raid56.c 73.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "messages.h"
17
#include "misc.h"
D
David Woodhouse 已提交
18 19 20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
23
#include "file-item.h"
24
#include "btrfs_inode.h"
D
David Woodhouse 已提交
25 26 27 28

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

58 59 60 61 62 63 64
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
65 66
	unsigned int pgoff:24;
	unsigned int uptodate:8;
67 68
};

69 70
static void rmw_rbio_work(struct work_struct *work);
static void rmw_rbio_work_locked(struct work_struct *work);
D
David Woodhouse 已提交
71 72 73
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

74 75
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
static void scrub_rbio_work_locked(struct work_struct *work);
76

77 78
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
79
	bitmap_free(rbio->error_bitmap);
80 81 82 83 84 85
	kfree(rbio->stripe_pages);
	kfree(rbio->bio_sectors);
	kfree(rbio->stripe_sectors);
	kfree(rbio->finish_pointers);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	if (!refcount_dec_and_test(&rbio->refs))
		return;

	WARN_ON(!list_empty(&rbio->stripe_cache));
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}

	btrfs_put_bioc(rbio->bioc);
105
	free_raid_bio_pointers(rbio);
106 107 108
	kfree(rbio);
}

109
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110
{
111 112
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
113 114
}

D
David Woodhouse 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

131 132 133 134 135 136 137
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
138
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
139 140
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
141

142 143 144
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
145 146 147 148 149 150 151 152 153
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
154
	kvfree(x);
D
David Woodhouse 已提交
155 156 157
	return 0;
}

158 159
/*
 * caching an rbio means to copy anything from the
160
 * bio_sectors array into the stripe_pages array.  We
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

176 177
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
178 179 180 181 182 183 184 185
		if (!rbio->bio_sectors[i].page) {
			/*
			 * Even if the sector is not covered by bio, if it is
			 * a data sector it should still be uptodate as it is
			 * read from disk.
			 */
			if (i < rbio->nr_data * rbio->stripe_nsectors)
				ASSERT(rbio->stripe_sectors[i].uptodate);
186
			continue;
187
		}
188 189 190 191 192 193 194 195 196

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
197 198 199
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
200 201 202 203 204
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
205
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
206 207 208 209 210 211 212 213 214 215 216 217

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
	const int sector_nr = (page_nr << PAGE_SHIFT) >>
			      rbio->bioc->fs_info->sectorsize_bits;

	/*
	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
	 * we won't have a page which is half data half parity.
	 *
	 * Thus if the first sector of the page belongs to data stripes, then
	 * the full page belongs to data stripes.
	 */
	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}

289
/*
290 291 292 293 294
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
295 296 297 298 299 300 301 302 303
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
304 305 306 307 308 309 310
		struct page *p = src->stripe_pages[i];

		/*
		 * We don't need to steal P/Q pages as they will always be
		 * regenerated for RMW or full write anyway.
		 */
		if (!is_data_stripe_page(src, i))
311 312
			continue;

313 314 315 316 317 318
		/*
		 * If @src already has RBIO_CACHE_READY_BIT, it should have
		 * all data stripe pages present and uptodate.
		 */
		ASSERT(p);
		ASSERT(full_page_sectors_uptodate(src, i));
319
		steal_rbio_page(src, dest, i);
320
	}
321 322
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
323 324
}

D
David Woodhouse 已提交
325 326 327 328 329 330 331 332 333 334 335 336
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
337 338 339
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
D
David Woodhouse 已提交
340 341 342 343
	bio_list_init(&victim->bio_list);
}

/*
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

360
	table = rbio->bioc->fs_info->stripe_hash_table;
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
391
				refcount_dec(&rbio->refs);
392 393 394 395 396 397 398 399 400
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
401
		free_raid_bio(rbio);
402 403 404 405 406 407 408 409 410 411 412 413 414
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

415
	table = rbio->bioc->fs_info->stripe_hash_table;
416 417 418 419 420 421 422 423 424

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
425
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
446 447 448 449 450
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
451
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
452
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
453 454 455
	info->stripe_hash_table = NULL;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

475
	table = rbio->bioc->fs_info->stripe_hash_table;
476 477 478 479 480 481

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
482
		refcount_inc(&rbio->refs);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
528 529
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
530
 */
531
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
532
{
533
	unsigned long flags;
D
David Woodhouse 已提交
534 535 536
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

537
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
538
	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
D
David Woodhouse 已提交
539
		ret = 0;
540
	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
D
David Woodhouse 已提交
541
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
542

D
David Woodhouse 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

563 564 565 566
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
567
	 * steal from cached rbios though, other functions
568 569 570 571 572 573
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

574
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
575 576
		return 0;

577 578 579 580 581 582 583 584 585 586 587
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
588
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
589 590
		return 0;

591 592
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
	    last->operation == BTRFS_RBIO_READ_REBUILD)
593 594
		return 0;

D
David Woodhouse 已提交
595 596 597
	return 1;
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

617 618 619
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
620
{
621
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
622 623
}

624 625 626
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
627
{
628 629 630
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
657
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
658 659 660 661
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
662
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
663 664
	int ret = 0;

665
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
666

D
David Woodhouse 已提交
667 668
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
669
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
670
			continue;
671

672
		spin_lock(&cur->bio_list_lock);
673

674 675 676 677 678 679 680
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
681

