mmu.c 159.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/vmx.h>
52
#include <asm/kvm_page_track.h>
53
#include "trace.h"
A
Avi Kivity 已提交
54

55 56
#include "paging.h"

P
Paolo Bonzini 已提交
57 58 59
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
60 61 62 63
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
64
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65
#endif
P
Paolo Bonzini 已提交
66 67

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
69

70
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
71 72 73 74
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

75
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
76 77 78 79
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
80 81
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
82 83 84
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
85

86 87 88
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

89 90 91 92 93 94 95
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
96
bool tdp_enabled = false;
97

98
static int max_huge_page_level __read_mostly;
99
static int max_tdp_level __read_mostly;
100

101 102 103 104
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
105 106 107
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
108
};
109 110

#ifdef MMU_DEBUG
111
bool dbg = 0;
112
module_param(dbg, bool, 0644);
113
#endif
A
Avi Kivity 已提交
114

115 116
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
117 118 119
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
120
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
121

122 123 124
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
125 126 127 128 129 130 131 132

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
133 134 135
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
136

137 138
#include <trace/events/kvm.h>

139 140 141
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

142 143 144
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
145 146
};

147 148 149 150
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
151
	int level;
152 153 154
	unsigned index;
};

155 156 157 158 159 160 161
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
162 163 164 165
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

166 167 168 169 170 171
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

172
static struct kmem_cache *pte_list_desc_cache;
173
struct kmem_cache *mmu_page_header_cache;
174
static struct percpu_counter kvm_total_used_mmu_pages;
175

176
static void mmu_spte_set(u64 *sptep, u64 spte);
177 178
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
179

180 181 182
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

183 184 185

static inline bool kvm_available_flush_tlb_with_range(void)
{
186
	return kvm_x86_ops.tlb_remote_flush_with_range;
187 188 189 190 191 192 193
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

194 195
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
196 197 198 199 200

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

201
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
202 203 204 205 206 207 208 209 210 211
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

212
bool is_nx_huge_page_enabled(void)
P
Paolo Bonzini 已提交
213 214 215 216
{
	return READ_ONCE(nx_huge_pages);
}

217 218 219 220 221
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);

B
Ben Gardon 已提交
222
	trace_mark_mmio_spte(sptep, gfn, mask);
223
	mmu_spte_set(sptep, mask);
224 225 226 227
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
228
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
229

230
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
231 232 233
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
234 235 236 237
}

static unsigned get_mmio_spte_access(u64 spte)
{
238
	return spte & shadow_mmio_access_mask;
239 240
}

241
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
242
			  kvm_pfn_t pfn, unsigned int access)
243 244
{
	if (unlikely(is_noslot_pfn(pfn))) {
245
		mark_mmio_spte(vcpu, sptep, gfn, access);
246 247 248 249 250
		return true;
	}

	return false;
}
251

252
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
253
{
254
	u64 kvm_gen, spte_gen, gen;
255

256 257 258
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
259

260
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
261 262 263 264
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
265 266
}

267 268 269
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
270
	/* Check if guest physical address doesn't exceed guest maximum */
271
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
272 273 274 275
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

276 277 278
        return gpa;
}

A
Avi Kivity 已提交
279 280 281 282 283
static int is_cpuid_PSE36(void)
{
	return 1;
}

284 285
static int is_nx(struct kvm_vcpu *vcpu)
{
286
	return vcpu->arch.efer & EFER_NX;
287 288
}

289 290 291 292 293 294 295
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

296
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
297
static void __set_spte(u64 *sptep, u64 spte)
298
{
299
	WRITE_ONCE(*sptep, spte);
300 301
}

302
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
303
{
304
	WRITE_ONCE(*sptep, spte);
305 306 307 308 309 310
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
311 312 313

static u64 __get_spte_lockless(u64 *sptep)
{
314
	return READ_ONCE(*sptep);
315
}
316
#else
317 318 319 320 321 322 323
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
324

325 326
static void count_spte_clear(u64 *sptep, u64 spte)
{
327
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
328 329 330 331 332 333 334 335 336

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

337 338 339
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
340

341 342 343 344 345 346 347 348 349 350 351 352
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

353
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
354 355
}

356 357 358 359 360 361 362
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

363
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
364 365 366 367 368 369 370 371

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
372
	count_spte_clear(sptep, spte);
373 374 375 376 377 378 379 380 381 382 383
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
384 385
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
386
	count_spte_clear(sptep, spte);
387 388 389

	return orig.spte;
}
390 391 392

/*
 * The idea using the light way get the spte on x86_32 guest is from
393
 * gup_get_pte (mm/gup.c).
394 395 396 397 398 399 400 401 402 403 404 405 406 407
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
408 409 410
 */
static u64 __get_spte_lockless(u64 *sptep)
{
411
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
431 432
#endif

433 434
static bool spte_has_volatile_bits(u64 spte)
{
435 436 437
	if (!is_shadow_present_pte(spte))
		return false;

438
	/*
439
	 * Always atomically update spte if it can be updated
440 441 442 443
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
444 445
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
446 447
		return true;

448
	if (spte_ad_enabled(spte)) {
449 450 451 452
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
453

454
	return false;
455 456
}

457 458 459 460 461 462 463 464 465 466 467 468
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

469 470 471
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
472
 */
473
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
474
{
475
	u64 old_spte = *sptep;
476

477
	WARN_ON(!is_shadow_present_pte(new_spte));
478

479 480
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
481
		return old_spte;
482
	}
483

484
	if (!spte_has_volatile_bits(old_spte))
485
		__update_clear_spte_fast(sptep, new_spte);
486
	else
487
		old_spte = __update_clear_spte_slow(sptep, new_spte);
488

489 490
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

513 514
	/*
	 * For the spte updated out of mmu-lock is safe, since
515
	 * we always atomically update it, see the comments in
516 517
	 * spte_has_volatile_bits().
	 */
518
	if (spte_can_locklessly_be_made_writable(old_spte) &&
519
	      !is_writable_pte(new_spte))
520
		flush = true;
521

522
	/*
523
	 * Flush TLB when accessed/dirty states are changed in the page tables,
524 525 526
	 * to guarantee consistency between TLB and page tables.
	 */

527 528
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
529
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
530 531 532 533
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
534
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
535
	}
536

537
	return flush;
538 539
}

540 541 542 543
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
544
 * Returns non-zero if the PTE was previously valid.
545 546 547
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
548
	kvm_pfn_t pfn;
549 550 551
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
552
		__update_clear_spte_fast(sptep, 0ull);
553
	else
554
		old_spte = __update_clear_spte_slow(sptep, 0ull);
555

556
	if (!is_shadow_present_pte(old_spte))
557 558 559
		return 0;

	pfn = spte_to_pfn(old_spte);
560 561 562 563 564 565

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
566
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567

568
	if (is_accessed_spte(old_spte))
569
		kvm_set_pfn_accessed(pfn);
570 571

	if (is_dirty_spte(old_spte))
572
		kvm_set_pfn_dirty(pfn);
573

574 575 576 577 578 579 580 581 582 583
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
584
	__update_clear_spte_fast(sptep, 0ull);
585 586
}

587 588 589 590 591
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

592 593 594 595
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
596 597
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
598

599
	WARN_ON_ONCE(spte_ad_enabled(spte));
600 601 602
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
603 604
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
605 606 607 608 609
	new_spte |= saved_bits;

	return new_spte;
}

610 611 612 613 614 615 616 617
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

618
	if (spte_ad_enabled(spte)) {
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

636 637
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
638 639 640 641 642
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
643

644 645 646 647
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
648
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649 650 651 652
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
653 654
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
655
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
656 657
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
658
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
659
	local_irq_enable();
660 661
}

662
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
663
{
664 665
	int r;

666
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
667 668
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
669
	if (r)
670
		return r;
671 672
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
673
	if (r)
674
		return r;
675
	if (maybe_indirect) {
676 677
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
678 679 680
		if (r)
			return r;
	}
681 682
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
683 684 685 686
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
687 688 689 690
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
691 692
}

693
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
694
{
695
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
696 697
}

698
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
699
{
700
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
701 702
}

703 704 705 706 707 708 709 710 711 712
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
713
	if (!sp->role.direct) {
714
		sp->gfns[index] = gfn;
715 716 717 718 719 720 721 722
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
723 724
}

M
Marcelo Tosatti 已提交
725
/*
726 727
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
728
 */
729 730 731
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
732 733 734
{
	unsigned long idx;

735
	idx = gfn_to_index(gfn, slot->base_gfn, level);
736
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
737 738
}

739 740 741 742 743 744
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

745
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

762
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
763
{
764
	struct kvm_memslots *slots;
765
	struct kvm_memory_slot *slot;
766
	gfn_t gfn;
M
Marcelo Tosatti 已提交
767

768
	kvm->arch.indirect_shadow_pages++;
769
	gfn = sp->gfn;
770 771
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
772 773

	/* the non-leaf shadow pages are keeping readonly. */
774
	if (sp->role.level > PG_LEVEL_4K)
775 776 777
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

778
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
779 780
}

781
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
782 783 784 785 786
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
787 788
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
789 790 791
	sp->lpage_disallowed = true;
}

792
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
793
{
794
	struct kvm_memslots *slots;
795
	struct kvm_memory_slot *slot;
796
	gfn_t gfn;
M
Marcelo Tosatti 已提交
797

798
	kvm->arch.indirect_shadow_pages--;
799
	gfn = sp->gfn;
800 801
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
802
	if (sp->role.level > PG_LEVEL_4K)
803 804 805
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

806
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
807 808
}

809
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
810 811 812
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
813
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
814 815
}

816 817 818
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
819 820
{
	struct kvm_memory_slot *slot;
821

822
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
823 824 825 826
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
827 828 829 830

	return slot;
}

831
/*
832
 * About rmap_head encoding:
833
 *
834 835
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
836
 * pte_list_desc containing more mappings.
837 838 839 840
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
841
 */
842
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
843
			struct kvm_rmap_head *rmap_head)
844
{
845
	struct pte_list_desc *desc;
846
	int i, count = 0;
847

848
	if (!rmap_head->val) {
849
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
850 851
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
852 853
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
854
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
855
		desc->sptes[1] = spte;
856
		rmap_head->val = (unsigned long)desc | 1;
857
		++count;
858
	} else {
859
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
860
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
861
		while (desc->sptes[PTE_LIST_EXT-1]) {
862
			count += PTE_LIST_EXT;
863 864 865 866 867 868

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
869 870
			desc = desc->more;
		}
A
Avi Kivity 已提交
871
		for (i = 0; desc->sptes[i]; ++i)
872
			++count;
A
Avi Kivity 已提交
873
		desc->sptes[i] = spte;
874
	}
875
	return count;
876 877
}

