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
837 838

config CRYPTO_RMD256
839
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
840
	select CRYPTO_HASH
841 842 843 844 845
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
846

847
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
848
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
849 850

config CRYPTO_RMD320
851
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
852
	select CRYPTO_HASH
853 854 855 856 857
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
858

859
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
860
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
861

862 863
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
864
	select CRYPTO_HASH
L
Linus Torvalds 已提交
865
	help
866
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
867

868
config CRYPTO_SHA1_SSSE3
869
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
870 871 872 873 874 875
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
876 877
	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
	  when available.
878

879
config CRYPTO_SHA256_SSSE3
880
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
881 882 883 884 885 886 887
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
888 889
	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
	  Instructions) when available.
890 891 892 893 894 895 896 897 898 899

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
900 901
	  version 2 (AVX2) instructions, when available.

902 903 904 905 906 907 908 909 910
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

911 912 913 914 915 916 917 918 919
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

920 921 922 923 924 925 926
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

927 928 929 930 931 932 933
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

934 935
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
936
	select CRYPTO_HASH
937
	select CRYPTO_LIB_SHA256
L
Linus Torvalds 已提交
938
	help
939
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
940

941 942
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
943

944 945
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
946

947 948 949 950 951 952 953 954 955
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

956 957 958 959 960 961 962 963 964
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

965 966 967 968 969 970 971 972 973
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

974 975
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
976
	select CRYPTO_HASH
977
	help
978
	  SHA512 secure hash standard (DFIPS 180-2).
979

980 981
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
982

983 984
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
985

986 987 988 989 990 991 992 993 994
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

995 996 997 998 999 1000 1001 1002 1003
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
config CRYPTO_SHA3
	tristate "SHA3 digest algorithm"
	select CRYPTO_HASH
	help
	  SHA-3 secure hash standard (DFIPS 202). It's based on
	  cryptographic sponge function family called Keccak.

	  References:
	  http://keccak.noekeon.org/

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
config CRYPTO_SM3
	tristate "SM3 digest algorithm"
	select CRYPTO_HASH
	help
	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
	  It is part of the Chinese Commercial Cryptography suite.

	  References:
	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
config CRYPTO_STREEBOG
	tristate "Streebog Hash Function"
	select CRYPTO_HASH
	help
	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
	  cryptographic standard algorithms (called GOST algorithms).
	  This setting enables two hash algorithms with 256 and 512 bits output.

	  References:
	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
	  https://tools.ietf.org/html/rfc6986

1037 1038
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
1039
	select CRYPTO_HASH
1040
	help
1041
	  Tiger hash algorithm 192, 160 and 128-bit hashes
1042

1043 1044 1045
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
1046 1047

	  See also:
1048
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049

1050 1051
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
1052
	select CRYPTO_HASH
L
Linus Torvalds 已提交
1053
	help
1054
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
1055

1056 1057
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
1058 1059

	  See also:
1060
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061

1062
config CRYPTO_GHASH_CLMUL_NI_INTEL
1063
	tristate "GHASH hash function (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
1064
	depends on X86 && 64BIT
1065 1066
	select CRYPTO_CRYPTD
	help
1067 1068
	  This is the x86_64 CLMUL-NI accelerated implementation of
	  GHASH, the hash function used in GCM (Galois/Counter mode).
1069

1070
comment "Ciphers"
L
Linus Torvalds 已提交
1071 1072 1073

config CRYPTO_AES
	tristate "AES cipher algorithms"
1074
	select CRYPTO_ALGAPI
1075
	select CRYPTO_LIB_AES
L
Linus Torvalds 已提交
1076
	help
1077
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
1078 1079 1080
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
1081 1082 1083 1084 1085 1086 1087
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
1088

1089
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1090 1091 1092

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

1093 1094 1095
config CRYPTO_AES_TI
	tristate "Fixed time AES cipher"
	select CRYPTO_ALGAPI
1096
	select CRYPTO_LIB_AES
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	help
	  This is a generic implementation of AES that attempts to eliminate
	  data dependent latencies as much as possible without affecting
	  performance too much. It is intended for use by the generic CCM
	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
	  solely on encryption (although decryption is supported as well, but
	  with a more dramatic performance hit)

	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
	  8 for decryption), this implementation only uses just two S-boxes of
	  256 bytes each, and attempts to eliminate data dependent latencies by
	  prefetching the entire table into the cache at the start of each
1109 1110
	  block. Interrupts are also disabled to avoid races where cachelines
	  are evicted when the CPU is interrupted to do something else.
1111

1112 1113
config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
1114
	depends on X86
H
Herbert Xu 已提交
1115
	select CRYPTO_AEAD
1116
	select CRYPTO_LIB_AES
1117
	select CRYPTO_ALGAPI
1118
	select CRYPTO_SKCIPHER
1119
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
H
Herbert Xu 已提交
1120
	select CRYPTO_SIMD
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
1131 1132 1133 1134
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
1135

1136
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
1137 1138 1139

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

1140 1141
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
1142
	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1143
	  acceleration for CTR.
1144