682 683 684
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
685

686 687
			goto lockit;
		}
D
David Woodhouse 已提交
688

689 690 691
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
692
			spin_unlock(&cur->bio_list_lock);
693
			freeit = rbio;
D
David Woodhouse 已提交
694 695 696
			ret = 1;
			goto out;
		}
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
722
	}
723
lockit:
724
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
725 726 727
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
728 729
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
730
	if (freeit)
731
		free_raid_bio(freeit);
D
David Woodhouse 已提交
732 733 734
	return ret;
}

735 736
static void recover_rbio_work_locked(struct work_struct *work);

D
David Woodhouse 已提交
737 738 739 740 741 742 743 744 745
/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
746
	int keep_cache = 0;
D
David Woodhouse 已提交
747 748

	bucket = rbio_bucket(rbio);
749
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
750

751 752 753
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
754 755 756 757
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
758 759 760 761 762 763 764 765 766 767 768 769
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
770 771

		list_del_init(&rbio->hash_list);
772
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
789
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
790 791 792
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

793
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
794
				start_async_work(next, recover_rbio_work_locked);
795 796
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
797
				start_async_work(next, recover_rbio_work_locked);
798
			} else if (next->operation == BTRFS_RBIO_WRITE) {
799
				steal_rbio(rbio, next);
800
				start_async_work(next, rmw_rbio_work_locked);
801 802
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
803
				start_async_work(next, scrub_rbio_work_locked);
804
			}
D
David Woodhouse 已提交
805 806 807 808

			goto done_nolock;
		}
	}
809
done:
D
David Woodhouse 已提交
810 811 812 813
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
814 815
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
816 817
}

818
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
819
{
820 821 822 823 824 825 826 827 828
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
829 830 831 832 833 834
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
835
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
836 837
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
838
	struct bio *extra;
839

840 841 842 843 844
	kfree(rbio->csum_buf);
	bitmap_free(rbio->csum_bitmap);
	rbio->csum_buf = NULL;
	rbio->csum_bitmap = NULL;

845 846 847 848 849 850
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
851

852 853 854 855 856 857 858 859 860 861
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
862
	free_raid_bio(rbio);
D
David Woodhouse 已提交
863

864 865 866
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
867 868
}

D
David Sterba 已提交
869 870
/*
 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
908 909 910 911
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
912
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
913
					 struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
914
{
915
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
916
	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
917
	const unsigned int num_pages = stripe_npages * real_stripes;
918 919
	const unsigned int stripe_nsectors =
		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
920
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
921 922
	struct btrfs_raid_bio *rbio;

923 924
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
925 926 927 928 929
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
930

931
	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
932
	if (!rbio)
D
David Woodhouse 已提交
933
		return ERR_PTR(-ENOMEM);
934 935 936 937 938 939 940
	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
				     GFP_NOFS);
	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				    GFP_NOFS);
	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				       GFP_NOFS);
	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
941
	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
942 943

	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
944
	    !rbio->finish_pointers || !rbio->error_bitmap) {
945 946 947 948
		free_raid_bio_pointers(rbio);
		kfree(rbio);
		return ERR_PTR(-ENOMEM);
	}
D
David Woodhouse 已提交
949 950

	bio_list_init(&rbio->bio_list);
951
	init_waitqueue_head(&rbio->io_wait);
D
David Woodhouse 已提交
952 953
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
954
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
955
	INIT_LIST_HEAD(&rbio->hash_list);
956
	btrfs_get_bioc(bioc);
957
	rbio->bioc = bioc;
D
David Woodhouse 已提交
958
	rbio->nr_pages = num_pages;
959
	rbio->nr_sectors = num_sectors;
960
	rbio->real_stripes = real_stripes;
961
	rbio->stripe_npages = stripe_npages;
962
	rbio->stripe_nsectors = stripe_nsectors;
963
	refcount_set(&rbio->refs, 1);
964
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
965

966 967
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
968 969 970 971 972 973 974

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
975 976 977 978 979 980 981 982
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
983 984
}

985
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
986 987
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
988
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
989
	int ret;
D
David Woodhouse 已提交
990

991 992 993 994 995 996 997
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
998 999
}

1000
/*
1001
 * Return the total number of errors found in the vertical stripe of @sector_nr.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
 *
 * @faila and @failb will also be updated to the first and second stripe
 * number of the errors.
 */
static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
				     int *faila, int *failb)
{
	int stripe_nr;
	int found_errors = 0;

1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (faila || failb) {
		/*
		 * Both @faila and @failb should be valid pointers if any of
		 * them is specified.
		 */
		ASSERT(faila && failb);
		*faila = -1;
		*failb = -1;
	}
1021 1022 1023 1024 1025 1026

	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;

		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
			found_errors++;
1027 1028 1029 1030 1031 1032 1033
			if (faila) {
				/* Update faila and failb. */
				if (*faila < 0)
					*faila = stripe_nr;
				else if (*failb < 0)
					*failb = stripe_nr;
			}
1034 1035 1036 1037 1038
		}
	}
	return found_errors;
}

D
David Woodhouse 已提交
1039
/*
1040 1041 1042 1043
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1044
 */
1045 1046 1047 1048 1049
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
1050
			      enum req_op op)
D
David Woodhouse 已提交
1051
{
1052
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1053 1054 1055
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1056
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1057 1058
	u64 disk_start;

1059 1060 1061 1062 1063 1064 1065 1066 1067
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1068
	stripe = &rbio->bioc->stripes[stripe_nr];
1069
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1070 1071

	/* if the device is missing, just fail this stripe */
1072
	if (!stripe->dev->bdev) {
1073 1074
		int found_errors;

1075 1076
		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
			rbio->error_bitmap);
1077 1078 1079 1080 1081 1082 1083