878
static void
879 880 881
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
882 883 884
{
	int j;

885
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
886
		;
A
Avi Kivity 已提交
887 888
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
889 890 891
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
892
		rmap_head->val = 0;
893 894 895 896
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
897
			rmap_head->val = (unsigned long)desc->more | 1;
898
	mmu_free_pte_list_desc(desc);
899 900
}

901
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
902
{
903 904
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
905 906
	int i;

907
	if (!rmap_head->val) {
908
		pr_err("%s: %p 0->BUG\n", __func__, spte);
909
		BUG();
910
	} else if (!(rmap_head->val & 1)) {
911
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
912
		if ((u64 *)rmap_head->val != spte) {
913
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
914 915
			BUG();
		}
916
		rmap_head->val = 0;
917
	} else {
918
		rmap_printk("%s:  %p many->many\n", __func__, spte);
919
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
920 921
		prev_desc = NULL;
		while (desc) {
922
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
923
				if (desc->sptes[i] == spte) {
924 925
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
926 927
					return;
				}
928
			}
929 930 931
			prev_desc = desc;
			desc = desc->more;
		}
932
		pr_err("%s: %p many->many\n", __func__, spte);
933 934 935 936
		BUG();
	}
}

937 938 939 940 941 942
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

943 944
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
945
{
946
	unsigned long idx;
947

948
	idx = gfn_to_index(gfn, slot->base_gfn, level);
949
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
950 951
}

952 953
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
954
{
955
	struct kvm_memslots *slots;
956 957
	struct kvm_memory_slot *slot;

958 959
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
960
	return __gfn_to_rmap(gfn, sp->role.level, slot);
961 962
}

963 964
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
965
	struct kvm_mmu_memory_cache *mc;
966

967
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
968
	return kvm_mmu_memory_cache_nr_free_objects(mc);
969 970
}

971 972 973
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
974
	struct kvm_rmap_head *rmap_head;
975

976
	sp = sptep_to_sp(spte);
977
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
978 979
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
980 981 982 983 984 985
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
986
	struct kvm_rmap_head *rmap_head;
987

988
	sp = sptep_to_sp(spte);
989
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
990
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
991
	__pte_list_remove(spte, rmap_head);
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1007
 * information in the iterator may not be valid.
1008 1009 1010
 *
 * Returns sptep if found, NULL otherwise.
 */
1011 1012
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1013
{
1014 1015
	u64 *sptep;

1016
	if (!rmap_head->val)
1017 1018
		return NULL;

1019
	if (!(rmap_head->val & 1)) {
1020
		iter->desc = NULL;
1021 1022
		sptep = (u64 *)rmap_head->val;
		goto out;
1023 1024
	}

1025
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1026
	iter->pos = 0;
1027 1028 1029 1030
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1031 1032 1033 1034 1035 1036 1037 1038 1039
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1040 1041
	u64 *sptep;

1042 1043 1044 1045 1046
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1047
				goto out;
1048 1049 1050 1051 1052 1053 1054
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1055 1056
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1057 1058 1059 1060
		}
	}

	return NULL;
1061 1062 1063
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1064 1065
}

1066 1067
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1068
	     _spte_; _spte_ = rmap_get_next(_iter_))
1069

1070
static void drop_spte(struct kvm *kvm, u64 *sptep)
1071
{
1072
	if (mmu_spte_clear_track_bits(sptep))
1073
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1074 1075
}

1076 1077 1078 1079

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1080
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1091
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1092
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1093 1094 1095 1096

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1097 1098 1099
}

/*
1100
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1101
 * spte write-protection is caused by protecting shadow page table.
1102
 *
T
Tiejun Chen 已提交
1103
 * Note: write protection is difference between dirty logging and spte
1104 1105 1106 1107 1108
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1109
 *
1110
 * Return true if tlb need be flushed.
1111
 */
1112
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1113 1114 1115
{
	u64 spte = *sptep;

1116
	if (!is_writable_pte(spte) &&
1117
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1118 1119 1120 1121
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1122 1123
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1124
	spte = spte & ~PT_WRITABLE_MASK;
1125

1126
	return mmu_spte_update(sptep, spte);
1127 1128
}

1129 1130
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1131
				 bool pt_protect)
1132
{
1133 1134
	u64 *sptep;
	struct rmap_iterator iter;
1135
	bool flush = false;
1136

1137
	for_each_rmap_spte(rmap_head, &iter, sptep)
1138
		flush |= spte_write_protect(sptep, pt_protect);
1139

1140
	return flush;
1141 1142
}

1143
static bool spte_clear_dirty(u64 *sptep)
1144 1145 1146 1147 1148
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1149
	MMU_WARN_ON(!spte_ad_enabled(spte));
1150 1151 1152 1153
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1154
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1155 1156 1157
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1158
	if (was_writable && !spte_ad_enabled(*sptep))
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1170
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1171 1172 1173 1174 1175
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1176
	for_each_rmap_spte(rmap_head, &iter, sptep)
1177 1178
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1179
		else
1180
			flush |= spte_clear_dirty(sptep);
1181 1182 1183 1184

	return flush;
}

1185
static bool spte_set_dirty(u64 *sptep)
1186 1187 1188 1189 1190
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1191
	/*
1192
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1193 1194 1195
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1196 1197 1198 1199 1200
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1201
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1202 1203 1204 1205 1206
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1207
	for_each_rmap_spte(rmap_head, &iter, sptep)
1208 1209
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1210 1211 1212 1213

	return flush;
}

1214
/**
1215
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1216 1217 1218 1219 1220 1221 1222 1223
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1224
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1225 1226
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1227
{
1228
	struct kvm_rmap_head *rmap_head;
1229

1230 1231 1232
	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1233
	while (mask) {
1234
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1235
					  PG_LEVEL_4K, slot);
1236
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1237

1238 1239 1240
		/* clear the first set bit */
		mask &= mask - 1;
	}
1241 1242
}

1243
/**
1244 1245
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1257
	struct kvm_rmap_head *rmap_head;
1258

1259 1260 1261
	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1262
	while (mask) {
1263
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1264
					  PG_LEVEL_4K, slot);
1265
		__rmap_clear_dirty(kvm, rmap_head);
1266 1267 1268 1269 1270 1271 1272

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1287 1288
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1289 1290 1291
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1292 1293
}

1294 1295
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1296
{
1297
	struct kvm_rmap_head *rmap_head;
1298
	int i;
1299
	bool write_protected = false;
1300

1301
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1302
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1303
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1304 1305
	}

1306 1307 1308 1309
	if (kvm->arch.tdp_mmu_enabled)
		write_protected |=
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);

1310
	return write_protected;
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1321
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1322
{
1323 1324
	u64 *sptep;
	struct rmap_iterator iter;
1325
	bool flush = false;
1326

1327
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1328
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1329

1330
		pte_list_remove(rmap_head, sptep);
1331
		flush = true;
1332
	}
1333

1334 1335 1336
	return flush;
}

1337
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1338 1339 1340
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1341
	return kvm_zap_rmapp(kvm, rmap_head);
1342 1343
}

1344
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1345 1346
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1347
{
1348 1349
	u64 *sptep;
	struct rmap_iterator iter;
1350
	int need_flush = 0;
1351
	u64 new_spte;
1352
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1353
	kvm_pfn_t new_pfn;
1354 1355 1356

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1357

1358
restart:
1359
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1360
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1361
			    sptep, *sptep, gfn, level);
1362

1363
		need_flush = 1;
1364

1365
		if (pte_write(*ptep)) {
1366
			pte_list_remove(rmap_head, sptep);
1367
			goto restart;
1368
		} else {
1369 1370
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1371 1372 1373

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1374 1375
		}
	}
1376

1377 1378 1379 1380 1381
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1382
	return need_flush;
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1395
	struct kvm_rmap_head *rmap;
1396 1397 1398
	int level;

	/* private field. */
1399
	struct kvm_rmap_head *end_rmap;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1453 1454 1455 1456 1457
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1458
					       struct kvm_rmap_head *rmap_head,
1459
					       struct kvm_memory_slot *slot,
1460 1461
					       gfn_t gfn,
					       int level,
1462
					       unsigned long data))
1463
{
1464
	struct kvm_memslots *slots;
1465
	struct kvm_memory_slot *memslot;
1466 1467
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1468
	int i;
1469

1470 1471 1472 1473 1474
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1488
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1489
						 KVM_MAX_HUGEPAGE_LEVEL,
1490 1491 1492 1493 1494
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1495 1496
	}

1497
	return ret;
1498 1499
}

1500 1501
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1502 1503
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1504
					 struct kvm_memory_slot *slot,
1505
					 gfn_t gfn, int level,
1506 1507 1508
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1509 1510
}

1511 1512
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1513
{
1514 1515 1516 1517 1518 1519 1520 1521
	int r;

	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);

	if (kvm->arch.tdp_mmu_enabled)
		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);

	return r;
1522 1523
}

1524
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1525
{
1526 1527 1528 1529 1530 1531 1532 1533
	int r;

	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);

	if (kvm->arch.tdp_mmu_enabled)
		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);

	return r;
1534 1535
}

1536
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1537 1538
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1539
{
1540
	u64 *sptep;
1541
	struct rmap_iterator iter;
1542 1543
	int young = 0;

1544 1545
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1546

1547
	trace_kvm_age_page(gfn, level, slot, young);
1548 1549 1550
	return young;
}

1551
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1552 1553
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1554
{
1555 1556
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1557

1558 1559 1560 1561
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1562 1563
}

1564 1565
#define RMAP_RECYCLE_THRESHOLD 1000

1566
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1567
{
1568
	struct kvm_rmap_head *rmap_head;
1569 1570
	struct kvm_mmu_page *sp;

1571
	sp = sptep_to_sp(spte);
1572

1573
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1574

1575
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1576 1577
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1578 1579
}

A
Andres Lagar-Cavilla 已提交
1580
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1581
{
1582 1583 1584 1585 1586 1587 1588
	int young = false;

	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
	if (kvm->arch.tdp_mmu_enabled)
		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);

	return young;
1589 1590
}

A
Andrea Arcangeli 已提交
1591 1592
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1593 1594 1595 1596 1597 1598 1599
	int young = false;

	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
	if (kvm->arch.tdp_mmu_enabled)
		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);

	return young;
A
Andrea Arcangeli 已提交
1600 1601
}

1602
#ifdef MMU_DEBUG
1603
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1604
{
1605 1606 1607
	u64 *pos;
	u64 *end;

1608
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1609
		if (is_shadow_present_pte(*pos)) {
1610
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1611
			       pos, *pos);
A
Avi Kivity 已提交
1612
			return 0;
1613
		}
A
Avi Kivity 已提交
1614 1615
	return 1;
}
1616
#endif
A
Avi Kivity 已提交
1617

