raid56.c 73.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "messages.h"
17
#include "misc.h"
D
David Woodhouse 已提交
18 19 20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
23
#include "file-item.h"
24
#include "btrfs_inode.h"
D
David Woodhouse 已提交
25 26 27 28

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

58 59 60 61 62 63 64
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
65 66
	unsigned int pgoff:24;
	unsigned int uptodate:8;
67 68
};

69 70
static void rmw_rbio_work(struct work_struct *work);
static void rmw_rbio_work_locked(struct work_struct *work);
D
David Woodhouse 已提交
71 72 73
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

74 75
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
static void scrub_rbio_work_locked(struct work_struct *work);
76

77 78
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
79
	bitmap_free(rbio->error_bitmap);
80 81 82 83 84 85
	kfree(rbio->stripe_pages);
	kfree(rbio->bio_sectors);
	kfree(rbio->stripe_sectors);
	kfree(rbio->finish_pointers);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	if (!refcount_dec_and_test(&rbio->refs))
		return;

	WARN_ON(!list_empty(&rbio->stripe_cache));
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}

	btrfs_put_bioc(rbio->bioc);
105
	free_raid_bio_pointers(rbio);
106 107 108
	kfree(rbio);
}

109
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110
{
111 112
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 114
}

D
David Woodhouse 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

131 132 133 134 135 136 137
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
138
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 140
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
141

142 143 144
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
145 146 147 148 149 150 151 152 153
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
154
	kvfree(x);
D
David Woodhouse 已提交
155 156 157
	return 0;
}

158 159
/*
 * caching an rbio means to copy anything from the
160
 * bio_sectors array into the stripe_pages array.  We
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

176 177
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
178 179 180 181 182 183 184 185
		if (!rbio->bio_sectors[i].page) {
			/*
			 * Even if the sector is not covered by bio, if it is
			 * a data sector it should still be uptodate as it is
			 * read from disk.
			 */
			if (i < rbio->nr_data * rbio->stripe_nsectors)
				ASSERT(rbio->stripe_sectors[i].uptodate);
186
			continue;
187
		}
188 189 190 191 192 193 194 195 196

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
197 198 199
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
200 201 202 203 204
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
205
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
206 207 208 209 210 211 212 213 214 215 216 217

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
	const int sector_nr = (page_nr << PAGE_SHIFT) >>
			      rbio->bioc->fs_info->sectorsize_bits;

	/*
	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
	 * we won't have a page which is half data half parity.
	 *
	 * Thus if the first sector of the page belongs to data stripes, then
	 * the full page belongs to data stripes.
	 */
	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}

289
/*
290 291 292 293 294
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
295 296 297 298 299 300 301 302 303
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
304 305 306 307 308 309 310
		struct page *p = src->stripe_pages[i];

		/*
		 * We don't need to steal P/Q pages as they will always be
		 * regenerated for RMW or full write anyway.
		 */
		if (!is_data_stripe_page(src, i))
311 312
			continue;

313 314 315 316 317 318
		/*
		 * If @src already has RBIO_CACHE_READY_BIT, it should have
		 * all data stripe pages present and uptodate.
		 */
		ASSERT(p);
		ASSERT(full_page_sectors_uptodate(src, i));
319
		steal_rbio_page(src, dest, i);
320
	}
321 322
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
323 324
}

D
David Woodhouse 已提交
325 326 327 328 329 330 331 332 333 334 335 336
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
337 338 339
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
D
David Woodhouse 已提交
340 341 342 343
	bio_list_init(&victim->bio_list);
}

/*
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

360
	table = rbio->bioc->fs_info->stripe_hash_table;
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
391
				refcount_dec(&rbio->refs);
392 393 394 395 396 397 398 399 400
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
401
		free_raid_bio(rbio);
402 403 404 405 406 407 408 409 410 411 412 413
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

414
	table = rbio->bioc->fs_info->stripe_hash_table;
415

416
	spin_lock(&table->cache_lock);
417
	__remove_rbio_from_cache(rbio);
418
	spin_unlock(&table->cache_lock);
419 420 421 422 423
}

/*
 * remove everything in the cache
 */
424
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 426 427 428 429 430
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

431
	spin_lock(&table->cache_lock);
432 433 434 435 436 437
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
438
	spin_unlock(&table->cache_lock);
439 440 441 442 443
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
444 445 446 447 448
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
449
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
450
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
451 452 453
	info->stripe_hash_table = NULL;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

472
	table = rbio->bioc->fs_info->stripe_hash_table;
473

474
	spin_lock(&table->cache_lock);
475 476 477 478
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
479
		refcount_inc(&rbio->refs);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

501
	spin_unlock(&table->cache_lock);
502 503
}

D
David Woodhouse 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
525 526
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
527
 */
528
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
529 530 531 532
{
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

533
	spin_lock(&rbio->bio_list_lock);
534
	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
D
David Woodhouse 已提交
535
		ret = 0;
536
	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
537
	spin_unlock(&rbio->bio_list_lock);
538

D
David Woodhouse 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

559 560 561 562
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
563
	 * steal from cached rbios though, other functions
564 565 566 567 568 569
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

570
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
571 572
		return 0;

573 574 575 576 577 578 579 580 581 582 583
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
584
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
585 586
		return 0;

587 588
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
	    last->operation == BTRFS_RBIO_READ_REBUILD)
589 590
		return 0;

D
David Woodhouse 已提交
591 592 593
	return 1;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

613 614 615
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
616
{
617
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
618 619
}

620 621 622
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
623
{
624 625 626
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
653
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
654 655 656
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	struct btrfs_raid_bio *freeit = NULL;
657
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
658 659
	int ret = 0;

660
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
661

662
	spin_lock(&h->lock);
D
David Woodhouse 已提交
663
	list_for_each_entry(cur, &h->hash_list, hash_list) {
664
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
665
			continue;
666