		/* Check if we have reached tolerance early. */
		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 NULL, NULL);
		if (found_errors > rbio->bioc->max_errors)
			return -EIO;
		return 0;
1084
	}
D
David Woodhouse 已提交
1085 1086 1087

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1088
		u64 last_end = last->bi_iter.bi_sector << 9;
1089
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1090 1091 1092 1093 1094

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1095
		if (last_end == disk_start && !last->bi_status &&
1096
		    last->bi_bdev == stripe->dev->bdev) {
1097 1098 1099
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1100 1101 1102 1103 1104
				return 0;
		}
	}

	/* put a new bio on the list */
1105 1106
	bio = bio_alloc(stripe->dev->bdev,
			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1107
			op, GFP_NOFS);
1108
	bio->bi_iter.bi_sector = disk_start >> 9;
1109
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1110

1111
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1112 1113 1114 1115
	bio_list_add(bio_list, bio);
	return 0;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1152 1153 1154
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1155 1156 1157
	spin_unlock_irq(&rbio->bio_list_lock);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

1186 1187 1188 1189 1190 1191 1192 1193
static inline void bio_list_put(struct bio_list *bio_list)
{
	struct bio *bio;

	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
}

1194
/* Generate PQ for one vertical stripe. */
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
	void **pointers = rbio->finish_pointers;
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct sector_ptr *sector;
	int stripe;
	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;

	/* First collect one sector from each data stripe */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
		pointers[stripe] = kmap_local_page(sector->page) +
				   sector->pgoff;
	}

	/* Then add the parity stripe */
	sector = rbio_pstripe_sector(rbio, sectornr);
	sector->uptodate = 1;
	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;

	if (has_qstripe) {
		/*
		 * RAID6, add the qstripe and call the library function
		 * to fill in our p/q
		 */
		sector = rbio_qstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) +
				     sector->pgoff;

		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
					pointers);
	} else {
		/* raid5 */
		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
	}
	for (stripe = stripe - 1; stripe >= 0; stripe--)
		kunmap_local(pointers[stripe]);
}

1236 1237
static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
				   struct bio_list *bio_list)
D
David Woodhouse 已提交
1238
{
1239 1240
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
1241
	int sectornr;
1242
	int stripe;
D
David Woodhouse 已提交
1243 1244
	int ret;

1245
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1246

1247 1248 1249
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

1250 1251 1252 1253
	/*
	 * Reset errors, as we may have errors inherited from from degraded
	 * write.
	 */
1254
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1255

D
David Woodhouse 已提交
1256
	/*
1257
	 * Start assembly.  Make bios for everything from the higher layers (the
1258
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1259
	 */
1260 1261 1262
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1263

1264 1265
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
D
David Woodhouse 已提交
1266

1267 1268 1269
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1270

1271 1272 1273 1274 1275 1276
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1277
		}
1278

1279
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1280
					 sectornr, REQ_OP_WRITE);
1281
		if (ret)
1282
			goto error;
D
David Woodhouse 已提交
1283 1284
	}

1285 1286
	if (likely(!rbio->bioc->num_tgtdevs))
		return 0;
1287

1288
	/* Make a copy for the replace target device. */
1289 1290 1291
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1292

1293 1294
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1295

1296
		if (!rbio->bioc->tgtdev_map[stripe]) {
1297 1298 1299 1300 1301 1302 1303 1304
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1305

1306 1307 1308
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1309

1310 1311 1312 1313 1314 1315
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1316
		}
1317

1318
		ret = rbio_add_io_sector(rbio, bio_list, sector,
1319
					 rbio->bioc->tgtdev_map[stripe],
1320
					 sectornr, REQ_OP_WRITE);
1321
		if (ret)
1322
			goto error;
1323 1324
	}

1325 1326
	return 0;
error:
1327
	bio_list_put(bio_list);
1328 1329 1330
	return -EIO;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];
	int total_nr_sector = offset >> fs_info->sectorsize_bits;

	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);

	bitmap_set(rbio->error_bitmap, total_nr_sector,
		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);

	/*
	 * Special handling for raid56_alloc_missing_rbio() used by
	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
	 * pass an empty bio here.  Thus we have to find out the missing device
	 * and mark the stripe error instead.
	 */
	if (bio->bi_iter.bi_size == 0) {
		bool found_missing = false;
		int stripe_nr;

		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
				found_missing = true;
				bitmap_set(rbio->error_bitmap,
					   stripe_nr * rbio->stripe_nsectors,
					   rbio->stripe_nsectors);
			}
		}
		ASSERT(found_missing);
	}
}

1365
/*
1366
 * For subpage case, we can no longer set page Up-to-date directly for
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1384 1385 1386 1387
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1388
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1389
{
1390
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1391
	struct bio_vec *bvec;
1392
	struct bvec_iter_all iter_all;
1393

1394
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	struct bio_vec *bv = bio_first_bvec_all(bio);
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector;

		sector = &rbio->stripe_sectors[i];
		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
			break;
		sector = &rbio->bio_sectors[i];
		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
			break;
	}
	ASSERT(i < rbio->nr_sectors);
	return i;
}

static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	int total_sector_nr = get_bio_sector_nr(rbio, bio);
	u32 bio_size = 0;
	struct bio_vec *bvec;
1434
	int i;
1435

1436
	bio_for_each_bvec_all(bvec, bio, i)
1437 1438
		bio_size += bvec->bv_len;