1618 1619 1620 1621 1622 1623
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1624
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1625 1626 1627 1628 1629
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1630
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1631
{
1632
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1633
	hlist_del(&sp->hash_link);
1634 1635
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1636 1637
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1638
	kmem_cache_free(mmu_page_header_cache, sp);
1639 1640
}

1641 1642
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1643
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1644 1645
}

1646
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1647
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1648 1649 1650 1651
{
	if (!parent_pte)
		return;

1652
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1653 1654
}

1655
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1656 1657
				       u64 *parent_pte)
{
1658
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1659 1660
}

1661 1662 1663 1664
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1665
	mmu_spte_clear_no_track(parent_pte);
1666 1667
}

1668
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1669
{
1670
	struct kvm_mmu_page *sp;
1671

1672 1673
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1674
	if (!direct)
1675
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1676
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1677 1678 1679 1680 1681 1682

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1683
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1684 1685 1686
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1687 1688
}

1689
static void mark_unsync(u64 *spte);
1690
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1691
{
1692 1693 1694 1695 1696 1697
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1698 1699
}

1700
static void mark_unsync(u64 *spte)
1701
{
1702
	struct kvm_mmu_page *sp;
1703
	unsigned int index;
1704

1705
	sp = sptep_to_sp(spte);
1706 1707
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1708
		return;
1709
	if (sp->unsync_children++)
1710
		return;
1711
	kvm_mmu_mark_parents_unsync(sp);
1712 1713
}

1714
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1715
			       struct kvm_mmu_page *sp)
1716
{
1717
	return 0;
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1730 1731
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1732
{
1733
	int i;
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1746 1747 1748 1749 1750 1751 1752
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1753 1754 1755 1756
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1757

1758
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1759
		struct kvm_mmu_page *child;
1760 1761
		u64 ent = sp->spt[i];

1762 1763 1764 1765
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1766

1767
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1768 1769 1770 1771 1772 1773

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1774 1775 1776 1777
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1778
				nr_unsync_leaf += ret;
1779
			} else
1780 1781 1782 1783 1784 1785
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1786
			clear_unsync_child_bit(sp, i);
1787 1788
	}

1789 1790 1791
	return nr_unsync_leaf;
}

1792 1793
#define INVALID_INDEX (-1)

1794 1795 1796
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1797
	pvec->nr = 0;
1798 1799 1800
	if (!sp->unsync_children)
		return 0;

1801
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1802
	return __mmu_unsync_walk(sp, pvec);
1803 1804 1805 1806 1807
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1808
	trace_kvm_mmu_sync_page(sp);
1809 1810 1811 1812
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1813 1814
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1815 1816
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1817

1818 1819
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1820
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1821
		} else
1822 1823

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1824 1825
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1826
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1827

1828 1829 1830 1831 1832
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

1833
/* @sp->gfn should be write-protected at the call site */
1834 1835
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1836
{
1837 1838
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1839
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1840
		return false;
1841 1842
	}

1843
	return true;
1844 1845
}

1846 1847 1848 1849
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1850
	if (!remote_flush && list_empty(invalid_list))
1851 1852 1853 1854 1855 1856 1857 1858 1859
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1860 1861 1862
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1863
{
1864
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1865
		return;
1866

1867
	if (local_flush)
1868
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1869 1870
}

1871 1872 1873 1874 1875 1876 1877
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1878 1879
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1880 1881
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1882 1883
}

1884
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1885
			 struct list_head *invalid_list)
1886
{
1887 1888
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1889 1890
}

1891
/* @gfn should be write-protected at the call site */
1892 1893
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1894 1895
{
	struct kvm_mmu_page *s;
1896
	bool ret = false;
1897

1898
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1899
		if (!s->unsync)
1900 1901
			continue;

1902
		WARN_ON(s->role.level != PG_LEVEL_4K);
1903
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1904 1905
	}

1906
	return ret;
1907 1908
}

1909
struct mmu_page_path {
1910 1911
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1912 1913
};

1914
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1915
		for (i = mmu_pages_first(&pvec, &parents);	\
1916 1917 1918
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1919 1920 1921
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1922 1923 1924 1925 1926
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1927 1928
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1929

P
Paolo Bonzini 已提交
1930
		parents->idx[level-1] = idx;
1931
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1932
			break;
1933

P
Paolo Bonzini 已提交
1934
		parents->parent[level-2] = sp;
1935 1936 1937 1938 1939
	}

	return n;
}

P
Paolo Bonzini 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1949 1950
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1951 1952
	sp = pvec->page[0].sp;
	level = sp->role.level;
1953
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1964
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1965
{
1966 1967 1968 1969 1970 1971 1972 1973 1974
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1975
		WARN_ON(idx == INVALID_INDEX);
1976
		clear_unsync_child_bit(sp, idx);
1977
		level++;
P
Paolo Bonzini 已提交
1978
	} while (!sp->unsync_children);
1979
}
1980

1981 1982 1983 1984 1985 1986 1987
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1988
	LIST_HEAD(invalid_list);
1989
	bool flush = false;
1990 1991

	while (mmu_unsync_walk(parent, &pages)) {
1992
		bool protected = false;
1993 1994

		for_each_sp(pages, sp, parents, i)
1995
			protected |= rmap_write_protect(vcpu, sp->gfn);
1996

1997
		if (protected) {
1998
			kvm_flush_remote_tlbs(vcpu->kvm);
1999 2000
			flush = false;
		}
2001

2002
		for_each_sp(pages, sp, parents, i) {
2003
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2004 2005
			mmu_pages_clear_parents(&parents);
		}
2006 2007 2008 2009 2010
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2011
	}
2012 2013

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2014 2015
}

2016 2017
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2018
	atomic_set(&sp->write_flooding_count,  0);
2019 2020 2021 2022
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2023
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2024 2025
}

2026 2027 2028 2029
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2030
					     int direct,
2031
					     unsigned int access)
2032
{
2033
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2034
	union kvm_mmu_page_role role;
2035
	struct hlist_head *sp_list;
2036
	unsigned quadrant;
2037 2038
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2039
	bool flush = false;
2040
	int collisions = 0;
2041
	LIST_HEAD(invalid_list);
2042

2043
	role = vcpu->arch.mmu->mmu_role.base;
2044
	role.level = level;
2045
	role.direct = direct;
2046
	if (role.direct)
2047
		role.gpte_is_8_bytes = true;
2048
	role.access = access;
2049
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2050 2051 2052 2053
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2054 2055 2056

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2057 2058 2059 2060 2061
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2062 2063
		if (!need_sync && sp->unsync)
			need_sync = true;
2064

2065 2066
		if (sp->role.word != role.word)
			continue;
2067

2068 2069 2070
		if (direct_mmu)
			goto trace_get_page;

2071 2072 2073 2074 2075 2076 2077 2078
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2079
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2080
		}
2081

2082
		if (sp->unsync_children)
2083
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2084

2085
		__clear_sp_write_flooding_count(sp);
2086 2087

trace_get_page:
2088
		trace_kvm_mmu_get_page(sp, false);
2089
		goto out;
2090
	}
2091

A
Avi Kivity 已提交
2092
	++vcpu->kvm->stat.mmu_cache_miss;
2093 2094 2095

	sp = kvm_mmu_alloc_page(vcpu, direct);

2096 2097
	sp->gfn = gfn;
	sp->role = role;
2098
	hlist_add_head(&sp->hash_link, sp_list);
2099
	if (!direct) {
2100 2101 2102 2103 2104 2105
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2106
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2107
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2108

2109
		if (level > PG_LEVEL_4K && need_sync)
2110
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2111
	}
A
Avi Kivity 已提交
2112
	trace_kvm_mmu_get_page(sp, true);
2113 2114

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2115 2116 2117
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2118
	return sp;
2119 2120
}

2121 2122 2123
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2124 2125
{
	iterator->addr = addr;
2126
	iterator->shadow_addr = root;
2127
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2128

2129
	if (iterator->level == PT64_ROOT_4LEVEL &&
2130 2131
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2132 2133
		--iterator->level;

2134
	if (iterator->level == PT32E_ROOT_LEVEL) {
2135 2136 2137 2138
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2139
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2140

2141
		iterator->shadow_addr
2142
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2143 2144 2145 2146 2147 2148 2149
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2150 2151 2152
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2153
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2154 2155 2156
				    addr);
}

2157 2158
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2159
	if (iterator->level < PG_LEVEL_4K)
2160
		return false;
2161

2162 2163 2164 2165 2166
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2167 2168
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2169
{
2170
	if (is_last_spte(spte, iterator->level)) {
2171 2172 2173 2174
		iterator->level = 0;
		return;
	}

2175
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2176 2177 2178
	--iterator->level;
}

2179 2180
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2181
	__shadow_walk_next(iterator, *iterator->sptep);
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2193
	mmu_spte_set(sptep, spte);
2194 2195 2196 2197 2198

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2199 2200
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2214
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2215 2216 2217
		if (child->role.access == direct_access)
			return;

2218
		drop_parent_pte(child, sptep);
2219
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2220 2221 2222
	}
}

2223 2224 2225
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2226 2227 2228 2229 2230 2231
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2232
		if (is_last_spte(pte, sp->role.level)) {
2233
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2234 2235 2236
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2237
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2238
			drop_parent_pte(child, spte);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2249
		}
2250
	} else if (is_mmio_spte(pte)) {
2251
		mmu_spte_clear_no_track(spte);
2252
	}
2253
	return 0;
2254 2255
}

2256 2257 2258
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2259
{
2260
	int zapped = 0;
2261 2262
	unsigned i;

2263
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2264 2265 2266
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2267 2268
}

2269
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2270
{
2271 2272
	u64 *sptep;
	struct rmap_iterator iter;
2273

2274
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2275
		drop_parent_pte(sp, sptep);
2276 2277
}

2278
static int mmu_zap_unsync_children(struct kvm *kvm,
2279 2280
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2281
{
2282 2283 2284
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2285

2286
	if (parent->role.level == PG_LEVEL_4K)
2287
		return 0;
2288 2289 2290 2291 2292

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2293
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2294
			mmu_pages_clear_parents(&parents);
2295
			zapped++;
2296 2297 2298 2299
		}
	}

	return zapped;
2300 2301
}

2302 2303 2304 2305
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2306
{
2307
	bool list_unstable;
A
Avi Kivity 已提交
2308

2309
	trace_kvm_mmu_prepare_zap_page(sp);
2310
	++kvm->stat.mmu_shadow_zapped;
2311
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2312
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2313
	kvm_mmu_unlink_parents(kvm, sp);
2314

2315 2316 2317
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2318
	if (!sp->role.invalid && !sp->role.direct)
2319
		unaccount_shadowed(kvm, sp);
2320

