raid56.c 73.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "messages.h"
17
#include "misc.h"
D
David Woodhouse 已提交
18 19 20 21 22 23 24 25 26
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

56 57 58 59 60 61 62
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
63 64
	unsigned int pgoff:24;
	unsigned int uptodate:8;
65 66
};

D
David Woodhouse 已提交
67 68
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
69 70
static void rmw_work(struct work_struct *work);
static void read_rebuild_work(struct work_struct *work);
D
David Woodhouse 已提交
71 72 73 74 75
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

76 77
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
78
static void scrub_parity_work(struct work_struct *work);
79

80 81 82 83 84 85 86 87
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
	kfree(rbio->stripe_pages);
	kfree(rbio->bio_sectors);
	kfree(rbio->stripe_sectors);
	kfree(rbio->finish_pointers);
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	if (!refcount_dec_and_test(&rbio->refs))
		return;

	WARN_ON(!list_empty(&rbio->stripe_cache));
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}

	btrfs_put_bioc(rbio->bioc);
107
	free_raid_bio_pointers(rbio);
108 109 110
	kfree(rbio);
}

111
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
112
{
113 114
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
115 116
}

D
David Woodhouse 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

133 134 135 136 137 138 139
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
140
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
141 142
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
143

144 145 146
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
147 148 149 150 151 152 153 154 155
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
156
	kvfree(x);
D
David Woodhouse 已提交
157 158 159
	return 0;
}

160 161
/*
 * caching an rbio means to copy anything from the
162
 * bio_sectors array into the stripe_pages array.  We
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

178 179
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
180 181 182 183 184 185 186 187
		if (!rbio->bio_sectors[i].page) {
			/*
			 * Even if the sector is not covered by bio, if it is
			 * a data sector it should still be uptodate as it is
			 * read from disk.
			 */
			if (i < rbio->nr_data * rbio->stripe_nsectors)
				ASSERT(rbio->stripe_sectors[i].uptodate);
188
			continue;
189
		}
190 191 192 193 194 195 196 197 198

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
199 200 201
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
202 203 204 205 206
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
207
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
208 209 210 211 212 213 214 215 216 217 218 219

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
	const int sector_nr = (page_nr << PAGE_SHIFT) >>
			      rbio->bioc->fs_info->sectorsize_bits;

	/*
	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
	 * we won't have a page which is half data half parity.
	 *
	 * Thus if the first sector of the page belongs to data stripes, then
	 * the full page belongs to data stripes.
	 */
	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}

291
/*
292 293 294 295 296
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
297 298 299 300 301 302 303 304 305
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
306 307 308 309 310 311 312
		struct page *p = src->stripe_pages[i];

		/*
		 * We don't need to steal P/Q pages as they will always be
		 * regenerated for RMW or full write anyway.
		 */
		if (!is_data_stripe_page(src, i))
313 314
			continue;

315 316 317 318 319 320
		/*
		 * If @src already has RBIO_CACHE_READY_BIT, it should have
		 * all data stripe pages present and uptodate.
		 */
		ASSERT(p);
		ASSERT(full_page_sectors_uptodate(src, i));
321
		steal_rbio_page(src, dest, i);
322
	}
323 324
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
325 326
}

D
David Woodhouse 已提交
327 328 329 330 331 332 333 334 335 336 337 338
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
339 340 341
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
D
David Woodhouse 已提交
342 343 344 345
	bio_list_init(&victim->bio_list);
}

/*
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

362
	table = rbio->bioc->fs_info->stripe_hash_table;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
393
				refcount_dec(&rbio->refs);
394 395 396 397 398 399 400 401 402
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
403
		free_raid_bio(rbio);
404 405 406 407 408 409 410 411 412 413 414 415 416
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

417
	table = rbio->bioc->fs_info->stripe_hash_table;
418 419 420 421 422 423 424 425 426

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
427
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
448 449 450 451 452
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
453
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
454
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
455 456 457
	info->stripe_hash_table = NULL;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

477
	table = rbio->bioc->fs_info->stripe_hash_table;
478 479 480 481 482 483

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
484
		refcount_inc(&rbio->refs);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
530 531
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
532
 */
533
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
534
{
535
	unsigned long flags;
D
David Woodhouse 已提交
536 537 538
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

539
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
540
	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
D
David Woodhouse 已提交
541
		ret = 0;
542
	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
D
David Woodhouse 已提交
543
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
544