667
		spin_lock(&cur->bio_list_lock);
668

669 670 671 672 673 674 675
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
676

677 678 679
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
680

681 682
			goto lockit;
		}
D
David Woodhouse 已提交
683

684 685 686
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
687
			spin_unlock(&cur->bio_list_lock);
688
			freeit = rbio;
D
David Woodhouse 已提交
689 690 691
			ret = 1;
			goto out;
		}
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
717
	}
718
lockit:
719
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
720 721
	list_add(&rbio->hash_list, &h->hash_list);
out:
722
	spin_unlock(&h->lock);
723 724
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
725
	if (freeit)
726
		free_raid_bio(freeit);
D
David Woodhouse 已提交
727 728 729
	return ret;
}

730 731
static void recover_rbio_work_locked(struct work_struct *work);

D
David Woodhouse 已提交
732 733 734 735 736 737 738 739
/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
740
	int keep_cache = 0;
D
David Woodhouse 已提交
741 742

	bucket = rbio_bucket(rbio);
743
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
744

745 746 747
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

748
	spin_lock(&h->lock);
D
David Woodhouse 已提交
749 750 751
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
752 753 754 755 756 757 758 759 760 761 762 763
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
764 765

		list_del_init(&rbio->hash_list);
766
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
783
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
784
			spin_unlock(&rbio->bio_list_lock);
785
			spin_unlock(&h->lock);
D
David Woodhouse 已提交
786

787
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
788
				start_async_work(next, recover_rbio_work_locked);
789 790
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
791
				start_async_work(next, recover_rbio_work_locked);
792
			} else if (next->operation == BTRFS_RBIO_WRITE) {
793
				steal_rbio(rbio, next);
794
				start_async_work(next, rmw_rbio_work_locked);
795 796
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
797
				start_async_work(next, scrub_rbio_work_locked);
798
			}
D
David Woodhouse 已提交
799 800 801 802

			goto done_nolock;
		}
	}
803
done:
D
David Woodhouse 已提交
804
	spin_unlock(&rbio->bio_list_lock);
805
	spin_unlock(&h->lock);
D
David Woodhouse 已提交
806 807

done_nolock:
808 809
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
810 811
}

812
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
813
{
814 815 816 817 818 819 820 821 822
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
823 824 825 826 827 828
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
829
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
830 831
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
832
	struct bio *extra;
833

834 835 836 837 838
	kfree(rbio->csum_buf);
	bitmap_free(rbio->csum_bitmap);
	rbio->csum_buf = NULL;
	rbio->csum_bitmap = NULL;

839 840 841 842 843 844
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
845

846 847 848 849 850 851 852 853 854 855
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
856
	free_raid_bio(rbio);
D
David Woodhouse 已提交
857

858 859 860
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
861 862
}

D
David Sterba 已提交
863 864
/*
 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

888
	spin_lock(&rbio->bio_list_lock);
889 890 891 892 893
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
894
		spin_unlock(&rbio->bio_list_lock);
895 896
		return sector;
	}
897
	spin_unlock(&rbio->bio_list_lock);
898 899 900 901

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
902 903 904 905
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
906
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
907
					 struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
908
{
909
	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
910
	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
911
	const unsigned int num_pages = stripe_npages * real_stripes;
912 913
	const unsigned int stripe_nsectors =
		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
914
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
915 916
	struct btrfs_raid_bio *rbio;

917 918
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
919 920 921 922 923
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
924

925
	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
926
	if (!rbio)
D
David Woodhouse 已提交
927
		return ERR_PTR(-ENOMEM);
928 929 930 931 932 933 934
	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
				     GFP_NOFS);
	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				    GFP_NOFS);
	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				       GFP_NOFS);
	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
935
	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
936 937

	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
938
	    !rbio->finish_pointers || !rbio->error_bitmap) {
939 940 941 942
		free_raid_bio_pointers(rbio);
		kfree(rbio);
		return ERR_PTR(-ENOMEM);
	}
D
David Woodhouse 已提交
943 944

	bio_list_init(&rbio->bio_list);
945
	init_waitqueue_head(&rbio->io_wait);
D
David Woodhouse 已提交
946 947
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
948
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
949
	INIT_LIST_HEAD(&rbio->hash_list);
950
	btrfs_get_bioc(bioc);
951
	rbio->bioc = bioc;
D
David Woodhouse 已提交
952
	rbio->nr_pages = num_pages;
953
	rbio->nr_sectors = num_sectors;
954
	rbio->real_stripes = real_stripes;
955
	rbio->stripe_npages = stripe_npages;
956
	rbio->stripe_nsectors = stripe_nsectors;
957
	refcount_set(&rbio->refs, 1);
958
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
959

960 961
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
962 963 964 965 966 967 968

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
969 970 971 972 973 974 975 976
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
977 978
}

979
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
980 981
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
982
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
983
	int ret;
D
David Woodhouse 已提交
984

985 986 987 988 989 990 991
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
992 993
}

994
/*
995
 * Return the total number of errors found in the vertical stripe of @sector_nr.
996 997 998 999 1000 1001 1002 1003 1004 1005
 *
 * @faila and @failb will also be updated to the first and second stripe
 * number of the errors.
 */
static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
				     int *faila, int *failb)
{
	int stripe_nr;
	int found_errors = 0;

1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (faila || failb) {
		/*
		 * Both @faila and @failb should be valid pointers if any of
		 * them is specified.
		 */
		ASSERT(faila && failb);
		*faila = -1;
		*failb = -1;
	}
1015 1016 1017 1018 1019 1020

	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;

		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
			found_errors++;
1021 1022 1023 1024 1025 1026 1027
			if (faila) {
				/* Update faila and failb. */
				if (*faila < 0)
					*faila = stripe_nr;
				else if (*failb < 0)
					*failb = stripe_nr;
			}
1028 1029 1030 1031 1032
		}
	}
	return found_errors;
}