2321 2322
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2323
	if (!sp->root_count) {
2324
		/* Count self */
2325
		(*nr_zapped)++;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2336
		kvm_mod_used_mmu_pages(kvm, -1);
2337
	} else {
2338 2339 2340 2341 2342
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2343

2344 2345 2346 2347 2348 2349
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2350
			kvm_reload_remote_mmus(kvm);
2351
	}
2352

P
Paolo Bonzini 已提交
2353 2354 2355
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2356
	sp->role.invalid = 1;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2367 2368
}

2369 2370 2371
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2372
	struct kvm_mmu_page *sp, *nsp;
2373 2374 2375 2376

	if (list_empty(invalid_list))
		return;

2377
	/*
2378 2379 2380 2381 2382 2383 2384
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2385 2386
	 */
	kvm_flush_remote_tlbs(kvm);
2387

2388
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2389
		WARN_ON(!sp->role.invalid || sp->root_count);
2390
		kvm_mmu_free_page(sp);
2391
	}
2392 2393
}

2394 2395
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2396
{
2397 2398
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2399
	LIST_HEAD(invalid_list);
2400 2401
	bool unstable;
	int nr_zapped;
2402 2403

	if (list_empty(&kvm->arch.active_mmu_pages))
2404 2405
		return 0;

2406
restart:
2407
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2419 2420
			break;

2421 2422
		if (unstable)
			goto restart;
2423
	}
2424

2425 2426 2427 2428 2429 2430
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2431 2432 2433 2434 2435 2436 2437
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2438 2439
}

2440 2441
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2442
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2443

2444
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2445 2446
		return 0;

2447
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2448 2449 2450 2451 2452 2453

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2454 2455
/*
 * Changing the number of mmu pages allocated to the vm
2456
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2457
 */
2458
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2459
{
2460 2461
	spin_lock(&kvm->mmu_lock);

2462
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2463 2464
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2465

2466
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2467 2468
	}

2469
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2470 2471

	spin_unlock(&kvm->mmu_lock);
2472 2473
}

2474
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2475
{
2476
	struct kvm_mmu_page *sp;
2477
	LIST_HEAD(invalid_list);
2478 2479
	int r;

2480
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2481
	r = 0;
2482
	spin_lock(&kvm->mmu_lock);
2483
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2484
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2485 2486
			 sp->role.word);
		r = 1;
2487
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2488
	}
2489
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2490 2491
	spin_unlock(&kvm->mmu_lock);

2492
	return r;
2493
}
2494
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2495

2496
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2497 2498 2499 2500 2501 2502 2503 2504
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2505 2506
bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool can_unsync)
2507
{
2508
	struct kvm_mmu_page *sp;
2509

2510 2511
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2512

2513
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2514
		if (!can_unsync)
2515
			return true;
2516

2517 2518
		if (sp->unsync)
			continue;
2519

2520
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2521
		kvm_unsync_page(vcpu, sp);
2522
	}
2523

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2563
	return false;
2564 2565
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
		return 0;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2586 2587 2588
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2589
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2590 2591 2592
	return ret;
}

2593
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2594
			unsigned int pte_access, bool write_fault, int level,
2595 2596
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2597 2598
{
	int was_rmapped = 0;
2599
	int rmap_count;
2600
	int set_spte_ret;
2601
	int ret = RET_PF_FIXED;
2602
	bool flush = false;
M
Marcelo Tosatti 已提交
2603

2604 2605
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2606

2607
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2608 2609 2610 2611
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2612
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2613
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2614
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2615

2616
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2617
			drop_parent_pte(child, sptep);
2618
			flush = true;
A
Avi Kivity 已提交
2619
		} else if (pfn != spte_to_pfn(*sptep)) {
2620
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2621
				 spte_to_pfn(*sptep), pfn);
2622
			drop_spte(vcpu->kvm, sptep);
2623
			flush = true;
2624 2625
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2626
	}
2627

2628 2629 2630
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2631
		if (write_fault)
2632
			ret = RET_PF_EMULATE;
2633
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2634
	}
2635

2636
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2637 2638
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2639

2640
	if (unlikely(is_mmio_spte(*sptep)))
2641
		ret = RET_PF_EMULATE;
2642

2643 2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2652
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2653
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2654
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2655 2656
		++vcpu->kvm->stat.lpages;

2657 2658 2659 2660 2661 2662
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2663
	}
2664

2665
	return ret;
2666 2667
}

D
Dan Williams 已提交
2668
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2669 2670 2671 2672
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2673
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2674
	if (!slot)
2675
		return KVM_PFN_ERR_FAULT;
2676

2677
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2678 2679 2680 2681 2682 2683 2684
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2685
	struct kvm_memory_slot *slot;
2686
	unsigned int access = sp->role.access;
2687 2688 2689 2690
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2691 2692
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2693 2694
		return -1;

2695
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2696 2697 2698
	if (ret <= 0)
		return -1;

2699
	for (i = 0; i < ret; i++, gfn++, start++) {
2700
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2701
			     page_to_pfn(pages[i]), true, true);
2702 2703
		put_page(pages[i]);
	}
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2720
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2735
	sp = sptep_to_sp(sptep);
2736

2737
	/*
2738 2739 2740
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2741
	 */
2742
	if (sp_ad_disabled(sp))
2743 2744
		return;

2745
	if (sp->role.level > PG_LEVEL_4K)
2746 2747 2748 2749 2750
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2751
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2752
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2753 2754 2755 2756 2757
{
	unsigned long hva;
	pte_t *pte;
	int level;

2758
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2759
		return PG_LEVEL_4K;
2760

2761 2762 2763 2764 2765 2766 2767 2768
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2769 2770 2771 2772
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
2773
		return PG_LEVEL_4K;
2774 2775 2776 2777

	return level;
}

B
Ben Gardon 已提交
2778 2779 2780
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2781
{
2782
	struct kvm_memory_slot *slot;
2783
	struct kvm_lpage_info *linfo;
2784
	kvm_pfn_t pfn = *pfnp;
2785
	kvm_pfn_t mask;
2786
	int level;
2787

2788 2789
	*req_level = PG_LEVEL_4K;

2790 2791
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2792

2793
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2794
		return PG_LEVEL_4K;
2795

2796 2797
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2798
		return PG_LEVEL_4K;
2799

2800
	max_level = min(max_level, max_huge_page_level);
2801
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2802 2803
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
2804 2805 2806
			break;
	}

2807 2808
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
2809 2810

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2811
	if (level == PG_LEVEL_4K)
2812
		return level;
2813

2814 2815 2816 2817 2818 2819 2820 2821
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2822 2823

	/*
2824 2825
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2826
	 */
2827 2828 2829
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2830 2831

	return level;
2832 2833
}

B
Ben Gardon 已提交
2834 2835
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2836
{
B
Ben Gardon 已提交
2837
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2838

2839
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2840 2841 2842 2843 2844 2845 2846 2847 2848
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2849 2850
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2851
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2852
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2853 2854 2855
	}
}

2856
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2857
			int map_writable, int max_level, kvm_pfn_t pfn,
2858
			bool prefault, bool is_tdp)
2859
{
2860 2861 2862 2863
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2864
	struct kvm_shadow_walk_iterator it;
2865
	struct kvm_mmu_page *sp;
2866
	int level, req_level, ret;
2867 2868
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2869

2870
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2871
		return RET_PF_RETRY;
2872

2873 2874
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2875

2876
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2877
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2878 2879 2880 2881
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2882
		if (nx_huge_page_workaround_enabled)
2883 2884
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2885

2886 2887
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2888
			break;
A
Avi Kivity 已提交
2889

2890 2891 2892 2893
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2894

2895
			link_shadow_page(vcpu, it.sptep, sp);
2896 2897
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2898
				account_huge_nx_page(vcpu->kvm, sp);
2899 2900
		}
	}
2901 2902 2903 2904

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2905 2906 2907
	if (ret == RET_PF_SPURIOUS)
		return ret;

2908 2909 2910
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2911 2912
}

H
Huang Ying 已提交
2913
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2914
{
2915
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2916 2917
}

D
Dan Williams 已提交
2918
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2919
{
X
Xiao Guangrong 已提交
2920 2921 2922 2923 2924 2925
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2926
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2927

2928
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2929
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2930
		return RET_PF_RETRY;
2931
	}
2932

2933
	return -EFAULT;
2934 2935
}

2936
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2937 2938
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2939 2940
{
	/* The pfn is invalid, report the error! */
2941
	if (unlikely(is_error_pfn(pfn))) {
2942
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2943
		return true;
2944 2945
	}

2946
	if (unlikely(is_noslot_pfn(pfn)))
2947 2948
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2949

2950
	return false;
2951 2952
}

2953
static bool page_fault_can_be_fast(u32 error_code)
2954
{
2955 2956 2957 2958 2959 2960 2961
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2962 2963 2964 2965 2966
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

2967
	/*
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
2979 2980
	 */

2981 2982 2983
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2984 2985
}

2986 2987 2988 2989
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
2990
static bool
2991
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2992
			u64 *sptep, u64 old_spte, u64 new_spte)
2993 2994 2995 2996 2997
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3010
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3011 3012
		return false;

3013
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3014 3015 3016 3017 3018 3019 3020
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3021 3022 3023 3024

	return true;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3037
/*
3038
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3039
 */
3040 3041
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3042 3043
{
	struct kvm_shadow_walk_iterator iterator;
3044
	struct kvm_mmu_page *sp;
3045
	int ret = RET_PF_INVALID;
3046
	u64 spte = 0ull;
3047
	uint retry_count = 0;
3048

3049
	if (!page_fault_can_be_fast(error_code))
3050
		return ret;
3051 3052 3053

	walk_shadow_page_lockless_begin(vcpu);

3054
	do {
3055
		u64 new_spte;
3056

3057
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3058
			if (!is_shadow_present_pte(spte))
3059 3060
				break;

3061
		sp = sptep_to_sp(iterator.sptep);
3062 3063
		if (!is_last_spte(spte, sp->role.level))
			break;
3064

3065
		/*
3066 3067 3068 3069 3070
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3071 3072 3073 3074
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3075
		if (is_access_allowed(error_code, spte)) {
3076
			ret = RET_PF_SPURIOUS;
3077 3078
			break;
		}
3079

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3091
		    spte_can_locklessly_be_made_writable(spte)) {
3092
			new_spte |= PT_WRITABLE_MASK;
3093 3094

			/*
3095 3096 3097 3098 3099 3100 3101 3102 3103
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3104
			 */
3105
			if (sp->role.level > PG_LEVEL_4K)
3106
				break;
3107
		}
3108

3109
		/* Verify that the fault can be handled in the fast path */
3110 3111
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3112 3113 3114 3115 3116
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3117
		 * Documentation/virt/kvm/locking.rst to get more detail.
3118
		 */
3119 3120 3121
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3122
			break;
3123
		}
3124 3125 3126 3127 3128 3129 3130 3131