1145 1146 1147
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
1148
	select CRYPTO_SKCIPHER
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

1172 1173 1174
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
1175
	select CRYPTO_SKCIPHER
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
1197 1198
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199 1200 1201

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
1202
	select CRYPTO_SKCIPHER
1203
	select CRYPTO_LIB_ARC4
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
1215
	select CRYPTO_BLOWFISH_COMMON
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1226 1227 1228 1229 1230 1231 1232 1233 1234
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

1235 1236
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
1237
	depends on X86 && 64BIT
1238
	select CRYPTO_SKCIPHER
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1265 1266
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
1267
	depends on X86 && 64BIT
1268
	depends on CRYPTO
1269
	select CRYPTO_SKCIPHER
1270
	select CRYPTO_GLUE_HELPER_X86
1271 1272 1273 1274 1275 1276 1277 1278 1279
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1280 1281 1282 1283 1284 1285
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
1286
	select CRYPTO_SKCIPHER
1287
	select CRYPTO_CAMELLIA_X86_64
1288 1289
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1300 1301
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1318 1319 1320 1321 1322
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
1323
	select CRYPTO_SKCIPHER
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1335 1336 1337 1338 1339 1340
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1341 1342
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1343
	select CRYPTO_ALGAPI
1344
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1345 1346 1347 1348
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1349 1350 1351
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1352
	select CRYPTO_SKCIPHER
1353
	select CRYPTO_CAST5
1354 1355
	select CRYPTO_CAST_COMMON
	select CRYPTO_SIMD
1356 1357 1358 1359 1360 1361 1362
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1363 1364
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1365
	select CRYPTO_ALGAPI
1366
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1367 1368 1369 1370
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1371 1372 1373
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1374
	select CRYPTO_SKCIPHER
1375
	select CRYPTO_CAST6
1376 1377 1378
	select CRYPTO_CAST_COMMON
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SIMD
1379 1380 1381 1382 1383 1384 1385 1386
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1387 1388
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1389
	select CRYPTO_ALGAPI
1390
	select CRYPTO_LIB_DES
L
Linus Torvalds 已提交
1391
	help
1392
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1393

1394 1395
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396
	depends on SPARC64
1397
	select CRYPTO_ALGAPI
1398
	select CRYPTO_LIB_DES
1399
	select CRYPTO_SKCIPHER
1400 1401 1402 1403
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1404 1405 1406
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
1407
	select CRYPTO_SKCIPHER
1408
	select CRYPTO_LIB_DES
1409 1410 1411 1412 1413 1414 1415 1416
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1417 1418
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1419
	select CRYPTO_ALGAPI
1420
	select CRYPTO_SKCIPHER
L
Linus Torvalds 已提交
1421
	help
1422
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1423 1424 1425

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1426
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1435
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1436

1437
config CRYPTO_SALSA20
1438
	tristate "Salsa20 stream cipher algorithm"
1439
	select CRYPTO_SKCIPHER
1440 1441 1442 1443 1444
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1445 1446 1447 1448

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

1449
config CRYPTO_CHACHA20
1450
	tristate "ChaCha stream cipher algorithms"
1451
	select CRYPTO_LIB_CHACHA_GENERIC
1452
	select CRYPTO_SKCIPHER
1453
	help
1454
	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455 1456 1457

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1458
	  This is the portable C implementation of ChaCha20.  See also:
1459 1460
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1461 1462 1463 1464 1465 1466
	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
	  while provably retaining ChaCha20's security.  See also:
	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>

1467 1468 1469 1470
	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
	  reduced security margin but increased performance.  It can be needed
	  in some performance-sensitive scenarios.

1471
config CRYPTO_CHACHA20_X86_64
1472
	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473
	depends on X86 && 64BIT
1474
	select CRYPTO_SKCIPHER
1475
	select CRYPTO_LIB_CHACHA_GENERIC
1476
	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477
	help
1478 1479
	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
	  XChaCha20, and XChaCha12 stream ciphers.
1480

1481 1482 1483
config CRYPTO_CHACHA_MIPS
	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
	depends on CPU_MIPS32_R2
1484
	select CRYPTO_SKCIPHER
1485 1486
	select CRYPTO_ARCH_HAVE_LIB_CHACHA

1487 1488
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1489
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1490
	help
1491
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1503
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1504
	help
1505
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1506

1507 1508 1509 1510 1511 1512 1513
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1514 1515 1516
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
1517
	select CRYPTO_SKCIPHER
1518
	select CRYPTO_GLUE_HELPER_X86
1519
	select CRYPTO_SERPENT
1520
	select CRYPTO_SIMD
1521 1522 1523 1524 1525 1526
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1527
	  This module provides Serpent cipher algorithm that processes eight
1528 1529 1530 1531 1532
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1533 1534 1535
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
1536
	select CRYPTO_SKCIPHER
1537
	select CRYPTO_GLUE_HELPER_X86
1538
	select CRYPTO_SERPENT
1539
	select CRYPTO_SIMD
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1551 1552 1553 1554

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1555
	select CRYPTO_SKCIPHER
1556
	select CRYPTO_GLUE_HELPER_X86
1557
	select CRYPTO_SERPENT
1558
	select CRYPTO_SIMD
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SERPENT_AVX_X86_64
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
config CRYPTO_SM4
	tristate "SM4 cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).

