raid56.c 66.1 KB
Newer Older
D
David Woodhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/random.h>
#include <linux/iocontext.h>
#include <linux/capability.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
34
#include <linux/vmalloc.h>
D
David Woodhouse 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include <asm/div64.h>
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "rcu-string.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

63
enum btrfs_rbio_ops {
64 65 66 67
	BTRFS_RBIO_WRITE,
	BTRFS_RBIO_READ_REBUILD,
	BTRFS_RBIO_PARITY_SCRUB,
	BTRFS_RBIO_REBUILD_MISSING,
68 69
};

D
David Woodhouse 已提交
70 71 72 73 74 75 76 77 78 79 80
struct btrfs_raid_bio {
	struct btrfs_fs_info *fs_info;
	struct btrfs_bio *bbio;

	/* while we're doing rmw on a stripe
	 * we put it into a hash table so we can
	 * lock the stripe and merge more rbios
	 * into it.
	 */
	struct list_head hash_list;

81 82 83 84 85
	/*
	 * LRU list for the stripe cache
	 */
	struct list_head stripe_cache;

D
David Woodhouse 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
	/*
	 * for scheduling work in the helper threads
	 */
	struct btrfs_work work;

	/*
	 * bio list and bio_list_lock are used
	 * to add more bios into the stripe
	 * in hopes of avoiding the full rmw
	 */
	struct bio_list bio_list;
	spinlock_t bio_list_lock;

99 100 101 102
	/* also protected by the bio_list_lock, the
	 * plug list is used by the plugging code
	 * to collect partial bios while plugged.  The
	 * stripe locking code also uses it to hand off
D
David Woodhouse 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	 * the stripe lock to the next pending IO
	 */
	struct list_head plug_list;

	/*
	 * flags that tell us if it is safe to
	 * merge with this bio
	 */
	unsigned long flags;

	/* size of each individual stripe on disk */
	int stripe_len;

	/* number of data stripes (no p/q) */
	int nr_data;

119 120
	int real_stripes;

121
	int stripe_npages;
D
David Woodhouse 已提交
122 123 124 125 126 127
	/*
	 * set if we're doing a parity rebuild
	 * for a read from higher up, which is handled
	 * differently from a parity rebuild as part of
	 * rmw
	 */
128
	enum btrfs_rbio_ops operation;
D
David Woodhouse 已提交
129 130 131 132 133 134 135

	/* first bad stripe */
	int faila;

	/* second bad stripe (for raid6 use) */
	int failb;

136
	int scrubp;
D
David Woodhouse 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149
	/*
	 * number of pages needed to represent the full
	 * stripe
	 */
	int nr_pages;

	/*
	 * size of all the bios in the bio_list.  This
	 * helps us decide if the rbio maps to a full
	 * stripe or not
	 */
	int bio_list_bytes;

150 151
	int generic_bio_cnt;

152
	refcount_t refs;
D
David Woodhouse 已提交
153

154 155 156
	atomic_t stripes_pending;

	atomic_t error;
D
David Woodhouse 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	/*
	 * these are two arrays of pointers.  We allocate the
	 * rbio big enough to hold them both and setup their
	 * locations when the rbio is allocated
	 */

	/* pointers to pages that we allocated for
	 * reading/writing stripes directly from the disk (including P/Q)
	 */
	struct page **stripe_pages;

	/*
	 * pointers to the pages in the bio_list.  Stored
	 * here for faster lookup
	 */
	struct page **bio_pages;
173 174 175 176 177

	/*
	 * bitmap to record which horizontal stripe has data
	 */
	unsigned long *dbitmap;
D
David Woodhouse 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191
};

static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
static void rmw_work(struct btrfs_work *work);
static void read_rebuild_work(struct btrfs_work *work);
static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
static void async_read_rebuild(struct btrfs_raid_bio *rbio);
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

192 193 194 195
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
static void async_scrub_parity(struct btrfs_raid_bio *rbio);

D
David Woodhouse 已提交
196 197 198 199 200 201 202 203 204 205 206 207
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;
208
	int table_size;
D
David Woodhouse 已提交
209 210 211 212

	if (info->stripe_hash_table)
		return 0;

213 214 215 216 217 218 219 220 221 222 223 224 225 226
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
	table_size = sizeof(*table) + sizeof(*h) * num_entries;
	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
	if (!table) {
		table = vzalloc(table_size);
		if (!table)
			return -ENOMEM;
	}
D
David Woodhouse 已提交
227

228 229 230
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
231 232 233 234 235 236 237 238 239 240
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
		init_waitqueue_head(&cur->wait);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
W
Wang Shilong 已提交
241 242
	if (x)
		kvfree(x);
D
David Woodhouse 已提交
243 244 245
	return 0;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * caching an rbio means to copy anything from the
 * bio_pages array into the stripe_pages array.  We
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	char *s;
	char *d;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

	for (i = 0; i < rbio->nr_pages; i++) {
		if (!rbio->bio_pages[i])
			continue;

		s = kmap(rbio->bio_pages[i]);
		d = kmap(rbio->stripe_pages[i]);

273
		memcpy(d, s, PAGE_SIZE);
274 275 276 277 278 279 280 281

		kunmap(rbio->bio_pages[i]);
		kunmap(rbio->stripe_pages[i]);
		SetPageUptodate(rbio->stripe_pages[i]);
	}
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
282 283 284 285 286
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
287
	u64 num = rbio->bbio->raid_map[0];
D
David Woodhouse 已提交
288 289 290 291 292 293 294 295 296 297 298 299