D
David Woodhouse 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

565 566 567 568
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
569
	 * steal from cached rbios though, other functions
570 571 572 573 574 575
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

576
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
577 578
		return 0;

579 580 581 582 583 584 585 586 587 588 589
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
590
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
591 592
		return 0;

593
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
594 595
		return 0;

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
615 616 617
	return 1;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

637 638 639
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
640
{
641
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
642 643
}

644 645 646
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
647
{
648 649 650
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
677
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
678 679 680 681
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
682
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
683 684
	int ret = 0;

685
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
686

D
David Woodhouse 已提交
687 688
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
689
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
690
			continue;
691

692
		spin_lock(&cur->bio_list_lock);
693

694 695 696 697 698 699 700
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
701

702 703 704
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
705

706 707
			goto lockit;
		}
D
David Woodhouse 已提交
708

709 710 711
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
712
			spin_unlock(&cur->bio_list_lock);
713
			freeit = rbio;
D
David Woodhouse 已提交
714 715 716
			ret = 1;
			goto out;
		}
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
742
	}
743
lockit:
744
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
745 746 747
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
748 749
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
750
	if (freeit)
751
		free_raid_bio(freeit);
D
David Woodhouse 已提交
752 753 754 755 756 757 758 759 760 761 762 763
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
764
	int keep_cache = 0;
D
David Woodhouse 已提交
765 766

	bucket = rbio_bucket(rbio);
767
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
768

769 770 771
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
772 773 774 775
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
788 789

		list_del_init(&rbio->hash_list);
790
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
807
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
808 809 810
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

811
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
812
				start_async_work(next, read_rebuild_work);
813 814
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
815
				start_async_work(next, read_rebuild_work);
816
			} else if (next->operation == BTRFS_RBIO_WRITE) {
817
				steal_rbio(rbio, next);
818
				start_async_work(next, rmw_work);
819 820
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
821
				start_async_work(next, scrub_parity_work);
822
			}
D
David Woodhouse 已提交
823 824 825 826

			goto done_nolock;
		}
	}
827
done:
D
David Woodhouse 已提交
828 829 830 831
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
832 833
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
834 835
}

836
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
837
{
838 839 840 841 842 843 844 845 846
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
847 848 849 850 851 852
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
853
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
854 855
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
856
	struct bio *extra;
857

858 859 860 861 862 863
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
864

865 866 867 868 869 870 871 872 873 874
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
875
	free_raid_bio(rbio);
D
David Woodhouse 已提交
876

877 878 879
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
880 881 882 883 884 885
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
886
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
887 888
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
889
	blk_status_t err = bio->bi_status;
890
	int max_errors;
D
David Woodhouse 已提交
891 892 893 894 895 896

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

897
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
898 899
		return;

900
	err = BLK_STS_OK;
D
David Woodhouse 已提交
901 902

	/* OK, we have read all the stripes we need to. */
903
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
904
		     0 : rbio->bioc->max_errors;
905
	if (atomic_read(&rbio->error) > max_errors)
906
		err = BLK_STS_IOERR;
D
David Woodhouse 已提交
907

908
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
909 910
}

D
David Sterba 已提交
911 912
/*
 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
950 951 952 953
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
954
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
955
					 struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
956
{
957
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
958
	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
959
	const unsigned int num_pages = stripe_npages * real_stripes;
960 961
	const unsigned int stripe_nsectors =
		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
962
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
963 964
	struct btrfs_raid_bio *rbio;

965 966
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
967 968 969 970 971
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
972

973
	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
974
	if (!rbio)
D
David Woodhouse 已提交
975
		return ERR_PTR(-ENOMEM);
976 977 978 979 980 981 982 983 984 985 986 987 988 989
	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
				     GFP_NOFS);
	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				    GFP_NOFS);
	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				       GFP_NOFS);
	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);

	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
	    !rbio->finish_pointers) {
		free_raid_bio_pointers(rbio);
		kfree(rbio);
		return ERR_PTR(-ENOMEM);
	}
D
David Woodhouse 已提交
990 991 992 993

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
994
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
995
	INIT_LIST_HEAD(&rbio->hash_list);
996
	btrfs_get_bioc(bioc);
997
	rbio->bioc = bioc;
D
David Woodhouse 已提交
998
	rbio->nr_pages = num_pages;
999
	rbio->nr_sectors = num_sectors;
1000
	rbio->real_stripes = real_stripes;
1001
	rbio->stripe_npages = stripe_npages;
1002
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
1003 1004
	rbio->faila = -1;
	rbio->failb = -1;
1005
	refcount_set(&rbio->refs, 1);
1006 1007
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1008