D
David Woodhouse 已提交
1033
/*
1034 1035 1036 1037
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1038
 */
1039 1040 1041 1042 1043
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
1044
			      enum req_op op)
D
David Woodhouse 已提交
1045
{
1046
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1047 1048 1049
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1050
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1051 1052
	u64 disk_start;

1053 1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1062
	stripe = &rbio->bioc->stripes[stripe_nr];
1063
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1064 1065

	/* if the device is missing, just fail this stripe */
1066
	if (!stripe->dev->bdev) {
1067 1068
		int found_errors;

1069 1070
		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
			rbio->error_bitmap);
1071 1072 1073 1074 1075 1076 1077

		/* Check if we have reached tolerance early. */
		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 NULL, NULL);
		if (found_errors > rbio->bioc->max_errors)
			return -EIO;
		return 0;
1078
	}
D
David Woodhouse 已提交
1079 1080 1081

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1082
		u64 last_end = last->bi_iter.bi_sector << 9;
1083
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1084 1085 1086 1087 1088

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1089
		if (last_end == disk_start && !last->bi_status &&
1090
		    last->bi_bdev == stripe->dev->bdev) {
1091 1092 1093
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1094 1095 1096 1097 1098
				return 0;
		}
	}

	/* put a new bio on the list */
1099 1100
	bio = bio_alloc(stripe->dev->bdev,
			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1101
			op, GFP_NOFS);
1102
	bio->bi_iter.bi_sector = disk_start >> 9;
1103
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1104

1105
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1106 1107 1108 1109
	bio_list_add(bio_list, bio);
	return 0;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

1145
	spin_lock(&rbio->bio_list_lock);
1146 1147 1148
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

1149
	spin_unlock(&rbio->bio_list_lock);
D
David Woodhouse 已提交
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

1180 1181 1182 1183 1184 1185 1186 1187
static inline void bio_list_put(struct bio_list *bio_list)
{
	struct bio *bio;

	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
}

1188
/* Generate PQ for one vertical stripe. */
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
	void **pointers = rbio->finish_pointers;
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct sector_ptr *sector;
	int stripe;
	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;

	/* First collect one sector from each data stripe */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
		pointers[stripe] = kmap_local_page(sector->page) +
				   sector->pgoff;
	}

	/* Then add the parity stripe */
	sector = rbio_pstripe_sector(rbio, sectornr);
	sector->uptodate = 1;
	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;

	if (has_qstripe) {
		/*
		 * RAID6, add the qstripe and call the library function
		 * to fill in our p/q
		 */
		sector = rbio_qstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) +
				     sector->pgoff;

		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
					pointers);
	} else {
		/* raid5 */
		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
	}
	for (stripe = stripe - 1; stripe >= 0; stripe--)
		kunmap_local(pointers[stripe]);
}

1230 1231
static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
				   struct bio_list *bio_list)
D
David Woodhouse 已提交
1232
{
1233 1234
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
1235
	int sectornr;
1236
	int stripe;
D
David Woodhouse 已提交
1237 1238
	int ret;

1239
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1240

1241 1242 1243
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

1244 1245 1246 1247
	/*
	 * Reset errors, as we may have errors inherited from from degraded
	 * write.
	 */
1248
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1249

D
David Woodhouse 已提交
1250
	/*
1251
	 * Start assembly.  Make bios for everything from the higher layers (the
1252
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1253
	 */
1254 1255 1256
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1257

1258 1259
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
D
David Woodhouse 已提交
1260

1261 1262 1263
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1264

1265 1266 1267 1268 1269 1270
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1271
		}
1272

1273
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1274
					 sectornr, REQ_OP_WRITE);
1275
		if (ret)
1276
			goto error;
D
David Woodhouse 已提交
1277 1278
	}

1279
	if (likely(!rbio->bioc->replace_nr_stripes))
1280
		return 0;
1281

1282 1283 1284 1285 1286 1287 1288
	/*
	 * Make a copy for the replace target device.
	 *
	 * Thus the source stripe number (in replace_stripe_src) should be valid.
	 */
	ASSERT(rbio->bioc->replace_stripe_src >= 0);

1289 1290 1291
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1292

1293 1294
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1295

1296 1297 1298 1299 1300 1301
		/*
		 * For RAID56, there is only one device that can be replaced,
		 * and replace_stripe_src[0] indicates the stripe number we
		 * need to copy from.
		 */
		if (stripe != rbio->bioc->replace_stripe_src) {
1302 1303 1304 1305 1306 1307 1308 1309
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1310

1311 1312 1313
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1314

1315 1316 1317 1318 1319 1320
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1321
		}
1322

1323
		ret = rbio_add_io_sector(rbio, bio_list, sector,
1324
					 rbio->real_stripes,
1325
					 sectornr, REQ_OP_WRITE);
1326
		if (ret)
1327
			goto error;
1328 1329
	}

1330 1331
	return 0;
error:
1332
	bio_list_put(bio_list);
1333 1334 1335
	return -EIO;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];
	int total_nr_sector = offset >> fs_info->sectorsize_bits;

	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);

	bitmap_set(rbio->error_bitmap, total_nr_sector,
		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);

	/*
	 * Special handling for raid56_alloc_missing_rbio() used by
	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
	 * pass an empty bio here.  Thus we have to find out the missing device
	 * and mark the stripe error instead.
	 */
	if (bio->bi_iter.bi_size == 0) {
		bool found_missing = false;
		int stripe_nr;

		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
				found_missing = true;
				bitmap_set(rbio->error_bitmap,
					   stripe_nr * rbio->stripe_nsectors,
					   rbio->stripe_nsectors);
			}
		}
		ASSERT(found_missing);
	}
}