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * stealing an rbio means taking all the uptodate pages from the stripe
 * array in the source rbio and putting them into the destination rbio
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;
	struct page *s;
	struct page *d;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
		s = src->stripe_pages[i];
		if (!s || !PageUptodate(s)) {
			continue;
		}

		d = dest->stripe_pages[i];
		if (d)
			__free_page(d);

		dest->stripe_pages[i] = s;
		src->stripe_pages[i] = NULL;
	}
}

D
David Woodhouse 已提交
328 329 330 331 332 333 334 335 336 337 338 339
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
340
	dest->generic_bio_cnt += victim->generic_bio_cnt;
D
David Woodhouse 已提交
341 342 343 344
	bio_list_init(&victim->bio_list);
}

/*
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
392
				refcount_dec(&rbio->refs);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
		__free_raid_bio(rbio);
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
426
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
447 448 449 450 451
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
452
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
453
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
454 455 456
	info->stripe_hash_table = NULL;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483
		refcount_inc(&rbio->refs);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
 * returns true if the bio list inside this rbio
 * covers an entire stripe (no rmw required).
 * Must be called with the bio list lock held, or
 * at a time when you know it is impossible to add
 * new bios into the list
 */
static int __rbio_is_full(struct btrfs_raid_bio *rbio)
{
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

	if (size != rbio->nr_data * rbio->stripe_len)
		ret = 0;

	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
	return ret;
}

static int rbio_is_full(struct btrfs_raid_bio *rbio)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);
	ret = __rbio_is_full(rbio);
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

575 576 577 578
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
579
	 * steal from cached rbios though, other functions
580 581 582 583 584 585
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

586 587
	if (last->bbio->raid_map[0] !=
	    cur->bbio->raid_map[0])
D
David Woodhouse 已提交
588 589
		return 0;

590 591 592 593 594 595 596 597 598 599 600 601 602
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
603 604
		return 0;

605 606 607 608
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
		return 0;

D
David Woodhouse 已提交
609 610 611
	return 1;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
				  int index)
{
	return stripe * rbio->stripe_npages + index;
}

/*
 * these are just the pages from the rbio array, not from anything
 * the FS sent down to us
 */
static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
				     int index)
{
	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
}

D
David Woodhouse 已提交
628 629 630 631 632
/*
 * helper to index into the pstripe
 */
static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
{
633
	return rbio_stripe_page(rbio, rbio->nr_data, index);
D
David Woodhouse 已提交
634 635 636 637 638 639 640 641
}

/*
 * helper to index into the qstripe, returns null
 * if there is no qstripe
 */
static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
{
642
	if (rbio->nr_data + 1 == rbio->real_stripes)
D
David Woodhouse 已提交
643
		return NULL;
644
	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
D
David Woodhouse 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	DEFINE_WAIT(wait);
	struct btrfs_raid_bio *freeit = NULL;
678
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
679 680 681 682
	int ret = 0;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
683
		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
D
David Woodhouse 已提交
684 685
			spin_lock(&cur->bio_list_lock);

686 687 688 689 690 691
			/* can we steal this cached rbio's pages? */
			if (bio_list_empty(&cur->bio_list) &&
			    list_empty(&cur->plug_list) &&
			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
				list_del_init(&cur->hash_list);
692
				refcount_dec(&cur->refs);
693 694 695 696 697 698 699 700

				steal_rbio(cur, rbio);
				cache_drop = cur;
				spin_unlock(&cur->bio_list_lock);

				goto lockit;
			}

D
David Woodhouse 已提交
701 702 703 704 705 706 707 708 709
			/* can we merge into the lock owner? */
			if (rbio_can_merge(cur, rbio)) {
				merge_rbio(cur, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}

710

D
David Woodhouse 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			/*
			 * we couldn't merge with the running
			 * rbio, see if we can merge with the
			 * pending ones.  We don't have to
			 * check for rmw_locked because there
			 * is no way they are inside finish_rmw
			 * right now
			 */
			list_for_each_entry(pending, &cur->plug_list,
					    plug_list) {
				if (rbio_can_merge(pending, rbio)) {
					merge_rbio(pending, rbio);
					spin_unlock(&cur->bio_list_lock);
					freeit = rbio;
					ret = 1;
					goto out;
				}
			}

			/* no merging, put us on the tail of the plug list,
			 * our rbio will be started with the currently
			 * running rbio unlocks
			 */
			list_add_tail(&rbio->plug_list, &cur->plug_list);
			spin_unlock(&cur->bio_list_lock);
			ret = 1;
			goto out;
		}
	}
740
lockit:
741
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
742 743 744
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
745 746
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (freeit)
		__free_raid_bio(freeit);
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
761
	int keep_cache = 0;
D
David Woodhouse 已提交
762 763 764 765

	bucket = rbio_bucket(rbio);
	h = rbio->fs_info->stripe_hash_table->table + bucket;

766 767 768
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
769 770 771 772
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
773 774 775 776 777 778 779 780 781 782 783 784
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
785 786

		list_del_init(&rbio->hash_list);
787
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
804
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
805 806 807
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