1439 1440 1441 1442 1443 1444 1445 1446 1447
	/*
	 * Since we can have multiple bios touching the error_bitmap, we cannot
	 * call bitmap_set() without protection.
	 *
	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
	 */
	for (i = total_sector_nr; i < total_sector_nr +
	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
		set_bit(i, rbio->error_bitmap);
1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/* Verify the data sectors at read time. */
static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
				    struct bio *bio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	int total_sector_nr = get_bio_sector_nr(rbio, bio);
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/* No data csum for the whole stripe, no need to verify. */
	if (!rbio->csum_bitmap || !rbio->csum_buf)
		return;

	/* P/Q stripes, they have no data csum to verify against. */
	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
		return;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		int bv_offset;

		for (bv_offset = bvec->bv_offset;
		     bv_offset < bvec->bv_offset + bvec->bv_len;
		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
			u8 csum_buf[BTRFS_CSUM_SIZE];
			u8 *expected_csum = rbio->csum_buf +
					    total_sector_nr * fs_info->csum_size;
			int ret;

			/* No csum for this sector, skip to the next sector. */
			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
				continue;

			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
				bv_offset, csum_buf, expected_csum);
			if (ret < 0)
				set_bit(total_sector_nr, rbio->error_bitmap);
		}
	}
}

1490 1491 1492 1493
static void raid_wait_read_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1494
	if (bio->bi_status) {
1495
		rbio_update_error_bitmap(rbio, bio);
1496
	} else {
1497
		set_bio_pages_uptodate(rbio, bio);
1498 1499
		verify_bio_data_sectors(rbio, bio);
	}
1500 1501 1502 1503 1504 1505

	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

1506
static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
			     struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_read_end_io;

		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
1523 1524

	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
{
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
	int ret;

	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1551
	struct work_struct work;
1552 1553 1554 1555 1556
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1557 1558
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1559
{
1560 1561 1562 1563
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1564 1565
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1566 1567 1568 1569 1570 1571 1572 1573

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

1574
static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1575
{
1576
	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1577 1578 1579 1580
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	list_sort(NULL, &plug->rbio_list, plug_cmp);
1581

1582 1583 1584 1585 1586 1587
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1588 1589
			/* We have a full stripe, queue it down. */
			start_async_work(cur, rmw_rbio_work);
1590 1591 1592 1593 1594
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
1595
				free_raid_bio(cur);
1596 1597
				continue;
			}
1598
			start_async_work(last, rmw_rbio_work);
1599 1600 1601
		}
		last = cur;
	}
1602 1603
	if (last)
		start_async_work(last, rmw_rbio_work);
1604 1605 1606
	kfree(plug);
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
1619
	       rbio->nr_data * BTRFS_STRIPE_LEN);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1634 1635 1636
/*
 * our main entry point for writes from the rest of the FS.
 */
1637
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
1638
{
1639
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1640
	struct btrfs_raid_bio *rbio;
1641 1642
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
D
David Woodhouse 已提交
1643

1644
	rbio = alloc_rbio(fs_info, bioc);
1645
	if (IS_ERR(rbio)) {
1646 1647 1648
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
		bio_endio(bio);
		return;
1649
	}
1650
	rbio->operation = BTRFS_RBIO_WRITE;
1651
	rbio_add_bio(rbio, bio);
1652 1653

	/*
1654
	 * Don't plug on full rbios, just get them out the door
1655 1656
	 * as quickly as we can
	 */
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	if (!rbio_is_full(rbio)) {
		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
		if (cb) {
			plug = container_of(cb, struct btrfs_plug_cb, cb);
			if (!plug->info) {
				plug->info = fs_info;
				INIT_LIST_HEAD(&plug->rbio_list);
			}
			list_add_tail(&rbio->plug_list, &plug->rbio_list);
			return;
1667 1668
		}
	}
1669

1670 1671
	/*
	 * Either we don't have any existing plug, or we're doing a full stripe,
1672
	 * queue the rmw work now.
1673 1674
	 */
	start_async_work(rbio, rmw_rbio_work);
D
David Woodhouse 已提交
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static int verify_one_sector(struct btrfs_raid_bio *rbio,
			     int stripe_nr, int sector_nr)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	u8 csum_buf[BTRFS_CSUM_SIZE];
	u8 *csum_expected;
	int ret;

	if (!rbio->csum_bitmap || !rbio->csum_buf)
		return 0;

	/* No way to verify P/Q as they are not covered by data csum. */
	if (stripe_nr >= rbio->nr_data)
		return 0;
	/*
	 * If we're rebuilding a read, we have to use pages from the
	 * bio list if possible.
	 */
	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
	} else {
		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
	}

	ASSERT(sector->page);

	csum_expected = rbio->csum_buf +
			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
			fs_info->csum_size;
	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
				      csum_buf, csum_expected);
	return ret;
}

1713 1714 1715 1716 1717
/*
 * Recover a vertical stripe specified by @sector_nr.
 * @*pointers are the pre-allocated pointers by the caller, so we don't
 * need to allocate/free the pointers again and again.
 */
1718 1719
static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
			    void **pointers, void **unmap_array)
1720 1721 1722 1723
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	const u32 sectorsize = fs_info->sectorsize;
1724 1725 1726
	int found_errors;
	int faila;
	int failb;
1727
	int stripe_nr;
1728
	int ret = 0;
1729 1730 1731 1732 1733 1734 1735

	/*
	 * Now we just use bitmap to mark the horizontal stripes in
	 * which we have data when doing parity scrub.
	 */
	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
	    !test_bit(sector_nr, &rbio->dbitmap))
1736 1737 1738 1739 1740
		return 0;