1009 1010
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
1011 1012 1013 1014 1015 1016 1017

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
1018 1019 1020 1021 1022 1023 1024 1025
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1026 1027
}

1028
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1029 1030
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1031
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1032
	int ret;
D
David Woodhouse 已提交
1033

1034 1035 1036 1037 1038 1039 1040
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1041 1042 1043
}

/*
1044 1045 1046 1047
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1048
 */
1049 1050 1051 1052 1053
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
1054
			      enum req_op op)
D
David Woodhouse 已提交
1055
{
1056
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1057 1058 1059
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1060
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1061 1062
	u64 disk_start;

1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1072
	stripe = &rbio->bioc->stripes[stripe_nr];
1073
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1074 1075 1076 1077 1078 1079 1080

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1081
		u64 last_end = last->bi_iter.bi_sector << 9;
1082
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1083 1084 1085 1086 1087

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1088
		if (last_end == disk_start && !last->bi_status &&
1089
		    last->bi_bdev == stripe->dev->bdev) {
1090 1091 1092
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1093 1094 1095 1096 1097
				return 0;
		}
	}

	/* put a new bio on the list */
1098 1099
	bio = bio_alloc(stripe->dev->bdev,
			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1100
			op, GFP_NOFS);
1101
	bio->bi_iter.bi_sector = disk_start >> 9;
1102
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1103

1104
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1119
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1120 1121 1122 1123 1124 1125
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1162 1163 1164
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1165 1166 1167
	spin_unlock_irq(&rbio->bio_list_lock);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/* Generate PQ for one veritical stripe. */
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
	void **pointers = rbio->finish_pointers;
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct sector_ptr *sector;
	int stripe;
	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;

	/* First collect one sector from each data stripe */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
		pointers[stripe] = kmap_local_page(sector->page) +
				   sector->pgoff;
	}

	/* Then add the parity stripe */
	sector = rbio_pstripe_sector(rbio, sectornr);
	sector->uptodate = 1;
	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;

	if (has_qstripe) {
		/*
		 * RAID6, add the qstripe and call the library function
		 * to fill in our p/q
		 */
		sector = rbio_qstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) +
				     sector->pgoff;

		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
					pointers);
	} else {
		/* raid5 */
		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
	}
	for (stripe = stripe - 1; stripe >= 0; stripe--)
		kunmap_local(pointers[stripe]);
}

D
David Woodhouse 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
1248
	struct btrfs_io_context *bioc = rbio->bioc;
1249 1250
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
D
David Woodhouse 已提交
1251
	int stripe;
1252
	/* Sector number inside a stripe. */
1253
	int sectornr;
D
David Woodhouse 已提交
1254 1255 1256 1257 1258 1259
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1260 1261 1262
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

D
David Woodhouse 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1275
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1276 1277 1278 1279

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1280 1281 1282 1283 1284
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1285 1286
	 */
	index_rbio_pages(rbio);
1287 1288 1289 1290
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1291

1292 1293
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		generate_pq_vertical(rbio, sectornr);
D
David Woodhouse 已提交
1294 1295

	/*
1296 1297
	 * Start writing.  Make bios for everything from the higher layers (the
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1298
	 */
1299 1300 1301
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1302

1303 1304
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
D
David Woodhouse 已提交
1305

1306 1307 1308
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1309

1310 1311 1312 1313 1314 1315
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1316
		}
1317 1318

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1319
					 sectornr, REQ_OP_WRITE);
1320 1321
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1322 1323
	}

1324
	if (likely(!bioc->num_tgtdevs))
1325 1326
		goto write_data;

1327 1328 1329
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1330

1331 1332
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342
		if (!bioc->tgtdev_map[stripe]) {
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1343

1344 1345 1346
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1347

1348 1349 1350 1351 1352 1353
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1354
		}
1355 1356 1357

		ret = rbio_add_io_sector(rbio, &bio_list, sector,
					 rbio->bioc->tgtdev_map[stripe],
1358
					 sectornr, REQ_OP_WRITE);
1359 1360
		if (ret)
			goto cleanup;
1361 1362 1363
	}

write_data:
1364 1365
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1366

1367
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1368
		bio->bi_end_io = raid_write_end_io;
1369