808
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
D
David Woodhouse 已提交
809
				async_read_rebuild(next);
810 811 812 813
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
				async_read_rebuild(next);
			} else if (next->operation == BTRFS_RBIO_WRITE) {
814
				steal_rbio(rbio, next);
D
David Woodhouse 已提交
815
				async_rmw_stripe(next);
816 817 818
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
				async_scrub_parity(next);
819
			}
D
David Woodhouse 已提交
820 821

			goto done_nolock;
822 823 824 825 826
			/*
			 * The barrier for this waitqueue_active is not needed,
			 * we're protected by h->lock and can't miss a wakeup.
			 */
		} else if (waitqueue_active(&h->wait)) {
D
David Woodhouse 已提交
827 828 829 830 831 832
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);
			wake_up(&h->wait);
			goto done_nolock;
		}
	}
833
done:
D
David Woodhouse 已提交
834 835 836 837
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
838 839
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
840 841 842 843 844 845
}

static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

846
	if (!refcount_dec_and_test(&rbio->refs))
D
David Woodhouse 已提交
847 848
		return;

849
	WARN_ON(!list_empty(&rbio->stripe_cache));
D
David Woodhouse 已提交
850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}
859

860
	btrfs_put_bbio(rbio->bbio);
D
David Woodhouse 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873
	kfree(rbio);
}

static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	unlock_stripe(rbio);
	__free_raid_bio(rbio);
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
874
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
D
David Woodhouse 已提交
875 876 877
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
	struct bio *next;
878 879 880 881

	if (rbio->generic_bio_cnt)
		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);

D
David Woodhouse 已提交
882 883 884 885 886
	free_raid_bio(rbio);

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
887 888
		cur->bi_error = err;
		bio_endio(cur);
D
David Woodhouse 已提交
889 890 891 892 893 894 895 896
		cur = next;
	}
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
897
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
898 899
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
900
	int err = bio->bi_error;
901
	int max_errors;
D
David Woodhouse 已提交
902 903 904 905 906 907

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

908
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
909 910 911 912 913
		return;

	err = 0;

	/* OK, we have read all the stripes we need to. */
914 915 916
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
		     0 : rbio->bbio->max_errors;
	if (atomic_read(&rbio->error) > max_errors)
D
David Woodhouse 已提交
917 918
		err = -EIO;

919
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
}

/*
 * the read/modify/write code wants to use the original bio for
 * any pages it included, and then use the rbio for everything
 * else.  This function decides if a given index (stripe number)
 * and page number in that stripe fall inside the original bio
 * or the rbio.
 *
 * if you set bio_list_only, you'll get a NULL back for any ranges
 * that are outside the bio_list
 *
 * This doesn't take any refs on anything, you get a bare page pointer
 * and the caller must bump refs as required.
 *
 * You must call index_rbio_pages once before you can trust
 * the answers from this function.
 */
static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
				 int index, int pagenr, int bio_list_only)
{
	int chunk_page;
	struct page *p = NULL;

	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;

	spin_lock_irq(&rbio->bio_list_lock);
	p = rbio->bio_pages[chunk_page];
	spin_unlock_irq(&rbio->bio_list_lock);

	if (p || bio_list_only)
		return p;

	return rbio->stripe_pages[chunk_page];
}

/*
 * number of pages we need for the entire stripe across all the
 * drives
 */
static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
{
962
	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
D
David Woodhouse 已提交
963 964 965 966 967 968
}

/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
969 970 971
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
					 struct btrfs_bio *bbio,
					 u64 stripe_len)
D
David Woodhouse 已提交
972 973 974
{
	struct btrfs_raid_bio *rbio;
	int nr_data = 0;
975 976
	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
977
	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
D
David Woodhouse 已提交
978 979
	void *p;

980
	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
981 982
		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
		       sizeof(long), GFP_NOFS);
983
	if (!rbio)
D
David Woodhouse 已提交
984 985 986 987 988
		return ERR_PTR(-ENOMEM);

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
989
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
990 991
	INIT_LIST_HEAD(&rbio->hash_list);
	rbio->bbio = bbio;
992
	rbio->fs_info = fs_info;
D
David Woodhouse 已提交
993 994
	rbio->stripe_len = stripe_len;
	rbio->nr_pages = num_pages;
995
	rbio->real_stripes = real_stripes;
996
	rbio->stripe_npages = stripe_npages;
D
David Woodhouse 已提交
997 998
	rbio->faila = -1;
	rbio->failb = -1;
999
	refcount_set(&rbio->refs, 1);
1000 1001
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1002 1003 1004 1005 1006 1007 1008 1009

	/*
	 * the stripe_pages and bio_pages array point to the extra
	 * memory we allocated past the end of the rbio
	 */
	p = rbio + 1;
	rbio->stripe_pages = p;
	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1010
	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
D
David Woodhouse 已提交
1011

Z
Zhao Lei 已提交
1012 1013 1014
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		nr_data = real_stripes - 1;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1015
		nr_data = real_stripes - 2;
D
David Woodhouse 已提交
1016
	else
Z
Zhao Lei 已提交
1017
		BUG();
D
David Woodhouse 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	rbio->nr_data = nr_data;
	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	struct page *page;

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i])
			continue;
		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[i] = page;
	}
	return 0;
}

1040
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1041 1042 1043 1044 1045
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	struct page *page;

1046
	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
D
David Woodhouse 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	for (; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i])
			continue;
		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[i] = page;
	}
	return 0;
}

/*
 * add a single page from a specific stripe into our list of bios for IO
 * this will try to merge into existing bios if possible, and returns
 * zero if all went well.
 */
1064 1065 1066 1067 1068 1069
static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
			    struct bio_list *bio_list,
			    struct page *page,
			    int stripe_nr,
			    unsigned long page_index,
			    unsigned long bio_max_len)
D
David Woodhouse 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	struct bio *last = bio_list->tail;
	u64 last_end = 0;
	int ret;
	struct bio *bio;
	struct btrfs_bio_stripe *stripe;
	u64 disk_start;

	stripe = &rbio->bbio->stripes[stripe_nr];
1079
	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
D
David Woodhouse 已提交
1080 1081 1082 1083 1084 1085 1086