	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
						 &failb);
	/*
1741
	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1742 1743 1744 1745 1746 1747 1748
	 * which only part of a stripe failed csum check.
	 */
	if (!found_errors)
		return 0;

	if (found_errors > rbio->bioc->max_errors)
		return -EIO;
1749 1750 1751 1752 1753 1754 1755 1756 1757

	/*
	 * Setup our array of pointers with sectors from each stripe
	 *
	 * NOTE: store a duplicate array of pointers to preserve the
	 * pointer order.
	 */
	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		/*
1758 1759
		 * If we're rebuilding a read, we have to use pages from the
		 * bio list if possible.
1760 1761
		 */
		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1762
		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
		} else {
			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
		}
		ASSERT(sector->page);
		pointers[stripe_nr] = kmap_local_page(sector->page) +
				   sector->pgoff;
		unmap_array[stripe_nr] = pointers[stripe_nr];
	}

	/* All raid6 handling here */
	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
		/* Single failure, rebuild from parity raid5 style */
		if (failb < 0) {
			if (faila == rbio->nr_data)
				/*
				 * Just the P stripe has failed, without
				 * a bad data or Q stripe.
				 * We have nothing to do, just skip the
				 * recovery for this stripe.
				 */
				goto cleanup;
			/*
			 * a single failure in raid6 is rebuilt
			 * in the pstripe code below
			 */
			goto pstripe;
		}

		/*
		 * If the q stripe is failed, do a pstripe reconstruction from
		 * the xors.
		 * If both the q stripe and the P stripe are failed, we're
		 * here due to a crc mismatch and we can't give them the
		 * data they want.
		 */
		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
			if (rbio->bioc->raid_map[faila] ==
			    RAID5_P_STRIPE)
				/*
				 * Only P and Q are corrupted.
				 * We only care about data stripes recovery,
				 * can skip this vertical stripe.
				 */
				goto cleanup;
			/*
			 * Otherwise we have one bad data stripe and
			 * a good P stripe.  raid5!
			 */
			goto pstripe;
		}

		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
			raid6_datap_recov(rbio->real_stripes, sectorsize,
					  faila, pointers);
		} else {
			raid6_2data_recov(rbio->real_stripes, sectorsize,
					  faila, failb, pointers);
		}
	} else {
		void *p;

		/* Rebuild from P stripe here (raid5 or raid6). */
		ASSERT(failb == -1);
pstripe:
		/* Copy parity block into failed block to start with */
		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);

		/* Rearrange the pointer array */
		p = pointers[faila];
		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
		     stripe_nr++)
			pointers[stripe_nr] = pointers[stripe_nr + 1];
		pointers[rbio->nr_data - 1] = p;

		/* Xor in the rest */
		run_xor(pointers, rbio->nr_data - 1, sectorsize);

	}

	/*
	 * No matter if this is a RMW or recovery, we should have all
	 * failed sectors repaired in the vertical stripe, thus they are now
	 * uptodate.
	 * Especially if we determine to cache the rbio, we need to
	 * have at least all data sectors uptodate.
1849 1850 1851
	 *
	 * If possible, also check if the repaired sector matches its data
	 * checksum.
1852
	 */
1853
	if (faila >= 0) {
1854 1855 1856 1857
		ret = verify_one_sector(rbio, faila, sector_nr);
		if (ret < 0)
			goto cleanup;

1858
		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1859 1860
		sector->uptodate = 1;
	}
1861
	if (failb >= 0) {
1862
		ret = verify_one_sector(rbio, failb, sector_nr);
1863 1864 1865
		if (ret < 0)
			goto cleanup;

1866
		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1867 1868 1869 1870 1871 1872
		sector->uptodate = 1;
	}

cleanup:
	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
		kunmap_local(unmap_array[stripe_nr]);
1873
	return ret;
1874 1875
}

1876
static int recover_sectors(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
1877
{
1878 1879
	void **pointers = NULL;
	void **unmap_array = NULL;
1880 1881
	int sectornr;
	int ret = 0;
D
David Woodhouse 已提交
1882

1883
	/*
1884 1885 1886 1887
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
1888
	 */
1889
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1890
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1891 1892 1893
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
1894 1895
	}

1896 1897
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1898 1899 1900 1901 1902 1903 1904
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1905 1906 1907 1908 1909
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
		if (ret < 0)
			break;
	}
D
David Woodhouse 已提交
1910

1911
out:
D
David Woodhouse 已提交
1912
	kfree(pointers);
1913 1914 1915 1916
	kfree(unmap_array);
	return ret;
}

1917
static int recover_rbio(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
1918
{
1919
	struct bio_list bio_list = BIO_EMPTY_LIST;
1920 1921
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * Either we're doing recover for a read failure or degraded write,
	 * caller should have set error bitmap correctly.
	 */
	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));

	/* For recovery, we need to read all sectors including P/Q. */
	ret = alloc_rbio_pages(rbio);
	if (ret < 0)
		return ret;

	index_rbio_pages(rbio);

D
David Woodhouse 已提交
1936
	/*
1937 1938 1939 1940 1941 1942
	 * Read everything that hasn't failed. However this time we will
	 * not trust any cached sector.
	 * As we may read out some stale data but higher layer is not reading
	 * that stale part.
	 *
	 * So here we always re-read everything in recovery path.
D
David Woodhouse 已提交
1943
	 */
1944 1945 1946 1947 1948 1949
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * Skip the range which has error.  It can be a range which is
		 * marked error (for csum mismatch), or it can be a missing
		 * device.
		 */
		if (!rbio->bioc->stripes[stripe].dev->bdev ||
		    test_bit(total_sector_nr, rbio->error_bitmap)) {
			/*
			 * Also set the error bit for missing device, which
			 * may not yet have its error bit set.
			 */
			set_bit(total_sector_nr, rbio->error_bitmap);
D
David Woodhouse 已提交
1962
			continue;
1963
		}
1964