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3132

3133
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3134
			      spte, ret);
3135 3136
	walk_shadow_page_lockless_end(vcpu);

3137
	return ret;
3138 3139
}

3140 3141
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3142
{
3143
	struct kvm_mmu_page *sp;
3144

3145
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3146
		return;
3147

3148
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3149 3150 3151 3152 3153 3154 3155

	if (kvm_mmu_put_root(kvm, sp)) {
		if (sp->tdp_mmu_page)
			kvm_tdp_mmu_free_root(kvm, sp);
		else if (sp->role.invalid)
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
	}
3156

3157 3158 3159
	*root_hpa = INVALID_PAGE;
}

3160
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3161 3162
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3163
{
3164
	struct kvm *kvm = vcpu->kvm;
3165 3166
	int i;
	LIST_HEAD(invalid_list);
3167
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3168

3169
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3170

3171
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3172 3173 3174 3175 3176 3177 3178 3179 3180
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3181

3182
	spin_lock(&kvm->mmu_lock);
3183

3184 3185
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3186
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3187
					   &invalid_list);
3188

3189 3190 3191
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3192
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3193
		} else if (mmu->pae_root) {
3194 3195
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3196
					mmu_free_root_page(kvm,
3197 3198 3199
							   &mmu->pae_root[i],
							   &invalid_list);
		}
3200
		mmu->root_hpa = INVALID_PAGE;
3201
		mmu->root_pgd = 0;
3202
	}
3203

3204 3205
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
	spin_unlock(&kvm->mmu_lock);
3206
}
3207
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3208

3209 3210 3211 3212
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3213
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3214
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3215 3216 3217 3218 3219 3220
		ret = 1;
	}

	return ret;
}

3221 3222
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3223 3224
{
	struct kvm_mmu_page *sp;
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

	spin_lock(&vcpu->kvm->mmu_lock);

	if (make_mmu_pages_available(vcpu)) {
		spin_unlock(&vcpu->kvm->mmu_lock);
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	spin_unlock(&vcpu->kvm->mmu_lock);
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3243
	unsigned i;
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	if (vcpu->kvm->arch.tdp_mmu_enabled) {
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);

		if (!VALID_PAGE(root))
			return -ENOSPC;
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
				      true);

3255
		if (!VALID_PAGE(root))
3256
			return -ENOSPC;
3257 3258
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3259
		for (i = 0; i < 4; ++i) {
3260
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3261

3262 3263 3264
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3265
				return -ENOSPC;
3266
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3267
		}
3268
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3269 3270
	} else
		BUG();
3271

3272 3273
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3274 3275 3276 3277 3278

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3279
{
3280
	u64 pdptr, pm_mask;
3281
	gfn_t root_gfn, root_pgd;
3282
	hpa_t root;
3283
	int i;
3284

3285 3286
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3287

3288 3289 3290 3291 3292 3293 3294
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3295
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3296
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3297

3298 3299 3300
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3301
			return -ENOSPC;
3302
		vcpu->arch.mmu->root_hpa = root;
3303
		goto set_root_pgd;
3304
	}
3305

3306 3307
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3308 3309
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3310
	 */
3311
	pm_mask = PT_PRESENT_MASK;
3312
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3313 3314
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		/*
		 * Allocate the page for the PDPTEs when shadowing 32-bit NPT
		 * with 64-bit only when needed.  Unlike 32-bit NPT, it doesn't
		 * need to be in low mem.  See also lm_root below.
		 */
		if (!vcpu->arch.mmu->pae_root) {
			WARN_ON_ONCE(!tdp_enabled);

			vcpu->arch.mmu->pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
			if (!vcpu->arch.mmu->pae_root)
				return -ENOMEM;
		}
	}

3329
	for (i = 0; i < 4; ++i) {
3330
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3331 3332
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3333
			if (!(pdptr & PT_PRESENT_MASK)) {
3334
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3335 3336
				continue;
			}
A
Avi Kivity 已提交
3337
			root_gfn = pdptr >> PAGE_SHIFT;
3338 3339
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3340
		}
3341

3342 3343 3344 3345
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3346
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3347
	}
3348
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3349 3350

	/*
3351 3352 3353 3354 3355
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at MMU creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM is very rare.  The PDP is
	 * handled above (to share logic with PAE), deal with the PML4 here.
3356
	 */
3357 3358
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3359 3360
			u64 *lm_root;

3361
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3362 3363
			if (!lm_root)
				return -ENOMEM;
3364

3365
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3366

3367
			vcpu->arch.mmu->lm_root = lm_root;
3368 3369
		}

3370
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3371 3372
	}

3373 3374
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3375

3376
	return 0;
3377 3378
}

3379 3380
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3381
	if (vcpu->arch.mmu->direct_map)
3382 3383 3384 3385 3386
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3387
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3388 3389 3390 3391
{
	int i;
	struct kvm_mmu_page *sp;

3392
	if (vcpu->arch.mmu->direct_map)
3393 3394
		return;

3395
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3396
		return;
3397

3398
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3399

3400 3401
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3402
		sp = to_shadow_page(root);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3421
		mmu_sync_children(vcpu, sp);
3422

3423
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3424
		spin_unlock(&vcpu->kvm->mmu_lock);
3425 3426
		return;
	}
3427 3428 3429 3430

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3431
	for (i = 0; i < 4; ++i) {
3432
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3433

3434
		if (root && VALID_PAGE(root)) {
3435
			root &= PT64_BASE_ADDR_MASK;
3436
			sp = to_shadow_page(root);
3437 3438 3439 3440
			mmu_sync_children(vcpu, sp);
		}
	}

3441
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3442
	spin_unlock(&vcpu->kvm->mmu_lock);
3443
}
N
Nadav Har'El 已提交
3444
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3445

3446
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3447
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3448
{
3449 3450
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3451 3452 3453
	return vaddr;
}

3454
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3455 3456
					 u32 access,
					 struct x86_exception *exception)
3457
{
3458 3459
	if (exception)
		exception->error_code = 0;
3460
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3461 3462
}

3463 3464 3465
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3466
	int bit7 = (pte >> 7) & 1;
3467

3468
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3469 3470
}

3471
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3472
{
3473
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3474 3475
}

3476
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3477
{
3478 3479 3480 3481 3482 3483 3484
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3485 3486 3487 3488 3489 3490
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3491 3492 3493 3494
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3495
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3496 3497
{
	struct kvm_shadow_walk_iterator iterator;
3498
	int leaf = -1;
3499
	u64 spte;
3500 3501

	walk_shadow_page_lockless_begin(vcpu);
3502

3503 3504
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3505 3506
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3507
		leaf = iterator.level;
3508 3509 3510 3511
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;

3512 3513
		if (!is_shadow_present_pte(spte))
			break;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

/* return true if reserved bit is detected on spte. */
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
	u64 sptes[PT64_ROOT_MAX_LEVEL];
	struct rsvd_bits_validate *rsvd_check;
3526
	int root, leaf, level;
3527 3528 3529 3530 3531 3532 3533 3534
	bool reserved = false;

	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
		*sptep = 0ull;
		return reserved;
	}

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3535
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3536
	else
3537
		leaf = get_walk(vcpu, addr, sptes, &root);
3538

3539 3540 3541 3542 3543
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3544 3545 3546 3547 3548
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

	for (level = root; level >= leaf; level--) {
		if (!is_shadow_present_pte(sptes[level - 1]))
			break;
3549 3550 3551 3552 3553
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
3554 3555 3556
		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
					       level);
3557 3558 3559 3560 3561
	}

	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3562
		for (level = root; level >= leaf; level--)
3563
			pr_err("------ spte 0x%llx level %d.\n",
3564
			       sptes[level - 1], level);
3565
	}
3566

3567 3568
	*sptep = sptes[leaf - 1];

3569
	return reserved;
3570 3571
}

P
Paolo Bonzini 已提交
3572
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3573 3574
{
	u64 spte;
3575
	bool reserved;
3576

3577
	if (mmio_info_in_cache(vcpu, addr, direct))
3578
		return RET_PF_EMULATE;
3579

3580
	reserved = get_mmio_spte(vcpu, addr, &spte);
3581
	if (WARN_ON(reserved))
3582
		return -EINVAL;
3583 3584 3585

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3586
		unsigned int access = get_mmio_spte_access(spte);
3587

3588
		if (!check_mmio_spte(vcpu, spte))
3589
			return RET_PF_INVALID;
3590

3591 3592
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3593 3594

		trace_handle_mmio_page_fault(addr, gfn, access);
3595
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3596
		return RET_PF_EMULATE;
3597 3598 3599 3600 3601 3602
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3603
	return RET_PF_RETRY;
3604 3605
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3640 3641
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3642 3643
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3644

3645
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3646
	arch.gfn = gfn;
3647
	arch.direct_map = vcpu->arch.mmu->direct_map;
3648
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3649

3650 3651
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3652 3653
}

3654
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3655 3656
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
3657
{
3658
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3659 3660
	bool async;

3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3669 3670
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3671
		*pfn = KVM_PFN_NOSLOT;
3672
		*writable = false;
3673 3674 3675
		return false;
	}

3676 3677
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3678 3679 3680
	if (!async)
		return false; /* *pfn has correct page already */

3681
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3682
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3683
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3684
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3685 3686
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3687
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3688 3689 3690
			return true;
	}

3691
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3692 3693 3694
	return false;
}

3695 3696
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3697
{
3698
	bool write = error_code & PFERR_WRITE_MASK;
3699
	bool map_writable;
A
Avi Kivity 已提交
3700

3701 3702 3703
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3704
	int r;
3705

3706
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3707
		return RET_PF_EMULATE;
3708

B
Ben Gardon 已提交
3709 3710 3711 3712 3713
	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3714

3715
	r = mmu_topup_memory_caches(vcpu, false);
3716 3717
	if (r)
		return r;
3718

3719 3720 3721 3722 3723 3724
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

3725
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3726
		return r;
A
Avi Kivity 已提交
3727

3728 3729 3730 3731
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
3732 3733
	r = make_mmu_pages_available(vcpu);
	if (r)
3734
		goto out_unlock;
B
Ben Gardon 已提交
3735 3736 3737 3738 3739 3740 3741

	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3742

3743 3744 3745 3746
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3747 3748
}

3749 3750 3751 3752 3753 3754 3755
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3756
				 PG_LEVEL_2M, false);
3757 3758
}

3759
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3760
				u64 fault_address, char *insn, int insn_len)
3761 3762
{
	int r = 1;
3763
	u32 flags = vcpu->arch.apf.host_apf_flags;
3764