1370
/*
1371
 * For subpage case, we can no longer set page Up-to-date directly for
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1389 1390 1391 1392
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1393
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1394
{
1395
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1396
	struct bio_vec *bvec;
1397
	struct bvec_iter_all iter_all;
1398

1399
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	struct bio_vec *bv = bio_first_bvec_all(bio);
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector;

		sector = &rbio->stripe_sectors[i];
		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
			break;
		sector = &rbio->bio_sectors[i];
		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
			break;
	}
	ASSERT(i < rbio->nr_sectors);
	return i;
}

static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	int total_sector_nr = get_bio_sector_nr(rbio, bio);
	u32 bio_size = 0;
	struct bio_vec *bvec;
1439
	int i;
1440

1441
	bio_for_each_bvec_all(bvec, bio, i)
1442 1443
		bio_size += bvec->bv_len;

1444 1445 1446 1447 1448 1449 1450 1451 1452
	/*
	 * Since we can have multiple bios touching the error_bitmap, we cannot
	 * call bitmap_set() without protection.
	 *
	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
	 */
	for (i = total_sector_nr; i < total_sector_nr +
	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
		set_bit(i, rbio->error_bitmap);
1453 1454
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/* Verify the data sectors at read time. */
static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
				    struct bio *bio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	int total_sector_nr = get_bio_sector_nr(rbio, bio);
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/* No data csum for the whole stripe, no need to verify. */
	if (!rbio->csum_bitmap || !rbio->csum_buf)
		return;

	/* P/Q stripes, they have no data csum to verify against. */
	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
		return;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		int bv_offset;

		for (bv_offset = bvec->bv_offset;
		     bv_offset < bvec->bv_offset + bvec->bv_len;
		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
			u8 csum_buf[BTRFS_CSUM_SIZE];
			u8 *expected_csum = rbio->csum_buf +
					    total_sector_nr * fs_info->csum_size;
			int ret;

			/* No csum for this sector, skip to the next sector. */
			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
				continue;

			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
				bv_offset, csum_buf, expected_csum);
			if (ret < 0)
				set_bit(total_sector_nr, rbio->error_bitmap);
		}
	}
}

1495 1496 1497 1498
static void raid_wait_read_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1499
	if (bio->bi_status) {
1500
		rbio_update_error_bitmap(rbio, bio);
1501
	} else {
1502
		set_bio_pages_uptodate(rbio, bio);
1503 1504
		verify_bio_data_sectors(rbio, bio);
	}
1505 1506 1507 1508 1509 1510

	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

1511
static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			     struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_read_end_io;

		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
1528 1529

	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
{
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
	int ret;

	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1556
	struct work_struct work;
1557 1558 1559 1560 1561
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1562 1563
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1564
{
1565 1566 1567 1568
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1569 1570
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1571 1572 1573 1574 1575 1576 1577 1578

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

1579
static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1580
{
1581
	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1582 1583 1584 1585
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	list_sort(NULL, &plug->rbio_list, plug_cmp);
1586

1587 1588 1589 1590 1591 1592
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1593 1594
			/* We have a full stripe, queue it down. */
			start_async_work(cur, rmw_rbio_work);
1595 1596 1597 1598 1599
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
1600
				free_raid_bio(cur);
1601 1602
				continue;
			}
1603
			start_async_work(last, rmw_rbio_work);
1604 1605 1606
		}
		last = cur;
	}
1607 1608
	if (last)
		start_async_work(last, rmw_rbio_work);
1609 1610 1611
	kfree(plug);
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
1624
	       rbio->nr_data * BTRFS_STRIPE_LEN);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1639 1640 1641
/*
 * our main entry point for writes from the rest of the FS.
 */
1642
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
1643
{
1644
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1645
	struct btrfs_raid_bio *rbio;
1646 1647
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
D
David Woodhouse 已提交
1648

1649
	rbio = alloc_rbio(fs_info, bioc);
1650
	if (IS_ERR(rbio)) {
1651 1652 1653
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
		bio_endio(bio);
		return;
1654
	}
1655
	rbio->operation = BTRFS_RBIO_WRITE;
1656
	rbio_add_bio(rbio, bio);
1657 1658

	/*
1659
	 * Don't plug on full rbios, just get them out the door
1660 1661
	 * as quickly as we can
	 */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (!rbio_is_full(rbio)) {
		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
		if (cb) {
			plug = container_of(cb, struct btrfs_plug_cb, cb);
			if (!plug->info) {
				plug->info = fs_info;
				INIT_LIST_HEAD(&plug->rbio_list);
			}
			list_add_tail(&rbio->plug_list, &plug->rbio_list);
			return;
1672 1673
		}
	}
1674

1675 1676
	/*
	 * Either we don't have any existing plug, or we're doing a full stripe,
1677
	 * queue the rmw work now.
1678 1679
	 */
	start_async_work(rbio, rmw_rbio_work);
D
David Woodhouse 已提交
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int verify_one_sector(struct btrfs_raid_bio *rbio,
			     int stripe_nr, int sector_nr)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	u8 csum_buf[BTRFS_CSUM_SIZE];
	u8 *csum_expected;
	int ret;

	if (!rbio->csum_bitmap || !rbio->csum_buf)
		return 0;

	/* No way to verify P/Q as they are not covered by data csum. */
	if (stripe_nr >= rbio->nr_data)
		return 0;
	/*
	 * If we're rebuilding a read, we have to use pages from the
	 * bio list if possible.
	 */
	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
	} else {
		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
	}

	ASSERT(sector->page);

	csum_expected = rbio->csum_buf +
			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
			fs_info->csum_size;
	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
				      csum_buf, csum_expected);
	return ret;
}

1718 1719 1720 1721 1722
/*
 * Recover a vertical stripe specified by @sector_nr.
 * @*pointers are the pre-allocated pointers by the caller, so we don't
 * need to allocate/free the pointers again and again.
 */
1723 1724
static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
			    void **pointers, void **unmap_array)
1725 1726 1727 1728
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	const u32 sectorsize = fs_info->sectorsize;
1729 1730 1731
	int found_errors;
	int faila;
	int failb;
1732
	int stripe_nr;
1733
	int ret = 0;
1734 1735 1736 1737 1738 1739 1740