1965
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1966
		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1967
					 sectornr, REQ_OP_READ);
1968 1969 1970 1971
		if (ret < 0) {
			bio_list_put(&bio_list);
			return ret;
		}
D
David Woodhouse 已提交
1972
	}
1973

1974
	submit_read_wait_bio_list(rbio, &bio_list);
1975
	return recover_sectors(rbio);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
}

static void recover_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = lock_stripe_add(rbio);
	if (ret == 0) {
		ret = recover_rbio(rbio);
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	}
}

static void recover_rbio_work_locked(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = recover_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
{
	bool found = false;
	int sector_nr;

	/*
	 * This is for RAID6 extra recovery tries, thus mirror number should
	 * be large than 2.
	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
	 * RAID5 methods.
	 */
	ASSERT(mirror_num > 2);
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int found_errors;
		int faila;
		int failb;

		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 &faila, &failb);
		/* This vertical stripe doesn't have errors. */
		if (!found_errors)
			continue;

		/*
		 * If we found errors, there should be only one error marked
		 * by previous set_rbio_range_error().
		 */
		ASSERT(found_errors == 1);
		found = true;

		/* Now select another stripe to mark as error. */
		failb = rbio->real_stripes - (mirror_num - 1);
		if (failb <= faila)
			failb--;

		/* Set the extra bit in error bitmap. */
		if (failb >= 0)
			set_bit(failb * rbio->stripe_nsectors + sector_nr,
				rbio->error_bitmap);
	}

	/* We should found at least one vertical stripe with error.*/
	ASSERT(found);
}

D
David Woodhouse 已提交
2048 2049 2050 2051 2052 2053
/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2054
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2055
			   int mirror_num)
D
David Woodhouse 已提交
2056
{
2057
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2058 2059
	struct btrfs_raid_bio *rbio;

2060
	rbio = alloc_rbio(fs_info, bioc);
2061
	if (IS_ERR(rbio)) {
2062
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2063 2064
		bio_endio(bio);
		return;
2065
	}
D
David Woodhouse 已提交
2066

2067
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2068
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2069

2070 2071
	set_rbio_range_error(rbio, bio);

D
David Woodhouse 已提交
2072
	/*
L
Liu Bo 已提交
2073 2074 2075
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2076
	 */
2077
	if (mirror_num > 2)
2078
		set_rbio_raid6_extra_error(rbio, mirror_num);
D
David Woodhouse 已提交
2079

2080
	start_async_work(rbio, recover_rbio_work);
D
David Woodhouse 已提交
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
static void fill_data_csums(struct btrfs_raid_bio *rbio)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
						       rbio->bioc->raid_map[0]);
	const u64 start = rbio->bioc->raid_map[0];
	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
			fs_info->sectorsize_bits;
	int ret;

	/* The rbio should not have its csum buffer initialized. */
	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);

	/*
	 * Skip the csum search if:
	 *
	 * - The rbio doesn't belong to data block groups
	 *   Then we are doing IO for tree blocks, no need to search csums.
	 *
	 * - The rbio belongs to mixed block groups
	 *   This is to avoid deadlock, as we're already holding the full
	 *   stripe lock, if we trigger a metadata read, and it needs to do
	 *   raid56 recovery, we will deadlock.
	 */
	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
		return;

	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
				 fs_info->csum_size, GFP_NOFS);
	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
					  GFP_NOFS);
	if (!rbio->csum_buf || !rbio->csum_bitmap) {
		ret = -ENOMEM;
		goto error;
	}

	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
					rbio->csum_buf, rbio->csum_bitmap);
	if (ret < 0)
		goto error;
	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
		goto no_csum;
	return;

error:
	/*
	 * We failed to allocate memory or grab the csum, but it's not fatal,
	 * we can still continue.  But better to warn users that RMW is no
	 * longer safe for this particular sub-stripe write.
	 */
	btrfs_warn_rl(fs_info,
"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
			rbio->bioc->raid_map[0], ret);
no_csum:
	kfree(rbio->csum_buf);
	bitmap_free(rbio->csum_bitmap);
	rbio->csum_buf = NULL;
	rbio->csum_bitmap = NULL;
}

2144
static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2145
{
2146 2147 2148
	struct bio_list bio_list = BIO_EMPTY_LIST;
	int total_sector_nr;
	int ret = 0;
2149

2150 2151 2152 2153 2154 2155 2156
	/*
	 * Fill the data csums we need for data verification.  We need to fill
	 * the csum_bitmap/csum_buf first, as our endio function will try to
	 * verify the data sectors.
	 */
	fill_data_csums(rbio);

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	/*
	 * Build a list of bios to read all sectors (including data and P/Q).
	 *
	 * This behavior is to compensate the later csum verification and recovery.
	 */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2167

2168 2169 2170 2171 2172 2173 2174 2175
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
			       stripe, sectornr, REQ_OP_READ);
		if (ret) {
			bio_list_put(&bio_list);
			return ret;
		}
	}
2176 2177 2178 2179 2180

	/*
	 * We may or may not have any corrupted sectors (including missing dev
	 * and csum mismatch), just let recover_sectors() to handle them all.
	 */
2181 2182
	submit_read_wait_bio_list(rbio, &bio_list);
	return recover_sectors(rbio);
2183 2184 2185 2186 2187 2188 2189
}

static void raid_wait_write_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
	blk_status_t err = bio->bi_status;