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
1087 1088
		last_end = (u64)last->bi_iter.bi_sector << 9;
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1089 1090 1091 1092 1093 1094

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
		if (last_end == disk_start && stripe->dev->bdev &&
1095
		    !last->bi_error &&
D
David Woodhouse 已提交
1096
		    last->bi_bdev == stripe->dev->bdev) {
1097 1098
			ret = bio_add_page(last, page, PAGE_SIZE, 0);
			if (ret == PAGE_SIZE)
D
David Woodhouse 已提交
1099 1100 1101 1102 1103
				return 0;
		}
	}

	/* put a new bio on the list */
1104
	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
D
David Woodhouse 已提交
1105 1106 1107
	if (!bio)
		return -ENOMEM;

1108
	bio->bi_iter.bi_size = 0;
D
David Woodhouse 已提交
1109
	bio->bi_bdev = stripe->dev->bdev;
1110
	bio->bi_iter.bi_sector = disk_start >> 9;
D
David Woodhouse 已提交
1111

1112
	bio_add_page(bio, page, PAGE_SIZE, 0);
D
David Woodhouse 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1127
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;
1145
	struct bio_vec *bvec;
D
David Woodhouse 已提交
1146 1147 1148 1149 1150 1151 1152
	u64 start;
	unsigned long stripe_offset;
	unsigned long page_index;
	int i;

	spin_lock_irq(&rbio->bio_list_lock);
	bio_list_for_each(bio, &rbio->bio_list) {
1153
		start = (u64)bio->bi_iter.bi_sector << 9;
1154
		stripe_offset = start - rbio->bbio->raid_map[0];
1155
		page_index = stripe_offset >> PAGE_SHIFT;
D
David Woodhouse 已提交
1156

1157 1158
		bio_for_each_segment_all(bvec, bio, i)
			rbio->bio_pages[page_index + i] = bvec->bv_page;
D
David Woodhouse 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	}
	spin_unlock_irq(&rbio->bio_list_lock);
}

/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
	struct btrfs_bio *bbio = rbio->bbio;
1174
	void *pointers[rbio->real_stripes];
D
David Woodhouse 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	int nr_data = rbio->nr_data;
	int stripe;
	int pagenr;
	int p_stripe = -1;
	int q_stripe = -1;
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1186 1187 1188 1189 1190
	if (rbio->real_stripes - rbio->nr_data == 1) {
		p_stripe = rbio->real_stripes - 1;
	} else if (rbio->real_stripes - rbio->nr_data == 2) {
		p_stripe = rbio->real_stripes - 2;
		q_stripe = rbio->real_stripes - 1;
D
David Woodhouse 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	} else {
		BUG();
	}

	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1207
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1208 1209 1210 1211

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1212 1213 1214 1215 1216
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1217 1218
	 */
	index_rbio_pages(rbio);
1219 1220 1221 1222
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1223

1224
	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		struct page *p;
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
			p = page_in_rbio(rbio, stripe, pagenr, 0);
			pointers[stripe] = kmap(p);
		}

		/* then add the parity stripe */
		p = rbio_pstripe_page(rbio, pagenr);
		SetPageUptodate(p);
		pointers[stripe++] = kmap(p);

		if (q_stripe != -1) {

			/*
			 * raid6, add the qstripe and call the
			 * library function to fill in our p/q
			 */
			p = rbio_qstripe_page(rbio, pagenr);
			SetPageUptodate(p);
			pointers[stripe++] = kmap(p);

1247
			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
D
David Woodhouse 已提交
1248 1249 1250 1251
						pointers);
		} else {
			/* raid5 */
			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1252
			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
D
David Woodhouse 已提交
1253 1254 1255
		}


1256
		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
D
David Woodhouse 已提交
1257 1258 1259 1260 1261 1262 1263 1264
			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
	}

	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
1265
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1266
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
			struct page *page;
			if (stripe < rbio->nr_data) {
				page = page_in_rbio(rbio, stripe, pagenr, 1);
				if (!page)
					continue;
			} else {
			       page = rbio_stripe_page(rbio, stripe, pagenr);
			}

			ret = rbio_add_io_page(rbio, &bio_list,
				       page, stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

1283 1284 1285 1286 1287 1288 1289
	if (likely(!bbio->num_tgtdevs))
		goto write_data;

	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
		if (!bbio->tgtdev_map[stripe])
			continue;

1290
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
			struct page *page;
			if (stripe < rbio->nr_data) {
				page = page_in_rbio(rbio, stripe, pagenr, 1);
				if (!page)
					continue;
			} else {
			       page = rbio_stripe_page(rbio, stripe, pagenr);
			}

			ret = rbio_add_io_page(rbio, &bio_list, page,
					       rbio->bbio->tgtdev_map[stripe],
					       pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

write_data:
1309 1310
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1311 1312 1313 1314 1315 1316 1317 1318