	/*
	 * Now we just use bitmap to mark the horizontal stripes in
	 * which we have data when doing parity scrub.
	 */
	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
	    !test_bit(sector_nr, &rbio->dbitmap))
1741 1742 1743 1744 1745
		return 0;

	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
						 &failb);
	/*
1746
	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1747 1748 1749 1750 1751 1752 1753
	 * which only part of a stripe failed csum check.
	 */
	if (!found_errors)
		return 0;

	if (found_errors > rbio->bioc->max_errors)
		return -EIO;
1754 1755 1756 1757 1758 1759 1760 1761 1762

	/*
	 * Setup our array of pointers with sectors from each stripe
	 *
	 * NOTE: store a duplicate array of pointers to preserve the
	 * pointer order.
	 */
	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		/*
1763 1764
		 * If we're rebuilding a read, we have to use pages from the
		 * bio list if possible.
1765 1766
		 */
		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1767
		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
		} else {
			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
		}
		ASSERT(sector->page);
		pointers[stripe_nr] = kmap_local_page(sector->page) +
				   sector->pgoff;
		unmap_array[stripe_nr] = pointers[stripe_nr];
	}

	/* All raid6 handling here */
	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
		/* Single failure, rebuild from parity raid5 style */
		if (failb < 0) {
			if (faila == rbio->nr_data)
				/*
				 * Just the P stripe has failed, without
				 * a bad data or Q stripe.
				 * We have nothing to do, just skip the
				 * recovery for this stripe.
				 */
				goto cleanup;
			/*
			 * a single failure in raid6 is rebuilt
			 * in the pstripe code below
			 */
			goto pstripe;
		}

		/*
		 * If the q stripe is failed, do a pstripe reconstruction from
		 * the xors.
		 * If both the q stripe and the P stripe are failed, we're
		 * here due to a crc mismatch and we can't give them the
		 * data they want.
		 */
		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
			if (rbio->bioc->raid_map[faila] ==
			    RAID5_P_STRIPE)
				/*
				 * Only P and Q are corrupted.
				 * We only care about data stripes recovery,
				 * can skip this vertical stripe.
				 */
				goto cleanup;
			/*
			 * Otherwise we have one bad data stripe and
			 * a good P stripe.  raid5!
			 */
			goto pstripe;
		}

		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
			raid6_datap_recov(rbio->real_stripes, sectorsize,
					  faila, pointers);
		} else {
			raid6_2data_recov(rbio->real_stripes, sectorsize,
					  faila, failb, pointers);
		}
	} else {
		void *p;

		/* Rebuild from P stripe here (raid5 or raid6). */
		ASSERT(failb == -1);
pstripe:
		/* Copy parity block into failed block to start with */
		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);

		/* Rearrange the pointer array */
		p = pointers[faila];
		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
		     stripe_nr++)
			pointers[stripe_nr] = pointers[stripe_nr + 1];
		pointers[rbio->nr_data - 1] = p;

		/* Xor in the rest */
		run_xor(pointers, rbio->nr_data - 1, sectorsize);

	}

	/*
	 * No matter if this is a RMW or recovery, we should have all
	 * failed sectors repaired in the vertical stripe, thus they are now
	 * uptodate.
	 * Especially if we determine to cache the rbio, we need to
	 * have at least all data sectors uptodate.
1854 1855 1856
	 *
	 * If possible, also check if the repaired sector matches its data
	 * checksum.
1857
	 */
1858
	if (faila >= 0) {
1859 1860 1861 1862
		ret = verify_one_sector(rbio, faila, sector_nr);
		if (ret < 0)
			goto cleanup;

1863
		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1864 1865
		sector->uptodate = 1;
	}
1866
	if (failb >= 0) {
1867
		ret = verify_one_sector(rbio, failb, sector_nr);
1868 1869 1870
		if (ret < 0)
			goto cleanup;

1871
		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1872 1873 1874 1875 1876 1877
		sector->uptodate = 1;
	}

cleanup:
	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
		kunmap_local(unmap_array[stripe_nr]);
1878
	return ret;
1879 1880
}

1881
static int recover_sectors(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
1882
{
1883 1884
	void **pointers = NULL;
	void **unmap_array = NULL;
1885 1886
	int sectornr;
	int ret = 0;
D
David Woodhouse 已提交
1887

1888
	/*
1889 1890 1891 1892
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
1893
	 */
1894
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1895
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1896 1897 1898
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
1899 1900
	}

1901 1902
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1903
		spin_lock(&rbio->bio_list_lock);
D
David Woodhouse 已提交
1904
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1905
		spin_unlock(&rbio->bio_list_lock);
D
David Woodhouse 已提交
1906 1907 1908 1909
	}

	index_rbio_pages(rbio);

1910 1911 1912 1913 1914
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
		if (ret < 0)
			break;
	}
D
David Woodhouse 已提交
1915

1916
out:
D
David Woodhouse 已提交
1917
	kfree(pointers);
1918 1919 1920 1921
	kfree(unmap_array);
	return ret;
}

1922
static void recover_rbio(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
1923
{
1924
	struct bio_list bio_list = BIO_EMPTY_LIST;
1925 1926
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * Either we're doing recover for a read failure or degraded write,
	 * caller should have set error bitmap correctly.
	 */
	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));

	/* For recovery, we need to read all sectors including P/Q. */
	ret = alloc_rbio_pages(rbio);
	if (ret < 0)
1937
		goto out;
1938 1939 1940

	index_rbio_pages(rbio);