2190
	if (err)
2191
		rbio_update_error_bitmap(rbio, bio);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

static void submit_write_bios(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_write_end_io;

		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/*
 * To determine if we need to read any sector from the disk.
 * Should only be utilized in RMW path, to skip cached rbio.
 */
static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	int i;

	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		/*
		 * We have a sector which doesn't have page nor uptodate,
		 * thus this rbio can not be cached one, as cached one must
		 * have all its data sectors present and uptodate.
		 */
		if (!sector->page || !sector->uptodate)
			return true;
	}
	return false;
}

2238
static void rmw_rbio(struct btrfs_raid_bio *rbio)
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	struct bio_list bio_list;
	int sectornr;
	int ret = 0;

	/*
	 * Allocate the pages for parity first, as P/Q pages will always be
	 * needed for both full-stripe and sub-stripe writes.
	 */
	ret = alloc_rbio_parity_pages(rbio);
	if (ret < 0)
2250
		goto out;
2251

2252 2253 2254 2255
	/*
	 * Either full stripe write, or we have every data sector already
	 * cached, can go to write path immediately.
	 */
2256 2257 2258 2259 2260 2261 2262
	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
		/*
		 * Now we're doing sub-stripe write, also need all data stripes
		 * to do the full RMW.
		 */
		ret = alloc_rbio_data_pages(rbio);
		if (ret < 0)
2263
			goto out;
2264

2265
		index_rbio_pages(rbio);
2266

2267 2268
		ret = rmw_read_wait_recover(rbio);
		if (ret < 0)
2269
			goto out;
2270
	}
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

	/*
	 * At this stage we're not allowed to add any new bios to the
	 * bio list any more, anyone else that wants to change this stripe
	 * needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

2281
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	index_rbio_pages(rbio);

	/*
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
	 */
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		generate_pq_vertical(rbio, sectornr);

	bio_list_init(&bio_list);
	ret = rmw_assemble_write_bios(rbio, &bio_list);
	if (ret < 0)
2302
		goto out;
2303 2304 2305 2306 2307 2308

	/* We should have at least one bio assembled. */
	ASSERT(bio_list_size(&bio_list));
	submit_write_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	/* We may have more errors than our tolerance during the read. */
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		int found_errors;

		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			break;
		}
	}
2319 2320
out:
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2321 2322
}

2323 2324 2325 2326 2327
static void rmw_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
2328 2329
	if (lock_stripe_add(rbio) == 0)
		rmw_rbio(rbio);
2330 2331 2332
}

static void rmw_rbio_work_locked(struct work_struct *work)
D
David Woodhouse 已提交
2333
{
2334
	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
D
David Woodhouse 已提交
2335 2336
}

2337 2338 2339
/*
 * The following code is used to scrub/replace the parity stripe
 *
2340
 * Caller must have already increased bio_counter for getting @bioc.
2341
 *
2342 2343 2344 2345 2346
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2347 2348
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2349
				struct btrfs_device *scrub_dev,
2350
				unsigned long *dbitmap, int stripe_nsectors)
2351
{
2352
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2353 2354 2355
	struct btrfs_raid_bio *rbio;
	int i;

2356
	rbio = alloc_rbio(fs_info, bioc);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2367
	/*
2368
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2369 2370 2371 2372
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2373
		if (bioc->stripes[i].dev == scrub_dev) {
2374 2375 2376 2377
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2378
	ASSERT(i < rbio->real_stripes);
2379

2380
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2381 2382 2383
	return rbio;
}

2384 2385
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2386
			    unsigned int pgoff, u64 logical)
2387
{
2388
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2389 2390 2391
	int stripe_offset;
	int index;

2392
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2393
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2394
				       BTRFS_STRIPE_LEN * rbio->nr_data);
2395
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2396 2397 2398
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2399 2400 2401 2402 2403 2404 2405 2406
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2407
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2408
	int total_sector_nr;
2409

2410 2411 2412 2413 2414
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2415

2416 2417 2418 2419 2420 2421 2422 2423
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2424
	}
2425
	index_stripe_sectors(rbio);
2426 2427 2428
	return 0;
}

2429
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
2430
{
2431
	struct btrfs_io_context *bioc = rbio->bioc;
2432
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2433
	void **pointers = rbio->finish_pointers;
2434
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2435 2436
	int nr_data = rbio->nr_data;
	int stripe;
2437
	int sectornr;
2438
	bool has_qstripe;
2439 2440
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2441
	struct bio_list bio_list;
2442
	int is_replace = 0;
2443 2444 2445 2446
	int ret;

	bio_list_init(&bio_list);

2447 2448 2449 2450 2451
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2452 2453
		BUG();

2454
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2455
		is_replace = 1;
2456
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2457 2458
	}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2469 2470
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2471
		return -ENOMEM;
2472 2473
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2474

2475
	if (has_qstripe) {
I
Ira Weiny 已提交
2476
		/* RAID6, allocate and map temp space for the Q stripe */
2477 2478 2479 2480
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2481
			return -ENOMEM;
2482
		}
2483 2484 2485
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2486 2487
	}

2488
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2489

I
Ira Weiny 已提交
2490
	/* Map the parity stripe just once */
2491
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2492

2493
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2494
		struct sector_ptr *sector;
2495
		void *parity;
2496

2497 2498
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2499 2500 2501
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2502 2503
		}