	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_write_end_io;
M
Mike Christie 已提交
1319
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1320 1321

		submit_bio(bio);
D
David Woodhouse 已提交
1322 1323 1324 1325
	}
	return;

cleanup:
1326
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1337
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	u64 stripe_start;
	int i;
	struct btrfs_bio_stripe *stripe;

	physical <<= 9;

	for (i = 0; i < rbio->bbio->num_stripes; i++) {
		stripe = &rbio->bbio->stripes[i];
		stripe_start = stripe->physical;
		if (physical >= stripe_start &&
1348 1349
		    physical < stripe_start + rbio->stripe_len &&
		    bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
1364
	u64 logical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1365 1366 1367 1368 1369 1370
	u64 stripe_start;
	int i;

	logical <<= 9;

	for (i = 0; i < rbio->nr_data; i++) {
1371
		stripe_start = rbio->bbio->raid_map[i];
D
David Woodhouse 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		if (logical >= stripe_start &&
		    logical < stripe_start + rbio->stripe_len) {
			return i;
		}
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1397
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1398 1399 1400
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1401
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
static void set_bio_pages_uptodate(struct bio *bio)
{
1432
	struct bio_vec *bvec;
D
David Woodhouse 已提交
1433 1434
	int i;

1435 1436
	bio_for_each_segment_all(bvec, bio, i)
		SetPageUptodate(bvec->bv_page);
D
David Woodhouse 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
1447
static void raid_rmw_end_io(struct bio *bio)
D
David Woodhouse 已提交
1448 1449 1450
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1451
	if (bio->bi_error)
D
David Woodhouse 已提交
1452 1453 1454 1455 1456 1457
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

1458
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
1459 1460
		return;

1461
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
D
David Woodhouse 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		goto cleanup;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_rmw(rbio);
	return;

cleanup:

1474
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1475 1476 1477 1478
}

static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
{
1479 1480
	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
D
David Woodhouse 已提交
1481 1482 1483 1484
}

static void async_read_rebuild(struct btrfs_raid_bio *rbio)
{
1485 1486
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			read_rebuild_work, NULL, NULL);
D
David Woodhouse 已提交
1487

1488
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
D
David Woodhouse 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1512
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1513 1514 1515 1516 1517
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1518
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			struct page *page;
			/*
			 * we want to find all the pages missing from
			 * the rbio and read them from the disk.  If
			 * page_in_rbio finds a page in the bio list
			 * we don't need to read it off the stripe.
			 */
			page = page_in_rbio(rbio, stripe, pagenr, 1);
			if (page)
				continue;

			page = rbio_stripe_page(rbio, stripe, pagenr);
1531 1532 1533 1534 1535 1536 1537
			/*
			 * the bio cache may have handed us an uptodate
			 * page.  If so, be happy and use it
			 */
			if (PageUptodate(page))
				continue;

D
David Woodhouse 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			ret = rbio_add_io_page(rbio, &bio_list, page,
				       stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
1560
	atomic_set(&rbio->stripes_pending, bios_to_read);
D
David Woodhouse 已提交
1561 1562 1563 1564 1565 1566 1567
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_rmw_end_io;
M
Mike Christie 已提交
1568
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
D
David Woodhouse 已提交
1569

1570
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
1571

1572
		submit_bio(bio);
D
David Woodhouse 已提交
1573 1574 1575 1576 1577
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1578
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1595 1596
	if (ret) {
		__free_raid_bio(rbio);
D
David Woodhouse 已提交
1597
		return ret;
1598
	}
D
David Woodhouse 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		async_rmw_stripe(rbio);
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
	struct btrfs_work work;
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						 plug_list);
	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						 plug_list);
1658 1659
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
			/* we have a full stripe, send it down */
			full_stripe_write(cur);
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
				__free_raid_bio(cur);
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
static void unplug_work(struct btrfs_work *work)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1723 1724
		btrfs_init_work(&plug->work, btrfs_rmw_helper,
				unplug_work, NULL, NULL);
1725 1726
		btrfs_queue_work(plug->info->rmw_workers,
				 &plug->work);
1727 1728 1729 1730 1731
		return;
	}
	run_plug(plug);
}

D
David Woodhouse 已提交
1732 1733 1734
/*
 * our main entry point for writes from the rest of the FS.
 */
1735
int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1736
			struct btrfs_bio *bbio, u64 stripe_len)
D
David Woodhouse 已提交
1737 1738
{
	struct btrfs_raid_bio *rbio;
1739 1740
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1741
	int ret;
D
David Woodhouse 已提交
1742

1743
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1744
	if (IS_ERR(rbio)) {
1745
		btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
1746
		return PTR_ERR(rbio);
1747
	}
D
David Woodhouse 已提交
1748
	bio_list_add(&rbio->bio_list, bio);
1749
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1750
	rbio->operation = BTRFS_RBIO_WRITE;
1751

1752
	btrfs_bio_counter_inc_noblocked(fs_info);
1753 1754
	rbio->generic_bio_cnt = 1;

1755 1756 1757 1758
	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1759 1760 1761
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
		if (ret)
1762
			btrfs_bio_counter_dec(fs_info);
1763 1764
		return ret;
	}
1765

1766
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1767 1768 1769
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1770
			plug->info = fs_info;
1771 1772 1773
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1774
		ret = 0;
1775
	} else {
1776 1777
		ret = __raid56_parity_write(rbio);
		if (ret)
1778
			btrfs_bio_counter_dec(fs_info);
1779
	}
1780
	return ret;
D
David Woodhouse 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
	int pagenr, stripe;
	void **pointers;
	int faila = -1, failb = -1;
	struct page *page;
	int err;
	int i;

1797
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
D
David Woodhouse 已提交
1798 1799 1800 1801 1802 1803 1804 1805
	if (!pointers) {
		err = -ENOMEM;
		goto cleanup_io;
	}

	faila = rbio->faila;
	failb = rbio->failb;

1806 1807
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1808 1809 1810 1811 1812 1813 1814
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1815
	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * Now we just use bitmap to mark the horizontal stripes in
		 * which we have data when doing parity scrub.
		 */
		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
		    !test_bit(pagenr, rbio->dbitmap))
			continue;