D
David Woodhouse 已提交
1941
	/*
1942 1943 1944 1945 1946 1947
	 * Read everything that hasn't failed. However this time we will
	 * not trust any cached sector.
	 * As we may read out some stale data but higher layer is not reading
	 * that stale part.
	 *
	 * So here we always re-read everything in recovery path.
D
David Woodhouse 已提交
1948
	 */
1949 1950 1951 1952 1953 1954
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		/*
		 * Skip the range which has error.  It can be a range which is
		 * marked error (for csum mismatch), or it can be a missing
		 * device.
		 */
		if (!rbio->bioc->stripes[stripe].dev->bdev ||
		    test_bit(total_sector_nr, rbio->error_bitmap)) {
			/*
			 * Also set the error bit for missing device, which
			 * may not yet have its error bit set.
			 */
			set_bit(total_sector_nr, rbio->error_bitmap);
D
David Woodhouse 已提交
1967
			continue;
1968
		}
1969

1970
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1971
		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1972
					 sectornr, REQ_OP_READ);
1973 1974
		if (ret < 0) {
			bio_list_put(&bio_list);
1975
			goto out;
1976
		}
D
David Woodhouse 已提交
1977
	}
1978

1979
	submit_read_wait_bio_list(rbio, &bio_list);
1980 1981 1982
	ret = recover_sectors(rbio);
out:
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1983 1984 1985 1986 1987 1988 1989
}

static void recover_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
1990 1991
	if (!lock_stripe_add(rbio))
		recover_rbio(rbio);
1992 1993 1994 1995
}

static void recover_rbio_work_locked(struct work_struct *work)
{
1996
	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1997 1998
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
{
	bool found = false;
	int sector_nr;

	/*
	 * This is for RAID6 extra recovery tries, thus mirror number should
	 * be large than 2.
	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
	 * RAID5 methods.
	 */
	ASSERT(mirror_num > 2);
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int found_errors;
		int faila;
		int failb;

		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 &faila, &failb);
		/* This vertical stripe doesn't have errors. */
		if (!found_errors)
			continue;

		/*
		 * If we found errors, there should be only one error marked
		 * by previous set_rbio_range_error().
		 */
		ASSERT(found_errors == 1);
		found = true;

		/* Now select another stripe to mark as error. */
		failb = rbio->real_stripes - (mirror_num - 1);
		if (failb <= faila)
			failb--;

		/* Set the extra bit in error bitmap. */
		if (failb >= 0)
			set_bit(failb * rbio->stripe_nsectors + sector_nr,
				rbio->error_bitmap);
	}

	/* We should found at least one vertical stripe with error.*/
	ASSERT(found);
}

D
David Woodhouse 已提交
2044 2045 2046 2047 2048 2049
/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2050
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2051
			   int mirror_num)
D
David Woodhouse 已提交
2052
{
2053
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2054 2055
	struct btrfs_raid_bio *rbio;

2056
	rbio = alloc_rbio(fs_info, bioc);
2057
	if (IS_ERR(rbio)) {
2058
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2059 2060
		bio_endio(bio);
		return;
2061
	}
D
David Woodhouse 已提交
2062

2063
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2064
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2065

2066 2067
	set_rbio_range_error(rbio, bio);

D
David Woodhouse 已提交
2068
	/*
L
Liu Bo 已提交
2069 2070 2071
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2072
	 */
2073
	if (mirror_num > 2)
2074
		set_rbio_raid6_extra_error(rbio, mirror_num);
D
David Woodhouse 已提交
2075

2076
	start_async_work(rbio, recover_rbio_work);
D
David Woodhouse 已提交
2077 2078
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static void fill_data_csums(struct btrfs_raid_bio *rbio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
						       rbio->bioc->raid_map[0]);
	const u64 start = rbio->bioc->raid_map[0];
	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
			fs_info->sectorsize_bits;
	int ret;

	/* The rbio should not have its csum buffer initialized. */
	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);

	/*
	 * Skip the csum search if:
	 *
	 * - The rbio doesn't belong to data block groups
	 *   Then we are doing IO for tree blocks, no need to search csums.
	 *
	 * - The rbio belongs to mixed block groups
	 *   This is to avoid deadlock, as we're already holding the full
	 *   stripe lock, if we trigger a metadata read, and it needs to do
	 *   raid56 recovery, we will deadlock.
	 */
	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
		return;

	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
				 fs_info->csum_size, GFP_NOFS);
	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
					  GFP_NOFS);
	if (!rbio->csum_buf || !rbio->csum_bitmap) {
		ret = -ENOMEM;
		goto error;
	}

	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
					rbio->csum_buf, rbio->csum_bitmap);
	if (ret < 0)
		goto error;
	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
		goto no_csum;
	return;

error:
	/*
	 * We failed to allocate memory or grab the csum, but it's not fatal,
	 * we can still continue.  But better to warn users that RMW is no
	 * longer safe for this particular sub-stripe write.
	 */
	btrfs_warn_rl(fs_info,
"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
			rbio->bioc->raid_map[0], ret);
no_csum:
	kfree(rbio->csum_buf);
	bitmap_free(rbio->csum_bitmap);
	rbio->csum_buf = NULL;
	rbio->csum_bitmap = NULL;
}

2140
static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2141
{
2142 2143 2144
	struct bio_list bio_list = BIO_EMPTY_LIST;
	int total_sector_nr;
	int ret = 0;
2145

2146 2147 2148 2149 2150 2151 2152
	/*
	 * Fill the data csums we need for data verification.  We need to fill
	 * the csum_bitmap/csum_buf first, as our endio function will try to
	 * verify the data sectors.
	 */
	fill_data_csums(rbio);

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * Build a list of bios to read all sectors (including data and P/Q).
	 *
	 * This behavior is to compensate the later csum verification and recovery.
	 */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2163

2164 2165 2166 2167 2168 2169 2170 2171
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
			       stripe, sectornr, REQ_OP_READ);
		if (ret) {
			bio_list_put(&bio_list);
			return ret;
		}
	}
2172 2173 2174 2175 2176