1370 1371 1372 1373 1374 1375
		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
1376
		submit_bio(bio);
D
David Woodhouse 已提交
1377 1378 1379 1380
	}
	return;

cleanup:
1381
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1382 1383 1384

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
D
David Woodhouse 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1395
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1396
	int i;
1397
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1398 1399 1400

	physical <<= 9;

1401 1402
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1403
		if (in_range(physical, stripe->physical, BTRFS_STRIPE_LEN) &&
1404
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1419
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1420 1421 1422
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1423
		u64 stripe_start = rbio->bioc->raid_map[i];
1424

1425
		if (in_range(logical, stripe_start, BTRFS_STRIPE_LEN))
D
David Woodhouse 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1448
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1449 1450 1451
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1452
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
/*
 * For subpage case, we can no longer set page Uptodate directly for
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1496 1497 1498 1499
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1500
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1501
{
1502
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1503
	struct bio_vec *bvec;
1504
	struct bvec_iter_all iter_all;
1505

1506
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1520 1521
}

1522
static void raid56_bio_end_io(struct bio *bio)
D
David Woodhouse 已提交
1523 1524 1525
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1526
	if (bio->bi_status)
D
David Woodhouse 已提交
1527 1528
		fail_bio_stripe(rbio, bio);
	else
1529
		set_bio_pages_uptodate(rbio, bio);
D
David Woodhouse 已提交
1530 1531 1532

	bio_put(bio);

1533 1534 1535 1536
	if (atomic_dec_and_test(&rbio->stripes_pending))
		queue_work(rbio->bioc->fs_info->endio_raid56_workers,
			   &rbio->end_io_work);
}
D
David Woodhouse 已提交
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * End io handler for the read phase of the RMW cycle.  All the bios here are
 * physical stripe bios we've read from the disk so we can recalculate the
 * parity of the stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
static void raid56_rmw_end_io_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);

	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
		return;
	}
D
David Woodhouse 已提交
1555 1556

	/*
1557 1558
	 * This will normally call finish_rmw to start our write but if there
	 * are any failed stripes we'll reconstruct from parity first.
D
David Woodhouse 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	 */
	validate_rbio_for_rmw(rbio);
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
1571
	const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data;
D
David Woodhouse 已提交
1572
	int ret;
1573
	int total_sector_nr;
D
David Woodhouse 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1584
	atomic_set(&rbio->error, 0);
1585 1586 1587 1588 1589 1590
	/* Build a list of bios to read all the missing data sectors. */
	for (total_sector_nr = 0; total_sector_nr < nr_data_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1591

1592 1593 1594 1595 1596 1597 1598 1599
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk.  If sector_in_rbio() finds a page
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;
D
David Woodhouse 已提交
1600

1601 1602 1603 1604 1605 1606 1607
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate page.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;
1608

1609
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
1610
			       stripe, sectornr, REQ_OP_READ);
1611 1612
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
1627 1628
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
1629
	 */
1630
	atomic_set(&rbio->stripes_pending, bios_to_read);
1631
	INIT_WORK(&rbio->end_io_work, raid56_rmw_end_io_work);
1632
	while ((bio = bio_list_pop(&bio_list))) {
1633
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
1634

1635 1636
		if (trace_raid56_read_partial_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
D
David Woodhouse 已提交
1637

1638 1639 1640
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_read_partial(rbio, bio, &trace_info);
		}
1641
		submit_bio(bio);
D
David Woodhouse 已提交
1642 1643 1644 1645 1646
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1647
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1648 1649 1650 1651

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1668
	if (ret)
D
David Woodhouse 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		return ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
1688
		start_async_work(rbio, rmw_work);
D
David Woodhouse 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1717
	struct work_struct work;
1718 1719 1720 1721 1722
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1723 1724
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1725
{
1726 1727 1728 1729
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1730 1731
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1757 1758
			int ret;

1759
			/* we have a full stripe, send it down */
1760 1761
			ret = full_stripe_write(cur);
			BUG_ON(ret);
1762 1763 1764 1765 1766
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
1767
				free_raid_bio(cur);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
1785
static void unplug_work(struct work_struct *work)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1798 1799
		INIT_WORK(&plug->work, unplug_work);
		queue_work(plug->info->rmw_workers, &plug->work);
1800 1801 1802 1803 1804
		return;
	}
	run_plug(plug);
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
1817
	       rbio->nr_data * BTRFS_STRIPE_LEN);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1832 1833 1834
/*
 * our main entry point for writes from the rest of the FS.
 */
1835
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
1836
{
1837
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1838
	struct btrfs_raid_bio *rbio;
1839 1840
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1841
	int ret = 0;
D
David Woodhouse 已提交
1842