D
David Woodhouse 已提交
1824 1825 1826
		/* setup our array of pointers with pages
		 * from each stripe
		 */
1827
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1828 1829 1830 1831
			/*
			 * if we're rebuilding a read, we have to use
			 * pages from the bio list
			 */
1832 1833
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842
			    (stripe == faila || stripe == failb)) {
				page = page_in_rbio(rbio, stripe, pagenr, 0);
			} else {
				page = rbio_stripe_page(rbio, stripe, pagenr);
			}
			pointers[stripe] = kmap(page);
		}

		/* all raid6 handling here */
Z
Zhao Lei 已提交
1843
		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
D
David Woodhouse 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
			/*
			 * single failure, rebuild from parity raid5
			 * style
			 */
			if (failb < 0) {
				if (faila == rbio->nr_data) {
					/*
					 * Just the P stripe has failed, without
					 * a bad data or Q stripe.
					 * TODO, we should redo the xor here.
					 */
					err = -EIO;
					goto cleanup;
				}
				/*
				 * a single failure in raid6 is rebuilt
				 * in the pstripe code below
				 */
				goto pstripe;
			}

			/* make sure our ps and qs are in order */
			if (faila > failb) {
				int tmp = failb;
				failb = faila;
				faila = tmp;
			}

			/* if the q stripe is failed, do a pstripe reconstruction
			 * from the xors.
			 * If both the q stripe and the P stripe are failed, we're
			 * here due to a crc mismatch and we can't give them the
			 * data they want
			 */
1878 1879 1880
			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
				if (rbio->bbio->raid_map[faila] ==
				    RAID5_P_STRIPE) {
D
David Woodhouse 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
					err = -EIO;
					goto cleanup;
				}
				/*
				 * otherwise we have one bad data stripe and
				 * a good P stripe.  raid5!
				 */
				goto pstripe;
			}

1891
			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1892
				raid6_datap_recov(rbio->real_stripes,
D
David Woodhouse 已提交
1893 1894
						  PAGE_SIZE, faila, pointers);
			} else {
1895
				raid6_2data_recov(rbio->real_stripes,
D
David Woodhouse 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
						  PAGE_SIZE, faila, failb,
						  pointers);
			}
		} else {
			void *p;

			/* rebuild from P stripe here (raid5 or raid6) */
			BUG_ON(failb != -1);
pstripe:
			/* Copy parity block into failed block to start with */
			memcpy(pointers[faila],
			       pointers[rbio->nr_data],
1908
			       PAGE_SIZE);
D
David Woodhouse 已提交
1909 1910 1911 1912 1913 1914 1915 1916

			/* rearrange the pointer array */
			p = pointers[faila];
			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
				pointers[stripe] = pointers[stripe + 1];
			pointers[rbio->nr_data - 1] = p;

			/* xor in the rest */
1917
			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
D
David Woodhouse 已提交
1918 1919 1920 1921 1922 1923 1924
		}
		/* if we're doing this rebuild as part of an rmw, go through
		 * and set all of our private rbio pages in the
		 * failed stripes as uptodate.  This way finish_rmw will
		 * know they can be trusted.  If this was a read reconstruction,
		 * other endio functions will fiddle the uptodate bits
		 */
1925
		if (rbio->operation == BTRFS_RBIO_WRITE) {
1926
			for (i = 0;  i < rbio->stripe_npages; i++) {
D
David Woodhouse 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
				if (faila != -1) {
					page = rbio_stripe_page(rbio, faila, i);
					SetPageUptodate(page);
				}
				if (failb != -1) {
					page = rbio_stripe_page(rbio, failb, i);
					SetPageUptodate(page);
				}
			}
		}
1937
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1938 1939 1940 1941
			/*
			 * if we're rebuilding a read, we have to use
			 * pages from the bio list
			 */
1942 1943
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			    (stripe == faila || stripe == failb)) {
				page = page_in_rbio(rbio, stripe, pagenr, 0);
			} else {
				page = rbio_stripe_page(rbio, stripe, pagenr);
			}
			kunmap(page);
		}
	}

	err = 0;
cleanup:
	kfree(pointers);

cleanup_io:
1958
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1959
		if (err == 0)
1960 1961 1962 1963
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

1964
		rbio_orig_end_io(rbio, err);
1965
	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1966
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
1967 1968 1969
	} else if (err == 0) {
		rbio->faila = -1;
		rbio->failb = -1;
1970 1971 1972 1973 1974 1975 1976

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
1977
	} else {
1978
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
1979 1980 1981 1982 1983 1984 1985
	}
}

/*
 * This is called only for stripes we've read from disk to
 * reconstruct the parity.
 */
1986
static void raid_recover_end_io(struct bio *bio)
D
David Woodhouse 已提交
1987 1988 1989 1990 1991 1992 1993
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	/*
	 * we only read stripe pages off the disk, set them
	 * up to date if there were no errors
	 */
1994
	if (bio->bi_error)
D
David Woodhouse 已提交
1995 1996 1997 1998 1999
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);
	bio_put(bio);

2000
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
2001 2002
		return;

2003
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2004
		rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	else
		__raid_recover_end_io(rbio);
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

2032
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
2033 2034

	/*
2035 2036 2037
	 * read everything that hasn't failed.  Thanks to the
	 * stripe cache, it is possible that some or all of these
	 * pages are going to be uptodate.
D
David Woodhouse 已提交
2038
	 */
2039
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2040
		if (rbio->faila == stripe || rbio->failb == stripe) {
2041
			atomic_inc(&rbio->error);
D
David Woodhouse 已提交
2042
			continue;
2043
		}
D
David Woodhouse 已提交
2044