2504
		if (has_qstripe) {
I
Ira Weiny 已提交
2505
			/* RAID6, call the library function to fill in our P/Q */
2506
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2507 2508 2509
						pointers);
		} else {
			/* raid5 */
2510 2511
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2512 2513
		}

2514
		/* Check scrubbing parity and repair it */
2515 2516 2517 2518
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2519 2520
		else
			/* Parity is right, needn't writeback */
2521
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2522
		kunmap_local(parity);
2523

2524 2525
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2526 2527
	}

2528
	kunmap_local(pointers[nr_data]);
2529 2530 2531
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2532
		kunmap_local(pointers[rbio->real_stripes - 1]);
2533 2534
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2535
	}
2536 2537 2538 2539 2540 2541 2542

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2543
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2544
		struct sector_ptr *sector;
2545

2546 2547
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2548
					 sectornr, REQ_OP_WRITE);
2549 2550 2551 2552
		if (ret)
			goto cleanup;
	}

2553 2554 2555
	if (!is_replace)
		goto submit_write;

2556 2557
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2558

2559 2560
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2561
				       bioc->tgtdev_map[rbio->scrubp],
2562
				       sectornr, REQ_OP_WRITE);
2563 2564 2565 2566 2567
		if (ret)
			goto cleanup;
	}

submit_write:
2568 2569
	submit_write_bios(rbio, &bio_list);
	return 0;
2570 2571

cleanup:
2572
	bio_list_put(&bio_list);
2573
	return ret;
2574 2575 2576 2577 2578 2579 2580 2581 2582
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

2583
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2584
{
2585 2586 2587
	void **pointers = NULL;
	void **unmap_array = NULL;
	int sector_nr;
2588
	int ret = 0;
2589

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
	 */
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
	}
2602

2603 2604 2605 2606 2607
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int dfail = 0, failp = -1;
		int faila;
		int failb;
		int found_errors;
2608

2609 2610 2611 2612 2613 2614 2615 2616
		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
							 &faila, &failb);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			goto out;
		}
		if (found_errors == 0)
			continue;
2617

2618 2619
		/* We should have at least one error here. */
		ASSERT(faila >= 0 || failb >= 0);
2620

2621 2622 2623 2624
		if (is_data_stripe(rbio, faila))
			dfail++;
		else if (is_parity_stripe(faila))
			failp = faila;
2625

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		if (is_data_stripe(rbio, failb))
			dfail++;
		else if (is_parity_stripe(failb))
			failp = failb;
		/*
		 * Because we can not use a scrubbing parity to repair the
		 * data, so the capability of the repair is declined.  (In the
		 * case of RAID5, we can not repair anything.)
		 */
		if (dfail > rbio->bioc->max_errors - 1) {
			ret = -EIO;
			goto out;
		}
		/*
		 * If all data is good, only parity is correctly, just repair
		 * the parity, no need to recover data stripes.
		 */
		if (dfail == 0)
			continue;
2645

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity is
		 * scrubbing parity, luckily, use the other one to repair the
		 * data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp) {
			ret = -EIO;
			goto out;
		}

		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
		if (ret < 0)
			goto out;
	}
out:
	kfree(pointers);
	kfree(unmap_array);
2664
	return ret;
2665 2666
}

2667
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2668
{
2669
	struct bio_list bio_list = BIO_EMPTY_LIST;
2670 2671
	int total_sector_nr;
	int ret = 0;
2672

2673 2674 2675 2676 2677 2678
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2679

2680 2681 2682
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

2701
		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2702
					 sectornr, REQ_OP_READ);
2703 2704 2705 2706
		if (ret) {
			bio_list_put(&bio_list);
			return ret;
		}
2707
	}
2708 2709

	submit_read_wait_bio_list(rbio, &bio_list);
2710 2711 2712
	return 0;
}

2713
static int scrub_rbio(struct btrfs_raid_bio *rbio)
2714
{
2715
	bool need_check = false;
2716
	int sector_nr;
2717 2718 2719 2720
	int ret;

	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
2721
		return ret;
2722

2723 2724
	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);

2725
	ret = scrub_assemble_read_bios(rbio);
2726
	if (ret < 0)
2727
		return ret;
2728

2729
	/* We may have some failures, recover the failed sectors first. */
2730 2731
	ret = recover_scrub_rbio(rbio);
	if (ret < 0)
2732
		return ret;
2733

2734 2735 2736 2737 2738 2739
	/*
	 * We have every sector properly prepared. Can finish the scrub
	 * and writeback the good content.
	 */
	ret = finish_parity_scrub(rbio, need_check);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2740 2741 2742 2743 2744 2745 2746 2747 2748
	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
		int found_errors;

		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
		if (found_errors > rbio->bioc->max_errors) {
			ret = -EIO;
			break;
		}
	}
2749
	return ret;
2750 2751
}

2752
static void scrub_rbio_work_locked(struct work_struct *work)
2753 2754
{
	struct btrfs_raid_bio *rbio;
2755
	int ret;
2756 2757

	rbio = container_of(work, struct btrfs_raid_bio, work);
2758 2759
	ret = scrub_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2760 2761 2762 2763 2764
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2765
		start_async_work(rbio, scrub_rbio_work_locked);
2766
}
2767 2768 2769 2770

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2771
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2772
{
2773
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2774 2775
	struct btrfs_raid_bio *rbio;

2776
	rbio = alloc_rbio(fs_info, bioc);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

2788
	set_rbio_range_error(rbio, bio);
2789 2790 2791 2792 2793 2794

	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
2795
	start_async_work(rbio, recover_rbio_work);
2796
}