	/*
	 * We may or may not have any corrupted sectors (including missing dev
	 * and csum mismatch), just let recover_sectors() to handle them all.
	 */
2177 2178
	submit_read_wait_bio_list(rbio, &bio_list);
	return recover_sectors(rbio);
2179 2180 2181 2182 2183 2184 2185
}

static void raid_wait_write_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
	blk_status_t err = bio->bi_status;

2186
	if (err)
2187
		rbio_update_error_bitmap(rbio, bio);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

static void submit_write_bios(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_write_end_io;

		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/*
 * To determine if we need to read any sector from the disk.
 * Should only be utilized in RMW path, to skip cached rbio.
 */
static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	int i;

	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		/*
		 * We have a sector which doesn't have page nor uptodate,
		 * thus this rbio can not be cached one, as cached one must
		 * have all its data sectors present and uptodate.
		 */
		if (!sector->page || !sector->uptodate)
			return true;
	}
	return false;
}

2234
static void rmw_rbio(struct btrfs_raid_bio *rbio)
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
{
	struct bio_list bio_list;
	int sectornr;
	int ret = 0;

	/*
	 * Allocate the pages for parity first, as P/Q pages will always be
	 * needed for both full-stripe and sub-stripe writes.
	 */
	ret = alloc_rbio_parity_pages(rbio);
	if (ret < 0)
2246
		goto out;
2247

2248 2249 2250 2251
	/*
	 * Either full stripe write, or we have every data sector already
	 * cached, can go to write path immediately.
	 */
2252 2253 2254 2255 2256 2257 2258
	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
		/*
		 * Now we're doing sub-stripe write, also need all data stripes
		 * to do the full RMW.
		 */
		ret = alloc_rbio_data_pages(rbio);
		if (ret < 0)
2259
			goto out;
2260

2261
		index_rbio_pages(rbio);
2262

2263 2264
		ret = rmw_read_wait_recover(rbio);
		if (ret < 0)
2265
			goto out;
2266
	}
2267 2268 2269 2270 2271 2272

	/*
	 * At this stage we're not allowed to add any new bios to the
	 * bio list any more, anyone else that wants to change this stripe
	 * needs to do their own rmw.
	 */
2273
	spin_lock(&rbio->bio_list_lock);
2274
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2275
	spin_unlock(&rbio->bio_list_lock);
2276

2277
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

	index_rbio_pages(rbio);

	/*
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
	 */
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		generate_pq_vertical(rbio, sectornr);

	bio_list_init(&bio_list);
	ret = rmw_assemble_write_bios(rbio, &bio_list);
	if (ret < 0)
2298
		goto out;
2299 2300 2301 2302 2303 2304

	/* We should have at least one bio assembled. */
	ASSERT(bio_list_size(&bio_list));
	submit_write_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/* We may have more errors than our tolerance during the read. */
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		int found_errors;

		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			break;
		}
	}
2315 2316
out:
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2317 2318
}

2319 2320 2321 2322 2323
static void rmw_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
2324 2325
	if (lock_stripe_add(rbio) == 0)
		rmw_rbio(rbio);
2326 2327 2328
}

static void rmw_rbio_work_locked(struct work_struct *work)
D
David Woodhouse 已提交
2329
{
2330
	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
D
David Woodhouse 已提交
2331 2332
}

2333 2334 2335
/*
 * The following code is used to scrub/replace the parity stripe
 *
2336
 * Caller must have already increased bio_counter for getting @bioc.
2337
 *
2338 2339 2340 2341 2342
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2343 2344
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2345
				struct btrfs_device *scrub_dev,
2346
				unsigned long *dbitmap, int stripe_nsectors)
2347
{
2348
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2349 2350 2351
	struct btrfs_raid_bio *rbio;
	int i;

2352
	rbio = alloc_rbio(fs_info, bioc);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2363
	/*
2364
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2365 2366 2367 2368
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2369
		if (bioc->stripes[i].dev == scrub_dev) {
2370 2371 2372 2373
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2374
	ASSERT(i < rbio->real_stripes);
2375

2376
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2377 2378 2379
	return rbio;
}

2380 2381
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2382
			    unsigned int pgoff, u64 logical)
2383
{
2384
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2385 2386 2387
	int stripe_offset;
	int index;

2388
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2389
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2390
				       BTRFS_STRIPE_LEN * rbio->nr_data);
2391
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2392 2393 2394
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2395 2396 2397 2398 2399 2400 2401 2402
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2403
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2404
	int total_sector_nr;
2405

2406 2407 2408 2409 2410
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2411

2412 2413 2414 2415 2416 2417 2418 2419
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2420
	}
2421
	index_stripe_sectors(rbio);
2422 2423 2424
	return 0;
}

2425
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
2426
{
2427
	struct btrfs_io_context *bioc = rbio->bioc;
2428
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2429
	void **pointers = rbio->finish_pointers;
2430
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2431 2432
	int nr_data = rbio->nr_data;
	int stripe;
2433
	int sectornr;
2434
	bool has_qstripe;
2435 2436
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2437
	struct bio_list bio_list;
2438
	int is_replace = 0;
2439 2440 2441 2442
	int ret;

	bio_list_init(&bio_list);

2443 2444 2445 2446 2447
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2448 2449
		BUG();

2450 2451 2452 2453 2454
	/*
	 * Replace is running and our P/Q stripe is being replaced, then we
	 * need to duplicate the final write to replace target.
	 */
	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2455
		is_replace = 1;
2456
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2457 2458
	}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2469 2470
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2471
		return -ENOMEM;
2472 2473
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2474

2475
	if (has_qstripe) {
I
Ira Weiny 已提交
2476
		/* RAID6, allocate and map temp space for the Q stripe */
2477 2478 2479 2480
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2481
			return -ENOMEM;
2482
		}
2483 2484 2485
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2486 2487
	}