3765 3766 3767 3768 3769 3770
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3771
	vcpu->arch.l1tf_flush_l1d = true;
3772
	if (!flags) {
3773 3774
		trace_kvm_page_fault(fault_address, error_code);

3775
		if (kvm_event_needs_reinjection(vcpu))
3776 3777 3778
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3779
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3780
		vcpu->arch.apf.host_apf_flags = 0;
3781
		local_irq_disable();
3782
		kvm_async_pf_task_wait_schedule(fault_address);
3783
		local_irq_enable();
3784 3785
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3786
	}
3787

3788 3789 3790 3791
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3792 3793
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3794
{
3795
	int max_level;
3796

3797
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3798
	     max_level > PG_LEVEL_4K;
3799 3800
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3801
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3802

3803 3804
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3805
	}
3806

3807 3808
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3809 3810
}

3811 3812
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3813 3814 3815
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3816
	context->sync_page = nonpaging_sync_page;
3817
	context->invlpg = NULL;
3818
	context->root_level = 0;
A
Avi Kivity 已提交
3819
	context->shadow_root_level = PT32E_ROOT_LEVEL;
3820
	context->direct_map = true;
3821
	context->nx = false;
A
Avi Kivity 已提交
3822 3823
}

3824
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3825 3826
				  union kvm_mmu_page_role role)
{
3827
	return (role.direct || pgd == root->pgd) &&
3828 3829
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3830 3831
}

3832
/*
3833
 * Find out if a previously cached root matching the new pgd/role is available.
3834 3835 3836 3837 3838 3839
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3840
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3841 3842 3843 3844
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3845
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3846

3847
	root.pgd = mmu->root_pgd;
3848 3849
	root.hpa = mmu->root_hpa;

3850
	if (is_root_usable(&root, new_pgd, new_role))
3851 3852
		return true;

3853 3854 3855
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3856
		if (is_root_usable(&root, new_pgd, new_role))
3857 3858 3859 3860
			break;
	}

	mmu->root_hpa = root.hpa;
3861
	mmu->root_pgd = root.pgd;
3862 3863 3864 3865

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3866
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3867
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3868
{
3869
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3870 3871 3872 3873 3874 3875 3876

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3877
	    mmu->root_level >= PT64_ROOT_4LEVEL)
3878
		return cached_root_available(vcpu, new_pgd, new_role);
3879 3880

	return false;
A
Avi Kivity 已提交
3881 3882
}

3883
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3884
			      union kvm_mmu_page_role new_role,
3885
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
3886
{
3887
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

3900
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3901
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3902
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

3913 3914 3915 3916 3917 3918 3919
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
3920 3921
}

3922
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3923
		     bool skip_mmu_sync)
3924
{
3925
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3926
			  skip_tlb_flush, skip_mmu_sync);
3927
}
3928
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3929

3930 3931
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3932
	return kvm_read_cr3(vcpu);
3933 3934
}

3935
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3936
			   unsigned int access, int *nr_present)
3937 3938 3939 3940 3941 3942 3943 3944
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3945
		mark_mmio_spte(vcpu, sptep, gfn, access);
3946 3947 3948 3949 3950 3951
		return true;
	}

	return false;
}

3952 3953
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3954
{
3955 3956 3957 3958 3959 3960 3961
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

3962
	/*
3963 3964 3965
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3966
	 */
3967
	gpte |= level - PG_LEVEL_4K - 1;
3968

3969
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3970 3971
}

3972 3973 3974 3975 3976
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3977 3978 3979 3980 3981 3982 3983 3984
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3985 3986 3987 3988
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3989
			bool pse, bool amd)
3990 3991
{
	u64 exb_bit_rsvd = 0;
3992
	u64 gbpages_bit_rsvd = 0;
3993
	u64 nonleaf_bit8_rsvd = 0;
3994

3995
	rsvd_check->bad_mt_xwr = 0;
3996

3997
	if (!nx)
3998
		exb_bit_rsvd = rsvd_bits(63, 63);
3999
	if (!gbpages)
4000
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4001 4002 4003 4004 4005

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4006
	if (amd)
4007 4008
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4009
	switch (level) {
4010 4011
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4012 4013 4014 4015
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4016

4017
		if (!pse) {
4018
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4019 4020 4021
			break;
		}

4022 4023
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4024
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4025 4026
		else
			/* 32 bits PSE 4MB page */
4027
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4028 4029
		break;
	case PT32E_ROOT_LEVEL:
4030
		rsvd_check->rsvd_bits_mask[0][2] =
4031
			rsvd_bits(maxphyaddr, 63) |
4032
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4033
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4034
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4035
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4036
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4037
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4038 4039
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4040 4041
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4042
		break;
4043 4044 4045 4046 4047 4048
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4049
		fallthrough;
4050
	case PT64_ROOT_4LEVEL:
4051 4052
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4053
			rsvd_bits(maxphyaddr, 51);
4054
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4055
			gbpages_bit_rsvd |
4056
			rsvd_bits(maxphyaddr, 51);
4057 4058 4059 4060 4061 4062 4063
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4064
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4065
			rsvd_bits(13, 29);
4066
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4067 4068
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4069 4070
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4071 4072 4073 4074
		break;
	}
}

4075 4076 4077 4078 4079
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4080 4081
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4082 4083
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4084 4085
}

4086 4087 4088
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4089
{
4090
	u64 bad_mt_xwr;
4091

4092 4093
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4094
	rsvd_check->rsvd_bits_mask[0][3] =
4095
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4096
	rsvd_check->rsvd_bits_mask[0][2] =
4097
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4098
	rsvd_check->rsvd_bits_mask[0][1] =
4099
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4100
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4101 4102

	/* large page */
4103
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4104 4105
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4106
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4107
	rsvd_check->rsvd_bits_mask[1][1] =
4108
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4109
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4110

4111 4112 4113 4114 4115 4116 4117 4118
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4119
	}
4120
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4121 4122
}

4123 4124 4125 4126 4127 4128 4129
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4130 4131 4132 4133 4134 4135 4136 4137
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4138 4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
	bool uses_nx = context->nx || !tdp_enabled ||
4147
		context->mmu_role.base.smep_andnot_wp;
4148 4149
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4150

4151 4152 4153 4154
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4155 4156
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4157
				shadow_phys_bits,
4158
				context->shadow_root_level, uses_nx,
4159 4160
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4161 4162 4163 4164 4165 4166 4167 4168 4169

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4170 4171 4172
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4173 4174 4175 4176 4177 4178
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4179 4180 4181 4182 4183 4184 4185 4186
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4187 4188 4189 4190 4191
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4192
	if (boot_cpu_is_amd())
4193
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4194
					shadow_phys_bits,
4195
					context->shadow_root_level, false,
4196 4197
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4198
	else
4199
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4200
					    shadow_phys_bits,
4201 4202
					    false);

4203 4204 4205 4206 4207 4208 4209
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4221
				    shadow_phys_bits, execonly);
4222 4223
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4234 4235
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4236
{
4237 4238 4239 4240 4241 4242 4243 4244 4245
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4246 4247

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4248 4249
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4250
		/*
4251 4252
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4253
		 */
4254

4255
		/* Faults from writes to non-writable pages */
4256
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4257
		/* Faults from user mode accesses to supervisor pages */
4258
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4259
		/* Faults from fetches of non-executable pages*/
4260
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4286
			 * conditions are true:
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4300
		}
4301 4302

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4303 4304 4305
	}
}

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4381
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4382
{
4383 4384 4385 4386 4387
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4388 4389
}

4390 4391 4392
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4393
{
4394
	context->nx = is_nx(vcpu);
4395
	context->root_level = level;
4396

4397
	reset_rsvds_bits_mask(vcpu, context);
4398
	update_permission_bitmask(vcpu, context, false);
4399
	update_pkru_bitmask(vcpu, context, false);
4400
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4401

4402
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4403 4404
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4405
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4406
	context->invlpg = paging64_invlpg;
4407
	context->shadow_root_level = level;
4408
	context->direct_map = false;
A
Avi Kivity 已提交
4409 4410
}

4411 4412
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4413
{
4414 4415 4416 4417
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4418 4419
}

4420 4421
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4422
{
4423
	context->nx = false;
4424
	context->root_level = PT32_ROOT_LEVEL;
4425

4426
	reset_rsvds_bits_mask(vcpu, context);
4427
	update_permission_bitmask(vcpu, context, false);
4428
	update_pkru_bitmask(vcpu, context, false);
4429
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4430 4431 4432

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4433
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4434
	context->invlpg = paging32_invlpg;
A
Avi Kivity 已提交
4435
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4436
	context->direct_map = false;
A
Avi Kivity 已提交
4437 4438
}

4439 4440
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4441
{
4442
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4443 4444
}

4445 4446 4447 4448
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4449
	ext.cr0_pg = !!is_paging(vcpu);
4450
	ext.cr4_pae = !!is_pae(vcpu);
4451 4452 4453 4454
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4455
	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4456
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4457 4458 4459 4460 4461 4462

	ext.valid = 1;

	return ext;
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4482 4483 4484
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4485
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4486 4487
		return 4;

4488
	return max_tdp_level;
4489 4490
}

4491 4492
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4493
{
4494
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4495

4496
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4497
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4498
	role.base.direct = true;
4499
	role.base.gpte_is_8_bytes = true;
4500 4501 4502 4503

	return role;
}

4504
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4505
{
4506
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4507 4508
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4509

4510 4511 4512 4513
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4514
	context->page_fault = kvm_tdp_page_fault;
4515
	context->sync_page = nonpaging_sync_page;
4516
	context->invlpg = NULL;
4517
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4518
	context->direct_map = true;
4519
	context->get_guest_pgd = get_cr3;
4520
	context->get_pdptr = kvm_pdptr_read;
4521
	context->inject_page_fault = kvm_inject_page_fault;
4522 4523

	if (!is_paging(vcpu)) {
4524
		context->nx = false;
4525 4526 4527
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4528
		context->nx = is_nx(vcpu);
4529 4530
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4531 4532
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4533
	} else if (is_pae(vcpu)) {
4534
		context->nx = is_nx(vcpu);
4535
		context->root_level = PT32E_ROOT_LEVEL;
4536 4537
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4538
	} else {
4539
		context->nx = false;
4540
		context->root_level = PT32_ROOT_LEVEL;
4541 4542
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4543 4544
	}

4545
	update_permission_bitmask(vcpu, context, false);
4546
	update_pkru_bitmask(vcpu, context, false);
4547
	update_last_nonleaf_level(vcpu, context);
4548
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4549 4550
}

4551
static union kvm_mmu_role
4552
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4553 4554 4555 4556 4557 4558 4559
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4560
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4561