1843
	rbio = alloc_rbio(fs_info, bioc);
1844
	if (IS_ERR(rbio)) {
1845
		ret = PTR_ERR(rbio);
1846
		goto fail;
1847
	}
1848
	rbio->operation = BTRFS_RBIO_WRITE;
1849
	rbio_add_bio(rbio, bio);
1850 1851 1852 1853 1854

	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1855 1856
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
1857
		if (ret) {
1858
			free_raid_bio(rbio);
1859
			goto fail;
1860
		}
1861
		return;
1862
	}
1863

1864
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1865 1866 1867
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1868
			plug->info = fs_info;
1869 1870 1871 1872
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
	} else {
1873
		ret = __raid56_parity_write(rbio);
1874
		if (ret) {
1875
			free_raid_bio(rbio);
1876
			goto fail;
1877
		}
1878
	}
1879 1880 1881

	return;

1882
fail:
1883 1884
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
D
David Woodhouse 已提交
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/*
 * Recover a vertical stripe specified by @sector_nr.
 * @*pointers are the pre-allocated pointers by the caller, so we don't
 * need to allocate/free the pointers again and again.
 */
static void recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
			     void **pointers, void **unmap_array)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	const u32 sectorsize = fs_info->sectorsize;
	const int faila = rbio->faila;
	const int failb = rbio->failb;
	int stripe_nr;

	/*
	 * Now we just use bitmap to mark the horizontal stripes in
	 * which we have data when doing parity scrub.
	 */
	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
	    !test_bit(sector_nr, &rbio->dbitmap))
		return;

	/*
	 * Setup our array of pointers with sectors from each stripe
	 *
	 * NOTE: store a duplicate array of pointers to preserve the
	 * pointer order.
	 */
	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		/*
		 * If we're rebuilding a read, we have to use
		 * pages from the bio list
		 */
		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
		    (stripe_nr == faila || stripe_nr == failb)) {
			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
		} else {
			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
		}
		ASSERT(sector->page);
		pointers[stripe_nr] = kmap_local_page(sector->page) +
				   sector->pgoff;
		unmap_array[stripe_nr] = pointers[stripe_nr];
	}

	/* All raid6 handling here */
	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
		/* Single failure, rebuild from parity raid5 style */
		if (failb < 0) {
			if (faila == rbio->nr_data)
				/*
				 * Just the P stripe has failed, without
				 * a bad data or Q stripe.
				 * We have nothing to do, just skip the
				 * recovery for this stripe.
				 */
				goto cleanup;
			/*
			 * a single failure in raid6 is rebuilt
			 * in the pstripe code below
			 */
			goto pstripe;
		}

		/*
		 * If the q stripe is failed, do a pstripe reconstruction from
		 * the xors.
		 * If both the q stripe and the P stripe are failed, we're
		 * here due to a crc mismatch and we can't give them the
		 * data they want.
		 */
		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
			if (rbio->bioc->raid_map[faila] ==
			    RAID5_P_STRIPE)
				/*
				 * Only P and Q are corrupted.
				 * We only care about data stripes recovery,
				 * can skip this vertical stripe.
				 */
				goto cleanup;
			/*
			 * Otherwise we have one bad data stripe and
			 * a good P stripe.  raid5!
			 */
			goto pstripe;
		}

		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
			raid6_datap_recov(rbio->real_stripes, sectorsize,
					  faila, pointers);
		} else {
			raid6_2data_recov(rbio->real_stripes, sectorsize,
					  faila, failb, pointers);
		}
	} else {
		void *p;

		/* Rebuild from P stripe here (raid5 or raid6). */
		ASSERT(failb == -1);
pstripe:
		/* Copy parity block into failed block to start with */
		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);

		/* Rearrange the pointer array */
		p = pointers[faila];
		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
		     stripe_nr++)
			pointers[stripe_nr] = pointers[stripe_nr + 1];
		pointers[rbio->nr_data - 1] = p;

		/* Xor in the rest */
		run_xor(pointers, rbio->nr_data - 1, sectorsize);