2488
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2489

I
Ira Weiny 已提交
2490
	/* Map the parity stripe just once */
2491
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2492

2493
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2494
		struct sector_ptr *sector;
2495
		void *parity;
2496

2497 2498
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2499 2500 2501
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2502 2503
		}

2504
		if (has_qstripe) {
I
Ira Weiny 已提交
2505
			/* RAID6, call the library function to fill in our P/Q */
2506
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2507 2508 2509
						pointers);
		} else {
			/* raid5 */
2510 2511
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2512 2513
		}

2514
		/* Check scrubbing parity and repair it */
2515 2516 2517 2518
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2519 2520
		else
			/* Parity is right, needn't writeback */
2521
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2522
		kunmap_local(parity);
2523

2524 2525
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2526 2527
	}

2528
	kunmap_local(pointers[nr_data]);
2529 2530 2531
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2532
		kunmap_local(pointers[rbio->real_stripes - 1]);
2533 2534
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2535
	}
2536 2537 2538 2539 2540 2541 2542

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2543
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2544
		struct sector_ptr *sector;
2545

2546 2547
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2548
					 sectornr, REQ_OP_WRITE);
2549 2550 2551 2552
		if (ret)
			goto cleanup;
	}

2553 2554 2555
	if (!is_replace)
		goto submit_write;

2556 2557 2558 2559 2560
	/*
	 * Replace is running and our parity stripe needs to be duplicated to
	 * the target device.  Check we have a valid source stripe number.
	 */
	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2561 2562
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2563

2564 2565
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2566 2567
					 rbio->real_stripes,
					 sectornr, REQ_OP_WRITE);
2568 2569 2570 2571 2572
		if (ret)
			goto cleanup;
	}

submit_write:
2573 2574
	submit_write_bios(rbio, &bio_list);
	return 0;
2575 2576

cleanup:
2577
	bio_list_put(&bio_list);
2578
	return ret;
2579 2580 2581 2582 2583 2584 2585 2586 2587
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

2588
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2589
{
2590 2591 2592
	void **pointers = NULL;
	void **unmap_array = NULL;
	int sector_nr;
2593
	int ret = 0;
2594

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	/*
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
	 */
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
	}
2607

2608 2609 2610 2611 2612
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int dfail = 0, failp = -1;
		int faila;
		int failb;
		int found_errors;
2613

2614 2615 2616 2617 2618 2619 2620 2621
		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 &faila, &failb);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			goto out;
		}
		if (found_errors == 0)
			continue;
2622

2623 2624
		/* We should have at least one error here. */
		ASSERT(faila >= 0 || failb >= 0);
2625

2626 2627 2628 2629
		if (is_data_stripe(rbio, faila))
			dfail++;
		else if (is_parity_stripe(faila))
			failp = faila;
2630

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
		if (is_data_stripe(rbio, failb))
			dfail++;
		else if (is_parity_stripe(failb))
			failp = failb;
		/*
		 * Because we can not use a scrubbing parity to repair the
		 * data, so the capability of the repair is declined.  (In the
		 * case of RAID5, we can not repair anything.)
		 */
		if (dfail > rbio->bioc->max_errors - 1) {
			ret = -EIO;
			goto out;
		}
		/*
		 * If all data is good, only parity is correctly, just repair
		 * the parity, no need to recover data stripes.
		 */
		if (dfail == 0)
			continue;
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity is
		 * scrubbing parity, luckily, use the other one to repair the
		 * data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp) {
			ret = -EIO;
			goto out;
		}

		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
		if (ret < 0)
			goto out;
	}
out:
	kfree(pointers);
	kfree(unmap_array);
2669
	return ret;
2670 2671
}

2672
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2673
{
2674
	struct bio_list bio_list = BIO_EMPTY_LIST;
2675 2676
	int total_sector_nr;
	int ret = 0;
2677

2678 2679 2680 2681 2682 2683
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2684

2685 2686 2687
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2688

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

2706
		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2707
					 sectornr, REQ_OP_READ);
2708 2709 2710 2711
		if (ret) {
			bio_list_put(&bio_list);
			return ret;
		}
2712
	}
2713 2714

	submit_read_wait_bio_list(rbio, &bio_list);
2715 2716 2717
	return 0;
}

2718
static void scrub_rbio(struct btrfs_raid_bio *rbio)
2719
{
2720
	bool need_check = false;
2721
	int sector_nr;
2722 2723 2724 2725
	int ret;

	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
2726
		goto out;
2727

2728 2729
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);

2730
	ret = scrub_assemble_read_bios(rbio);
2731
	if (ret < 0)
2732
		goto out;
2733

2734
	/* We may have some failures, recover the failed sectors first. */
2735 2736
	ret = recover_scrub_rbio(rbio);
	if (ret < 0)
2737
		goto out;
2738

2739 2740 2741 2742 2743 2744
	/*
	 * We have every sector properly prepared. Can finish the scrub
	 * and writeback the good content.
	 */
	ret = finish_parity_scrub(rbio, need_check);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2745 2746 2747 2748 2749 2750 2751 2752 2753
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int found_errors;

		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			break;
		}
	}
2754 2755
out:
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2756 2757
}

2758
static void scrub_rbio_work_locked(struct work_struct *work)
2759
{
2760
	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2761 2762 2763 2764 2765
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2766
		start_async_work(rbio, scrub_rbio_work_locked);
2767
}
2768 2769 2770 2771

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2772
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2773
{
2774
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2775 2776
	struct btrfs_raid_bio *rbio;

2777
	rbio = alloc_rbio(fs_info, bioc);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

2789
	set_rbio_range_error(rbio, bio);
2790 2791 2792 2793 2794 2795

	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
2796
	start_async_work(rbio, recover_rbio_work);
2797
}