	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
	  Organization of State Commercial Administration of China (OSCCA)
	  as an authorized cryptographic algorithms for the use within China.

	  SMS4 was originally created for use in protecting wireless
	  networks, and is mandated in the Chinese National Standard for
	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
	  (GB.15629.11-2003).

	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
	  standardized through TC 260 of the Standardization Administration
	  of the People's Republic of China (SAC).

	  The input, output, and key of SMS4 are each 128 bits.

	  See also: <https://eprint.iacr.org/2008/329.pdf>

	  If unsure, say N.

1613 1614
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1615
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1616
	help
1617
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1632
	select CRYPTO_ALGAPI
1633
	select CRYPTO_TWOFISH_COMMON
1634
	help
1635
	  Twofish cipher algorithm.
1636

1637 1638 1639 1640
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1663 1664

	  See also:
1665
	  <http://www.schneier.com/twofish.html>
1666

1667 1668 1669
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1670
	select CRYPTO_ALGAPI
1671
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1672
	help
1673
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1674

1675 1676 1677 1678 1679 1680 1681 1682
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1683 1684
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685
	depends on X86 && 64BIT
1686
	select CRYPTO_SKCIPHER
1687 1688
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1689
	select CRYPTO_GLUE_HELPER_X86
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1704 1705 1706
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
1707
	select CRYPTO_SKCIPHER
1708
	select CRYPTO_GLUE_HELPER_X86
1709
	select CRYPTO_SIMD
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1727 1728 1729 1730 1731
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
1732
	select CRYPTO_ACOMP2
1733 1734
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1735
	help
1736 1737 1738 1739
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1740

1741 1742 1743
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
1744
	select CRYPTO_ACOMP2
1745 1746 1747 1748 1749
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1750 1751
config CRYPTO_842
	tristate "842 compression algorithm"
1752
	select CRYPTO_ALGAPI
1753
	select CRYPTO_ACOMP2
1754 1755
	select 842_COMPRESS
	select 842_DECOMPRESS
1756 1757
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1758 1759 1760 1761

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
1762
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1763 1764 1765 1766 1767 1768 1769 1770
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
1771
	select CRYPTO_ACOMP2
C
Chanho Min 已提交
1772 1773 1774 1775
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1776

N
Nick Terrell 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
config CRYPTO_ZSTD
	tristate "Zstd compression algorithm"
	select CRYPTO_ALGAPI
	select CRYPTO_ACOMP2
	select ZSTD_COMPRESS
	select ZSTD_DECOMPRESS
	help
	  This is the zstd algorithm.

1786 1787 1788 1789 1790 1791 1792 1793 1794
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1795 1796
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1797

1798
menuconfig CRYPTO_DRBG_MENU
1799 1800 1801 1802 1803
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1804
if CRYPTO_DRBG_MENU
1805 1806

config CRYPTO_DRBG_HMAC
1807
	bool
1808 1809
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1810
	select CRYPTO_SHA256
1811 1812 1813

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1814
	select CRYPTO_SHA256
1815 1816 1817 1818 1819 1820
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
1821
	select CRYPTO_CTR
1822 1823 1824
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1825 1826
config CRYPTO_DRBG
	tristate
1827
	default CRYPTO_DRBG_MENU
1828
	select CRYPTO_RNG
1829
	select CRYPTO_JITTERENTROPY
1830 1831

endif	# if CRYPTO_DRBG_MENU
1832

1833 1834
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835
	select CRYPTO_RNG
1836 1837 1838 1839 1840 1841 1842
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1843 1844 1845
config CRYPTO_USER_API
	tristate

1846 1847
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1848
	depends on NET
1849 1850 1851 1852 1853 1854
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1855 1856
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1857
	depends on NET
1858
	select CRYPTO_SKCIPHER
1859 1860 1861 1862 1863
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1864 1865 1866 1867 1868 1869 1870 1871 1872
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1873 1874 1875 1876
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
1877
	select CRYPTO_SKCIPHER
1878
	select CRYPTO_NULL
1879 1880 1881 1882 1883
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1884 1885
config CRYPTO_STATS
	bool "Crypto usage statistics for User-space"
1886
	depends on CRYPTO_USER
1887 1888 1889 1890 1891 1892 1893 1894 1895
	help
	  This option enables the gathering of crypto stats.
	  This will collect:
	  - encrypt/decrypt size and numbers of symmeric operations
	  - compress/decompress size and numbers of compress operations
	  - size and numbers of hash operations
	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
	  - generate/seed numbers for rng operations

1896 1897 1898
config CRYPTO_HASH_INFO
	bool

1899
source "lib/crypto/Kconfig"
L
Linus Torvalds 已提交
1900
source "drivers/crypto/Kconfig"
1901 1902
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
L
Linus Torvalds 已提交
1903

1904
endif	# if CRYPTO