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4573
	if (!is_long_mode(vcpu))
4574
		role.base.level = PT32E_ROOT_LEVEL;
4575
	else if (is_la57_mode(vcpu))
4576
		role.base.level = PT64_ROOT_5LEVEL;
4577
	else
4578
		role.base.level = PT64_ROOT_4LEVEL;
4579 4580 4581 4582

	return role;
}

4583 4584 4585
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4586
{
4587
	if (!(cr0 & X86_CR0_PG))
4588
		nonpaging_init_context(vcpu, context);
4589
	else if (efer & EFER_LMA)
4590
		paging64_init_context(vcpu, context);
4591
	else if (cr4 & X86_CR4_PAE)
4592
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4593
	else
4594
		paging32_init_context(vcpu, context);
4595

4596
	context->mmu_role.as_u64 = new_role.as_u64;
4597
	reset_shadow_zero_bits_mask(vcpu, context);
4598
}
4599 4600 4601

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
4602
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4603 4604 4605 4606
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
4607
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4608 4609
}

4610 4611 4612 4613 4614 4615 4616
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
4617
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4618 4619 4620 4621

	return role;
}

4622 4623 4624
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
4625
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4626
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4627

4628 4629
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

4630
	if (new_role.as_u64 != context->mmu_role.as_u64) {
4631
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4632 4633 4634 4635 4636 4637 4638

		/*
		 * Override the level set by the common init helper, nested TDP
		 * always uses the host's TDP configuration.
		 */
		context->shadow_root_level = new_role.base.level;
	}
4639 4640
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4641

4642 4643
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4644
				   bool execonly, u8 level)
4645
{
4646
	union kvm_mmu_role role = {0};
4647

4648 4649
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4650

4651
	role.base.level = level;
4652
	role.base.gpte_is_8_bytes = true;
4653 4654 4655 4656
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4657

4658 4659 4660 4661 4662 4663 4664
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

4665
	role.ext = kvm_calc_mmu_role_ext(vcpu);
4666
	role.ext.execonly = execonly;
4667 4668 4669 4670

	return role;
}

4671
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4672
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4673
{
4674
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4675
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4676 4677
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4678
						   execonly, level);
4679

4680
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4681 4682 4683

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4684

4685
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4686 4687

	context->nx = true;
4688
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4689 4690 4691 4692
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4693
	context->root_level = level;
N
Nadav Har'El 已提交
4694
	context->direct_map = false;
4695
	context->mmu_role.as_u64 = new_role.as_u64;
4696

N
Nadav Har'El 已提交
4697
	update_permission_bitmask(vcpu, context, true);
4698
	update_pkru_bitmask(vcpu, context, true);
4699
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
4700
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4701
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4702 4703 4704
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4705
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4706
{
4707
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4708

4709 4710 4711 4712 4713
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

4714
	context->get_guest_pgd     = get_cr3;
4715 4716
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4717 4718
}

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;

	if (!is_paging(vcpu))
		role.base.level = 0;
	else if (is_long_mode(vcpu))
		role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
						       PT64_ROOT_4LEVEL;
	else if (is_pae(vcpu))
		role.base.level = PT32E_ROOT_LEVEL;
	else
		role.base.level = PT32_ROOT_LEVEL;

	return role;
}

4743
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4744
{
4745
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
4746 4747
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4748 4749 4750 4751
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4752
	g_context->get_guest_pgd     = get_cr3;
4753
	g_context->get_pdptr         = kvm_pdptr_read;
4754 4755
	g_context->inject_page_fault = kvm_inject_page_fault;

4756 4757 4758 4759 4760 4761
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4762
	/*
4763
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4764 4765 4766 4767 4768
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4769 4770
	 */
	if (!is_paging(vcpu)) {
4771
		g_context->nx = false;
4772 4773 4774
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4775
		g_context->nx = is_nx(vcpu);
4776 4777
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4778
		reset_rsvds_bits_mask(vcpu, g_context);
4779 4780
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4781
		g_context->nx = is_nx(vcpu);
4782
		g_context->root_level = PT32E_ROOT_LEVEL;
4783
		reset_rsvds_bits_mask(vcpu, g_context);
4784 4785
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4786
		g_context->nx = false;
4787
		g_context->root_level = PT32_ROOT_LEVEL;
4788
		reset_rsvds_bits_mask(vcpu, g_context);
4789 4790 4791
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4792
	update_permission_bitmask(vcpu, g_context, false);
4793
	update_pkru_bitmask(vcpu, g_context, false);
4794
	update_last_nonleaf_level(vcpu, g_context);
4795 4796
}

4797
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4798
{
4799
	if (reset_roots) {
4800 4801
		uint i;

4802
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4803 4804

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4805
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4806 4807
	}

4808
	if (mmu_is_nested(vcpu))
4809
		init_kvm_nested_mmu(vcpu);
4810
	else if (tdp_enabled)
4811
		init_kvm_tdp_mmu(vcpu);
4812
	else
4813
		init_kvm_softmmu(vcpu);
4814
}
4815
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4816

4817 4818 4819
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4820 4821
	union kvm_mmu_role role;

4822
	if (tdp_enabled)
4823
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4824
	else
4825 4826 4827
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
4828
}
4829

4830
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4831
{
4832
	kvm_mmu_unload(vcpu);
4833
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
4834
}
4835
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4836 4837

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4838
{
4839 4840
	int r;

4841
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4842 4843
	if (r)
		goto out;
4844
	r = mmu_alloc_roots(vcpu);
4845
	kvm_mmu_sync_roots(vcpu);
4846 4847
	if (r)
		goto out;
4848
	kvm_mmu_load_pgd(vcpu);
4849
	kvm_x86_ops.tlb_flush_current(vcpu);
4850 4851
out:
	return r;
A
Avi Kivity 已提交
4852
}
A
Avi Kivity 已提交
4853 4854 4855 4856
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4857 4858 4859 4860
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4861
}
4862
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4863

4864 4865 4866 4867 4868 4869 4870 4871
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4872 4873
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4874 4875 4876
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4877
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4878
				    int *bytes)
4879
{
4880
	u64 gentry = 0;
4881
	int r;
4882 4883 4884

	/*
	 * Assume that the pte write on a page table of the same type
4885 4886
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4887
	 */
4888
	if (is_pae(vcpu) && *bytes == 4) {
4889
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4890 4891
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4892 4893
	}

4894 4895 4896 4897
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4898 4899
	}

4900 4901 4902 4903 4904 4905 4906
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4907
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4908
{
4909 4910 4911 4912
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4913
	if (sp->role.level == PG_LEVEL_4K)
4914
		return false;
4915

4916 4917
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4933
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4934 4935 4936 4937 4938 4939 4940 4941

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
4957
	if (!sp->role.gpte_is_8_bytes) {
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4979
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4980 4981
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
4982 4983 4984 4985 4986 4987
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4988
	bool remote_flush, local_flush;
4989 4990 4991 4992 4993

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
4994
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4995 4996
		return;

4997
	remote_flush = local_flush = false;
4998 4999 5000 5001 5002 5003 5004 5005

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5006
	mmu_topup_memory_caches(vcpu, true);
5007 5008

	spin_lock(&vcpu->kvm->mmu_lock);
5009 5010 5011

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5012
	++vcpu->kvm->stat.mmu_pte_write;
5013
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5014

5015
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5016
		if (detect_write_misaligned(sp, gpa, bytes) ||
5017
		      detect_write_flooding(sp)) {
5018
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5019
			++vcpu->kvm->stat.mmu_flooded;
5020 5021
			continue;
		}
5022 5023 5024 5025 5026

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5027
		local_flush = true;
5028
		while (npte--) {
5029
			entry = *spte;
5030
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5031 5032
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5033
			if (need_remote_flush(entry, *spte))
5034
				remote_flush = true;
5035
			++spte;
5036 5037
		}
	}
5038
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5039
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5040
	spin_unlock(&vcpu->kvm->mmu_lock);
5041 5042
}

5043 5044
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5045 5046
	gpa_t gpa;
	int r;
5047

5048
	if (vcpu->arch.mmu->direct_map)
5049 5050
		return 0;

5051
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5052 5053

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5054

5055
	return r;
5056
}
5057
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5058

5059
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5060
		       void *insn, int insn_len)
5061
{
5062
	int r, emulation_type = EMULTYPE_PF;
5063
	bool direct = vcpu->arch.mmu->direct_map;
5064

5065
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5066 5067
		return RET_PF_RETRY;

5068
	r = RET_PF_INVALID;
5069
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5070
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5071
		if (r == RET_PF_EMULATE)
5072 5073
			goto emulate;
	}
5074

5075
	if (r == RET_PF_INVALID) {
5076 5077
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5078 5079
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5080 5081
	}

5082
	if (r < 0)
5083
		return r;
5084 5085
	if (r != RET_PF_EMULATE)
		return 1;
5086

5087 5088 5089 5090 5091 5092 5093
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5094
	if (vcpu->arch.mmu->direct_map &&
5095
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5096
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5097 5098 5099
		return 1;
	}

5100 5101 5102 5103 5104 5105
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5106 5107 5108 5109
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5110
	 */
5111
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5112
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5113
emulate:
5114
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5115
				       insn_len);
5116 5117 5118
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5119 5120
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5121
{
5122
	int i;
5123

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5134 5135
		return;

5136 5137
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5138

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5158

5159 5160 5161
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5162 5163 5164 5165
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5166

5167 5168
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5169
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5170
	bool tlb_flush = false;
5171
	uint i;
5172 5173

	if (pcid == kvm_get_active_pcid(vcpu)) {
5174
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5175
		tlb_flush = true;
5176 5177
	}

5178 5179
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5180
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5181 5182 5183
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5184
	}
5185

5186
	if (tlb_flush)
5187
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5188

5189 5190 5191
	++vcpu->stat.invlpg;

	/*
5192 5193 5194
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5195 5196 5197 5198
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5199 5200
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5201
{
5202
	tdp_enabled = enable_tdp;
5203
	max_tdp_level = tdp_max_root_level;
5204 5205

	/*
5206
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5207 5208 5209 5210 5211 5212
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5213
		max_huge_page_level = tdp_huge_page_level;
5214
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5215
		max_huge_page_level = PG_LEVEL_1G;
5216
	else
5217
		max_huge_page_level = PG_LEVEL_2M;
5218
}
5219
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5240 5241 5242
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5243 5244 5245 5246 5247 5248 5249
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5250 5251
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5273
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5274
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5275 5276 5277 5278 5279 5280
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5281
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5282
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5283 5284 5285 5286 5287 5288
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5289 5290
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5291 5292
}

5293
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5294
{
5295 5296
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5297 5298
}

5299
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5300
{
5301
	struct page *page;
A
Avi Kivity 已提交
5302 5303
	int i;

5304 5305 5306 5307 5308 5309
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5310
	/*
5311 5312 5313 5314
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5315 5316 5317 5318 5319
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5320
	 */
5321
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5322 5323
		return 0;