	}

	/*
	 * No matter if this is a RMW or recovery, we should have all
	 * failed sectors repaired in the vertical stripe, thus they are now
	 * uptodate.
	 * Especially if we determine to cache the rbio, we need to
	 * have at least all data sectors uptodate.
	 */
	if (rbio->faila >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->faila, sector_nr);
		sector->uptodate = 1;
	}
	if (rbio->failb >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->failb, sector_nr);
		sector->uptodate = 1;
	}

cleanup:
	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
		kunmap_local(unmap_array[stripe_nr]);
}

2025
static int recover_sectors(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
2026
{
2027 2028
	void **pointers = NULL;
	void **unmap_array = NULL;
2029 2030
	int sectornr;
	int ret = 0;
D
David Woodhouse 已提交
2031

2032
	/*
2033 2034 2035 2036
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
2037
	 */
2038
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2039
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2040 2041 2042
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
2043 2044
	}

2045 2046 2047
	/* Make sure faila and fail b are in order. */
	if (rbio->faila >= 0 && rbio->failb >= 0 && rbio->faila > rbio->failb)
		swap(rbio->faila, rbio->failb);
D
David Woodhouse 已提交
2048

2049 2050
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
2051 2052 2053 2054 2055 2056 2057
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

2058 2059
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		recover_vertical(rbio, sectornr, pointers, unmap_array);
D
David Woodhouse 已提交
2060

2061
out:
D
David Woodhouse 已提交
2062
	kfree(pointers);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	kfree(unmap_array);
	return ret;
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = recover_sectors(rbio);
D
David Woodhouse 已提交
2077

2078 2079 2080 2081 2082 2083 2084
	/*
	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
	 * valid rbio which is consistent with ondisk content, thus such a
	 * valid rbio can be cached to avoid further disk reads.
	 */
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		/*
		 * - In case of two failures, where rbio->failb != -1:
		 *
		 *   Do not cache this rbio since the above read reconstruction
		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
		 *   changed some content of stripes which are not identical to
		 *   on-disk content any more, otherwise, a later write/recover
		 *   may steal stripe_pages from this rbio and end up with
		 *   corruptions or rebuild failures.
		 *
		 * - In case of single failure, where rbio->failb == -1:
		 *
		 *   Cache this rbio iff the above read reconstruction is
2098
		 *   executed without problems.
2099
		 */
2100
		if (!ret && rbio->failb < 0)
2101 2102 2103 2104
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

2105 2106
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	} else if (!ret) {
D
David Woodhouse 已提交
2107 2108
		rbio->faila = -1;
		rbio->failb = -1;
2109 2110 2111 2112 2113 2114 2115

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
2116
	} else {
2117
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
D
David Woodhouse 已提交
2118 2119 2120 2121
	}
}

/*
2122 2123
 * This is called only for stripes we've read from disk to reconstruct the
 * parity.
D
David Woodhouse 已提交
2124
 */
2125
static void raid_recover_end_io_work(struct work_struct *work)
D
David Woodhouse 已提交
2126
{
2127 2128
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
D
David Woodhouse 已提交
2129

2130
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2131
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
2132 2133 2134 2135
	else
		__raid_recover_end_io(rbio);
}

2136 2137
static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
				      struct bio_list *bio_list)
D
David Woodhouse 已提交
2138 2139
{
	struct bio *bio;
2140 2141
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
2142

2143
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
2144
	/*
2145 2146 2147 2148 2149 2150
	 * Read everything that hasn't failed. However this time we will
	 * not trust any cached sector.
	 * As we may read out some stale data but higher layer is not reading
	 * that stale part.
	 *
	 * So here we always re-read everything in recovery path.
D
David Woodhouse 已提交
2151
	 */
2152 2153 2154 2155 2156 2157
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

2158
		if (rbio->faila == stripe || rbio->failb == stripe) {
2159
			atomic_inc(&rbio->error);
2160 2161 2162
			/* Skip the current stripe. */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
D
David Woodhouse 已提交
2163
			continue;
2164
		}
2165
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2166
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
2167
					 sectornr, REQ_OP_READ);
2168
		if (ret < 0)
2169
			goto error;
D
David Woodhouse 已提交
2170
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	return 0;
error:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);

	return -EIO;
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);

	ret = recover_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto cleanup;
D
David Woodhouse 已提交
2205 2206 2207 2208 2209 2210 2211 2212

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2213
		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
D
David Woodhouse 已提交
2214
			__raid_recover_end_io(rbio);
2215
			return 0;
D
David Woodhouse 已提交
2216 2217 2218 2219 2220 2221
		} else {
			goto cleanup;
		}
	}