2045
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
			struct page *p;

			/*
			 * the rmw code may have already read this
			 * page in
			 */
			p = rbio_stripe_page(rbio, stripe, pagenr);
			if (PageUptodate(p))
				continue;

			ret = rbio_add_io_page(rbio, &bio_list,
				       rbio_stripe_page(rbio, stripe, pagenr),
				       stripe, pagenr, rbio->stripe_len);
			if (ret < 0)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2071
		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
D
David Woodhouse 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
			__raid_recover_end_io(rbio);
			goto out;
		} else {
			goto cleanup;
		}
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
2083
	atomic_set(&rbio->stripes_pending, bios_to_read);
D
David Woodhouse 已提交
2084 2085 2086 2087 2088 2089 2090
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_recover_end_io;
M
Mike Christie 已提交
2091
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
D
David Woodhouse 已提交
2092

2093
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
2094

2095
		submit_bio(bio);
D
David Woodhouse 已提交
2096 2097 2098 2099 2100
	}
out:
	return 0;

cleanup:
2101 2102
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2103
		rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2113
int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2114 2115
			  struct btrfs_bio *bbio, u64 stripe_len,
			  int mirror_num, int generic_io)
D
David Woodhouse 已提交
2116 2117 2118 2119
{
	struct btrfs_raid_bio *rbio;
	int ret;

2120 2121 2122 2123 2124
	if (generic_io) {
		ASSERT(bbio->mirror_num == mirror_num);
		btrfs_io_bio(bio)->mirror_num = mirror_num;
	}

2125
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2126
	if (IS_ERR(rbio)) {
2127 2128
		if (generic_io)
			btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
2129
		return PTR_ERR(rbio);
2130
	}
D
David Woodhouse 已提交
2131

2132
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
D
David Woodhouse 已提交
2133
	bio_list_add(&rbio->bio_list, bio);
2134
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
D
David Woodhouse 已提交
2135 2136 2137

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2138
		btrfs_warn(fs_info,
L
Liu Bo 已提交
2139 2140 2141
	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
			   __func__, (u64)bio->bi_iter.bi_sector << 9,
			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2142 2143
		if (generic_io)
			btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
2144 2145 2146 2147
		kfree(rbio);
		return -EIO;
	}

2148
	if (generic_io) {
2149
		btrfs_bio_counter_inc_noblocked(fs_info);
2150 2151
		rbio->generic_bio_cnt = 1;
	} else {
2152
		btrfs_get_bbio(bbio);
2153 2154
	}

D
David Woodhouse 已提交
2155 2156 2157 2158 2159
	/*
	 * reconstruct from the q stripe if they are
	 * asking for mirror 3
	 */
	if (mirror_num == 3)
2160
		rbio->failb = rbio->real_stripes - 2;
D
David Woodhouse 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	ret = lock_stripe_add(rbio);

	/*
	 * __raid56_parity_recover will end the bio with
	 * any errors it hits.  We don't want to return
	 * its error value up the stack because our caller
	 * will end up calling bio_endio with any nonzero
	 * return
	 */
	if (ret == 0)
		__raid56_parity_recover(rbio);
	/*
	 * our rbio has been added to the list of
	 * rbios that will be handled after the
	 * currently lock owner is done
	 */
	return 0;

}

static void rmw_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

static void read_rebuild_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2197 2198 2199 2200

/*
 * The following code is used to scrub/replace the parity stripe
 *
2201 2202
 * Caller must have already increased bio_counter for getting @bbio.
 *
2203 2204 2205 2206 2207 2208
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

struct btrfs_raid_bio *
2209
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2210 2211
			       struct btrfs_bio *bbio, u64 stripe_len,
			       struct btrfs_device *scrub_dev,
2212 2213 2214 2215 2216
			       unsigned long *dbitmap, int stripe_nsectors)
{
	struct btrfs_raid_bio *rbio;
	int i;

2217
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

2228
	for (i = 0; i < rbio->real_stripes; i++) {
2229 2230 2231 2232 2233 2234 2235
		if (bbio->stripes[i].dev == scrub_dev) {
			rbio->scrubp = i;
			break;
		}
	}

	/* Now we just support the sectorsize equals to page size */
2236
	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2237 2238 2239
	ASSERT(rbio->stripe_npages == stripe_nsectors);
	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);

2240 2241 2242 2243 2244 2245
	/*
	 * We have already increased bio_counter when getting bbio, record it
	 * so we can free it at rbio_orig_end_io().
	 */
	rbio->generic_bio_cnt = 1;

2246 2247 2248
	return rbio;
}

2249 2250 2251
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
			    u64 logical)
2252 2253 2254 2255
{
	int stripe_offset;
	int index;

2256 2257
	ASSERT(logical >= rbio->bbio->raid_map[0]);
	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2258
				rbio->stripe_len * rbio->nr_data);
2259
	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2260
	index = stripe_offset >> PAGE_SHIFT;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	rbio->bio_pages[index] = page;
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int bit;
	int index;
	struct page *page;

	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2276
		for (i = 0; i < rbio->real_stripes; i++) {
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			index = i * rbio->stripe_npages + bit;
			if (rbio->stripe_pages[index])
				continue;