5324
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5325
	if (!page)
5326 5327
		return -ENOMEM;

5328
	mmu->pae_root = page_address(page);
5329
	for (i = 0; i < 4; ++i)
5330
		mmu->pae_root[i] = INVALID_PAGE;
5331

A
Avi Kivity 已提交
5332 5333 5334
	return 0;
}

5335
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5336
{
5337
	int ret;
5338

5339
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5340 5341
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5342
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5343
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5344

5345 5346
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5347 5348
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5349

5350
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5351

5352
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5353 5354 5355
	if (ret)
		return ret;

5356
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5357 5358 5359 5360 5361 5362 5363
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5364 5365
}

5366
#define BATCH_ZAP_PAGES	10
5367 5368 5369
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5370
	int nr_zapped, batch = 0;
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5383 5384 5385
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5386
		 */
5387
		if (WARN_ON(sp->role.invalid))
5388 5389
			continue;

5390 5391 5392 5393 5394 5395
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5396
		if (batch >= BATCH_ZAP_PAGES &&
5397
		    cond_resched_lock(&kvm->mmu_lock)) {
5398
			batch = 0;
5399 5400 5401
			goto restart;
		}

5402 5403
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5404
			batch += nr_zapped;
5405
			goto restart;
5406
		}
5407 5408
	}

5409 5410 5411 5412 5413
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5414
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5428 5429
	lockdep_assert_held(&kvm->slots_lock);

5430
	spin_lock(&kvm->mmu_lock);
5431
	trace_kvm_mmu_zap_all_fast(kvm);
5432 5433 5434 5435 5436 5437 5438 5439 5440

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5441

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5452
	kvm_zap_obsolete_pages(kvm);
5453 5454 5455 5456

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_all(kvm);

5457 5458 5459
	spin_unlock(&kvm->mmu_lock);
}

5460 5461 5462 5463 5464
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5465
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5466 5467
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5468
{
5469
	kvm_mmu_zap_all_fast(kvm);
5470 5471
}

5472
void kvm_mmu_init_vm(struct kvm *kvm)
5473
{
5474
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5475

5476 5477
	kvm_mmu_init_tdp_mmu(kvm);

5478
	node->track_write = kvm_mmu_pte_write;
5479
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5480
	kvm_page_track_register_notifier(kvm, node);
5481 5482
}

5483
void kvm_mmu_uninit_vm(struct kvm *kvm)
5484
{
5485
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5486

5487
	kvm_page_track_unregister_notifier(kvm, node);
5488 5489

	kvm_mmu_uninit_tdp_mmu(kvm);
5490 5491
}

X
Xiao Guangrong 已提交
5492 5493 5494 5495
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5496
	int i;
5497
	bool flush;
X
Xiao Guangrong 已提交
5498 5499

	spin_lock(&kvm->mmu_lock);
5500 5501 5502 5503 5504 5505 5506 5507 5508
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5509

5510
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5511
						PG_LEVEL_4K,
5512
						KVM_MAX_HUGEPAGE_LEVEL,
5513
						start, end - 1, true);
5514
		}
X
Xiao Guangrong 已提交
5515 5516
	}

5517 5518 5519 5520 5521 5522
	if (kvm->arch.tdp_mmu_enabled) {
		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
		if (flush)
			kvm_flush_remote_tlbs(kvm);
	}

X
Xiao Guangrong 已提交
5523 5524 5525
	spin_unlock(&kvm->mmu_lock);
}

5526 5527
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5528
{
5529
	return __rmap_write_protect(kvm, rmap_head, false);
5530 5531
}

5532
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5533 5534
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5535
{
5536
	bool flush;
A
Avi Kivity 已提交
5537

5538
	spin_lock(&kvm->mmu_lock);
5539
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5540
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5541 5542
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5543
	spin_unlock(&kvm->mmu_lock);
5544 5545 5546 5547 5548 5549 5550 5551

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5552
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5553 5554 5555
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5556
	if (flush)
5557
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5558
}
5559

5560
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5561
					 struct kvm_rmap_head *rmap_head)
5562 5563 5564 5565
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5566
	kvm_pfn_t pfn;
5567 5568
	struct kvm_mmu_page *sp;

5569
restart:
5570
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5571
		sp = sptep_to_sp(sptep);
5572 5573 5574
		pfn = spte_to_pfn(*sptep);

		/*
5575 5576 5577 5578 5579
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5580
		 */
5581
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5582 5583
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5584
			pte_list_remove(rmap_head, sptep);
5585 5586 5587 5588 5589 5590 5591

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5592 5593
			goto restart;
		}
5594 5595 5596 5597 5598 5599
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5600
				   const struct kvm_memory_slot *memslot)
5601
{
5602
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5603
	spin_lock(&kvm->mmu_lock);
5604 5605
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5606 5607 5608

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5609 5610 5611
	spin_unlock(&kvm->mmu_lock);
}

5612 5613 5614 5615
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
5616 5617 5618 5619 5620
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5621 5622
	 */
	lockdep_assert_held(&kvm->slots_lock);
5623 5624
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5625 5626
}

5627 5628 5629
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5630
	bool flush;
5631 5632

	spin_lock(&kvm->mmu_lock);
5633
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5634 5635
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5636 5637 5638 5639 5640 5641 5642 5643 5644
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5645
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5646 5647 5648 5649 5650 5651
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
5652
	bool flush;
5653 5654

	spin_lock(&kvm->mmu_lock);
5655 5656
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
5657 5658
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5659 5660 5661
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5662
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5663 5664 5665 5666 5667 5668
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
5669
	bool flush;
5670 5671

	spin_lock(&kvm->mmu_lock);
5672
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5673 5674
	if (kvm->arch.tdp_mmu_enabled)
		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5675 5676 5677
	spin_unlock(&kvm->mmu_lock);

	if (flush)
5678
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5679 5680 5681
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

5682
void kvm_mmu_zap_all(struct kvm *kvm)
5683 5684
{
	struct kvm_mmu_page *sp, *node;
5685
	LIST_HEAD(invalid_list);
5686
	int ign;
5687

5688
	spin_lock(&kvm->mmu_lock);
5689
restart:
5690
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5691
		if (WARN_ON(sp->role.invalid))
5692
			continue;
5693
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5694
			goto restart;
5695
		if (cond_resched_lock(&kvm->mmu_lock))
5696 5697 5698
			goto restart;
	}

5699
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5700 5701 5702 5703

	if (kvm->arch.tdp_mmu_enabled)
		kvm_tdp_mmu_zap_all(kvm);

5704 5705 5706
	spin_unlock(&kvm->mmu_lock);
}

5707
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5708
{
5709
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5710

5711
	gen &= MMIO_SPTE_GEN_MASK;
5712

5713
	/*
5714 5715 5716 5717 5718 5719 5720 5721
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5722
	/*
5723
	 * The very rare case: if the MMIO generation number has wrapped,
5724 5725
	 * zap all shadow pages.
	 */
5726
	if (unlikely(gen == 0)) {
5727
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5728
		kvm_mmu_zap_all_fast(kvm);
5729
	}
5730 5731
}

5732 5733
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5734 5735
{
	struct kvm *kvm;
5736
	int nr_to_scan = sc->nr_to_scan;
5737
	unsigned long freed = 0;
5738

J
Junaid Shahid 已提交
5739
	mutex_lock(&kvm_lock);
5740 5741

	list_for_each_entry(kvm, &vm_list, vm_list) {
5742
		int idx;
5743
		LIST_HEAD(invalid_list);
5744

5745 5746 5747 5748 5749 5750 5751 5752
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5753 5754 5755 5756 5757 5758
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5759 5760
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5761 5762
			continue;

5763
		idx = srcu_read_lock(&kvm->srcu);
5764 5765
		spin_lock(&kvm->mmu_lock);

5766 5767 5768 5769 5770 5771
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5772
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5773

5774
unlock:
5775
		spin_unlock(&kvm->mmu_lock);
5776
		srcu_read_unlock(&kvm->srcu, idx);
5777

5778 5779 5780 5781 5782
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5783 5784
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5785 5786
	}

J
Junaid Shahid 已提交
5787
	mutex_unlock(&kvm_lock);
5788 5789 5790 5791 5792 5793
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5794
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5795 5796 5797
}

static struct shrinker mmu_shrinker = {
5798 5799
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5800 5801 5802
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5803
static void mmu_destroy_caches(void)
5804
{
5805 5806
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5807 5808
}

5809 5810 5811 5812 5813
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
5814 5815 5816 5817 5818
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
5819
	 */
5820 5821 5822 5823
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
5824

P
Paolo Bonzini 已提交
5825
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5826 5827
}

P
Paolo Bonzini 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5862
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5863
			kvm_mmu_zap_all_fast(kvm);
5864
			mutex_unlock(&kvm->slots_lock);
5865 5866

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5867 5868 5869 5870 5871 5872 5873
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5874 5875
int kvm_mmu_module_init(void)
{
5876 5877
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5878 5879 5880
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5891
	kvm_mmu_reset_all_pte_masks();
5892

5893 5894
	kvm_set_mmio_spte_mask();

5895 5896
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5897
					    0, SLAB_ACCOUNT, NULL);
5898
	if (!pte_list_desc_cache)
5899
		goto out;
5900

5901 5902
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5903
						  0, SLAB_ACCOUNT, NULL);
5904
	if (!mmu_page_header_cache)
5905
		goto out;
5906

5907
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5908
		goto out;
5909

5910 5911 5912
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5913

5914 5915
	return 0;

5916
out:
5917
	mmu_destroy_caches();
5918
	return ret;
5919 5920
}

5921
/*
P
Peng Hao 已提交
5922
 * Calculate mmu pages needed for kvm.
5923
 */
5924
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5925
{
5926 5927
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5928
	struct kvm_memslots *slots;
5929
	struct kvm_memory_slot *memslot;
5930
	int i;
5931

5932 5933
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5934

5935 5936 5937
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5938 5939

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5940
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5941 5942 5943 5944

	return nr_mmu_pages;
}

5945 5946
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5947
	kvm_mmu_unload(vcpu);
5948 5949
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5950
	mmu_free_memory_caches(vcpu);
5951 5952 5953 5954 5955 5956 5957
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5958 5959
	mmu_audit_disable();
}
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
5992
	bool flush = false;
5993 5994 5995 5996 5997 5998 5999
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6000 6001 6002 6003
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6004 6005 6006 6007 6008 6009 6010 6011 6012
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6013
		if (sp->tdp_mmu_page) {
6014
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6015
		} else {
6016 6017 6018
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6019

6020
		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6021
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6022
			cond_resched_lock(&kvm->mmu_lock);
6023
			flush = false;
6024 6025
		}
	}
6026
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}