	/*
2222 2223
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
2224
	 */
2225
	atomic_set(&rbio->stripes_pending, bios_to_read);
2226
	INIT_WORK(&rbio->end_io_work, raid_recover_end_io_work);
2227
	while ((bio = bio_list_pop(&bio_list))) {
2228
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
2229

2230 2231
		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
D
David Woodhouse 已提交
2232

2233 2234 2235
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
2236
		submit_bio(bio);
D
David Woodhouse 已提交
2237
	}
2238

D
David Woodhouse 已提交
2239 2240 2241
	return 0;

cleanup:
2242 2243
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2244
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2245 2246 2247 2248

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2258
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2259
			   int mirror_num)
D
David Woodhouse 已提交
2260
{
2261
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2262 2263
	struct btrfs_raid_bio *rbio;

2264
	rbio = alloc_rbio(fs_info, bioc);
2265
	if (IS_ERR(rbio)) {
2266 2267
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
		goto out_end_bio;
2268
	}
D
David Woodhouse 已提交
2269

2270
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2271
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2272 2273 2274

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2275
		btrfs_warn(fs_info,
2276
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
2277
			   __func__, bio->bi_iter.bi_sector << 9,
2278
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
2279
		free_raid_bio(rbio);
2280 2281
		bio->bi_status = BLK_STS_IOERR;
		goto out_end_bio;
D
David Woodhouse 已提交
2282 2283 2284
	}

	/*
L
Liu Bo 已提交
2285 2286 2287
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2288
	 */
L
Liu Bo 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2300

2301 2302
	if (lock_stripe_add(rbio))
		return;
D
David Woodhouse 已提交
2303 2304

	/*
2305 2306
	 * This adds our rbio to the list of rbios that will be handled after
	 * the current lock owner is done.
D
David Woodhouse 已提交
2307
	 */
2308 2309
	__raid56_parity_recover(rbio);
	return;
D
David Woodhouse 已提交
2310

2311 2312
out_end_bio:
	bio_endio(bio);
D
David Woodhouse 已提交
2313 2314
}

2315
static void rmw_work(struct work_struct *work)
D
David Woodhouse 已提交
2316 2317 2318 2319 2320 2321 2322
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

2323
static void read_rebuild_work(struct work_struct *work)
D
David Woodhouse 已提交
2324 2325 2326 2327 2328 2329
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2330 2331 2332 2333

/*
 * The following code is used to scrub/replace the parity stripe
 *
2334
 * Caller must have already increased bio_counter for getting @bioc.
2335
 *
2336 2337 2338 2339 2340
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2341 2342
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2343
				struct btrfs_device *scrub_dev,
2344
				unsigned long *dbitmap, int stripe_nsectors)
2345
{
2346
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2347 2348 2349
	struct btrfs_raid_bio *rbio;
	int i;

2350
	rbio = alloc_rbio(fs_info, bioc);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2361
	/*
2362
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2363 2364 2365 2366
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2367
		if (bioc->stripes[i].dev == scrub_dev) {
2368 2369 2370 2371
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2372
	ASSERT(i < rbio->real_stripes);
2373

2374
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2375 2376 2377
	return rbio;
}

2378 2379
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2380
			    unsigned int pgoff, u64 logical)
2381
{
2382
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2383 2384 2385
	int stripe_offset;
	int index;

2386
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2387
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2388
				       BTRFS_STRIPE_LEN * rbio->nr_data);
2389
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2390 2391 2392
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2393 2394 2395 2396 2397 2398 2399 2400
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2401
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2402
	int total_sector_nr;
2403

2404 2405 2406 2407 2408
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2409

2410 2411 2412 2413 2414 2415 2416 2417
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2418
	}
2419
	index_stripe_sectors(rbio);
2420 2421 2422 2423 2424 2425
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2426
	struct btrfs_io_context *bioc = rbio->bioc;
2427
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2428
	void **pointers = rbio->finish_pointers;
2429
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2430 2431
	int nr_data = rbio->nr_data;
	int stripe;
2432
	int sectornr;
2433
	bool has_qstripe;
2434 2435
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2436 2437
	struct bio_list bio_list;
	struct bio *bio;
2438
	int is_replace = 0;
2439 2440 2441 2442
	int ret;

	bio_list_init(&bio_list);

2443 2444 2445 2446 2447
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2448 2449
		BUG();

2450
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2451
		is_replace = 1;
2452
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2453 2454
	}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2465 2466
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2467
		goto cleanup;
2468 2469
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2470