			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
			if (!page)
				return -ENOMEM;
			rbio->stripe_pages[index] = page;
		}
	}
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2293
	struct btrfs_bio *bbio = rbio->bbio;
2294
	void *pointers[rbio->real_stripes];
2295
	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2296 2297 2298 2299 2300 2301 2302 2303 2304
	int nr_data = rbio->nr_data;
	int stripe;
	int pagenr;
	int p_stripe = -1;
	int q_stripe = -1;
	struct page *p_page = NULL;
	struct page *q_page = NULL;
	struct bio_list bio_list;
	struct bio *bio;
2305
	int is_replace = 0;
2306 2307 2308 2309
	int ret;

	bio_list_init(&bio_list);

2310 2311 2312 2313 2314
	if (rbio->real_stripes - rbio->nr_data == 1) {
		p_stripe = rbio->real_stripes - 1;
	} else if (rbio->real_stripes - rbio->nr_data == 2) {
		p_stripe = rbio->real_stripes - 2;
		q_stripe = rbio->real_stripes - 1;
2315 2316 2317 2318
	} else {
		BUG();
	}

2319 2320 2321 2322 2323
	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
		is_replace = 1;
		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
	}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
	if (!p_page)
		goto cleanup;
	SetPageUptodate(p_page);

	if (q_stripe != -1) {
		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!q_page) {
			__free_page(p_page);
			goto cleanup;
		}
		SetPageUptodate(q_page);
	}

	atomic_set(&rbio->error, 0);

	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
		struct page *p;
		void *parity;
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
			p = page_in_rbio(rbio, stripe, pagenr, 0);
			pointers[stripe] = kmap(p);
		}

		/* then add the parity stripe */
		pointers[stripe++] = kmap(p_page);

		if (q_stripe != -1) {

			/*
			 * raid6, add the qstripe and call the
			 * library function to fill in our p/q
			 */
			pointers[stripe++] = kmap(q_page);

2370
			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2371 2372 2373 2374
						pointers);
		} else {
			/* raid5 */
			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2375
			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2376 2377
		}

2378
		/* Check scrubbing parity and repair it */
2379 2380
		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		parity = kmap(p);
2381 2382
		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2383 2384 2385 2386 2387
		else
			/* Parity is right, needn't writeback */
			bitmap_clear(rbio->dbitmap, pagenr, 1);
		kunmap(p);

2388
		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
	}

	__free_page(p_page);
	if (q_page)
		__free_page(q_page);

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
		struct page *page;

		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		ret = rbio_add_io_page(rbio, &bio_list,
			       page, rbio->scrubp, pagenr, rbio->stripe_len);
		if (ret)
			goto cleanup;
	}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (!is_replace)
		goto submit_write;

	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
		struct page *page;

		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		ret = rbio_add_io_page(rbio, &bio_list, page,
				       bbio->tgtdev_map[rbio->scrubp],
				       pagenr, rbio->stripe_len);
		if (ret)
			goto cleanup;
	}

submit_write:
2427 2428 2429
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2430
		rbio_orig_end_io(rbio, 0);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
2442
		bio->bi_end_io = raid_write_end_io;
M
Mike Christie 已提交
2443
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2444 2445

		submit_bio(bio);
2446 2447 2448 2449
	}
	return;

cleanup:
2450
	rbio_orig_end_io(rbio, -EIO);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
		if (dfail > rbio->bbio->max_errors - 1)
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2505
		 * is scrubbing parity, luckily, use the other one to repair
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2518
	rbio_orig_end_io(rbio, -EIO);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2529
static void raid56_parity_scrub_end_io(struct bio *bio)
2530 2531 2532
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

2533
	if (bio->bi_error)
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

	if (!atomic_dec_and_test(&rbio->stripes_pending))
		return;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	bio_list_init(&bio_list);

	atomic_set(&rbio->error, 0);
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
2571
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
			struct page *page;
			/*
			 * we want to find all the pages missing from
			 * the rbio and read them from the disk.  If
			 * page_in_rbio finds a page in the bio list
			 * we don't need to read it off the stripe.
			 */
			page = page_in_rbio(rbio, stripe, pagenr, 1);
			if (page)
				continue;

			page = rbio_stripe_page(rbio, stripe, pagenr);
			/*
			 * the bio cache may have handed us an uptodate
			 * page.  If so, be happy and use it
			 */
			if (PageUptodate(page))
				continue;

			ret = rbio_add_io_page(rbio, &bio_list, page,
				       stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid56_parity_scrub_end_io;
M
Mike Christie 已提交
2622
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2623

2624
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2625

2626
		submit_bio(bio);
2627 2628 2629 2630 2631
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2632
	rbio_orig_end_io(rbio, -EIO);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

static void scrub_parity_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

static void async_scrub_parity(struct btrfs_raid_bio *rbio)
{
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			scrub_parity_work, NULL, NULL);

2652
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2653 2654 2655 2656 2657 2658 2659
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
		async_scrub_parity(rbio);
}
2660 2661 2662 2663

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2664
raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2665 2666 2667 2668
			  struct btrfs_bio *bbio, u64 length)
{
	struct btrfs_raid_bio *rbio;

2669
	rbio = alloc_rbio(fs_info, bbio, length);
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
		BUG();
		kfree(rbio);
		return NULL;
	}

2688 2689 2690 2691 2692 2693
	/*
	 * When we get bbio, we have already increased bio_counter, record it
	 * so we can free it at rbio_orig_end_io()
	 */
	rbio->generic_bio_cnt = 1;

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	return rbio;
}

static void missing_raid56_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}

static void async_missing_raid56(struct btrfs_raid_bio *rbio)
{
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			missing_raid56_work, NULL, NULL);

	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
		async_missing_raid56(rbio);
}