2471
	if (has_qstripe) {
I
Ira Weiny 已提交
2472
		/* RAID6, allocate and map temp space for the Q stripe */
2473 2474 2475 2476
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2477 2478
			goto cleanup;
		}
2479 2480 2481
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2482 2483 2484 2485
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2486
	/* Map the parity stripe just once */
2487
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2488

2489
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2490
		struct sector_ptr *sector;
2491
		void *parity;
2492

2493 2494
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2495 2496 2497
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2498 2499
		}

2500
		if (has_qstripe) {
I
Ira Weiny 已提交
2501
			/* RAID6, call the library function to fill in our P/Q */
2502
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2503 2504 2505
						pointers);
		} else {
			/* raid5 */
2506 2507
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2508 2509
		}

2510
		/* Check scrubbing parity and repair it */
2511 2512 2513 2514
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2515 2516
		else
			/* Parity is right, needn't writeback */
2517
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2518
		kunmap_local(parity);
2519

2520 2521
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2522 2523
	}

2524
	kunmap_local(pointers[nr_data]);
2525 2526 2527
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2528
		kunmap_local(pointers[rbio->real_stripes - 1]);
2529 2530
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2531
	}
2532 2533 2534 2535 2536 2537 2538

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2539
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2540
		struct sector_ptr *sector;
2541

2542 2543
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2544
					 sectornr, REQ_OP_WRITE);
2545 2546 2547 2548
		if (ret)
			goto cleanup;
	}

2549 2550 2551
	if (!is_replace)
		goto submit_write;

2552 2553
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2554

2555 2556
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2557
				       bioc->tgtdev_map[rbio->scrubp],
2558
				       sectornr, REQ_OP_WRITE);
2559 2560 2561 2562 2563
		if (ret)
			goto cleanup;
	}

submit_write:
2564 2565 2566
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2567
		rbio_orig_end_io(rbio, BLK_STS_OK);
2568 2569 2570 2571 2572
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

2573
	while ((bio = bio_list_pop(&bio_list))) {
2574
		bio->bi_end_io = raid_write_end_io;
2575

2576 2577 2578 2579 2580 2581
		if (trace_raid56_scrub_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_write_stripe(rbio, bio, &trace_info);
		}
2582
		submit_bio(bio);
2583 2584 2585 2586
	}
	return;

cleanup:
2587
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2588 2589 2590

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
2609
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
2630
		if (dfail > rbio->bioc->max_errors - 1)
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2645
		 * is scrubbing parity, luckily, use the other one to repair
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2658
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2669
static void raid56_parity_scrub_end_io_work(struct work_struct *work)
2670
{
2671 2672
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
2673 2674

	/*
2675 2676
	 * This will normally call finish_rmw to start our write, but if there
	 * are any failed stripes we'll reconstruct from parity first
2677 2678 2679 2680 2681 2682 2683 2684 2685
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2686
	int total_sector_nr;
2687 2688
	struct bio *bio;

L
Liu Bo 已提交
2689 2690
	bio_list_init(&bio_list);

2691 2692 2693 2694 2695
	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
2696 2697 2698 2699 2700 2701
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2702

2703 2704 2705
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2725
					 sectornr, REQ_OP_READ);
2726 2727
		if (ret)
			goto cleanup;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
2742 2743
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
2744 2745
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
2746
	INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work);
2747
	while ((bio = bio_list_pop(&bio_list))) {
2748
		bio->bi_end_io = raid56_bio_end_io;
2749

2750 2751
		if (trace_raid56_scrub_read_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
2752

2753 2754 2755
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read(rbio, bio, &trace_info);
		}
2756
		submit_bio(bio);
2757 2758 2759 2760 2761
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2762
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2763 2764 2765 2766

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2767 2768 2769 2770 2771 2772
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

2773
static void scrub_parity_work(struct work_struct *work)
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2784
		start_async_work(rbio, scrub_parity_work);
2785
}
2786 2787 2788 2789

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2790
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2791
{
2792
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2793 2794
	struct btrfs_raid_bio *rbio;

2795
	rbio = alloc_rbio(fs_info, bioc);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2809 2810 2811
		btrfs_warn_rl(fs_info,
	"can not determine the failed stripe number for full stripe %llu",
			      bioc->raid_map[0]);
2812
		free_raid_bio(rbio);
2813 2814 2815 2816 2817 2818 2819 2820 2821
		return NULL;
	}

	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2822
		start_async_work(rbio, read_rebuild_work);
2823
}