raid56.c 71.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "misc.h"
D
David Woodhouse 已提交
17 18 19 20 21 22 23 24 25
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

55 56 57 58 59 60 61
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
62 63
	unsigned int pgoff:24;
	unsigned int uptodate:8;
64 65
};

66
enum btrfs_rbio_ops {
67 68 69 70
	BTRFS_RBIO_WRITE,
	BTRFS_RBIO_READ_REBUILD,
	BTRFS_RBIO_PARITY_SCRUB,
	BTRFS_RBIO_REBUILD_MISSING,
71 72
};

D
David Woodhouse 已提交
73
struct btrfs_raid_bio {
74
	struct btrfs_io_context *bioc;
D
David Woodhouse 已提交
75 76 77 78 79 80 81 82

	/* while we're doing rmw on a stripe
	 * we put it into a hash table so we can
	 * lock the stripe and merge more rbios
	 * into it.
	 */
	struct list_head hash_list;

83 84 85 86 87
	/*
	 * LRU list for the stripe cache
	 */
	struct list_head stripe_cache;

D
David Woodhouse 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
	/*
	 * for scheduling work in the helper threads
	 */
	struct btrfs_work work;

	/*
	 * bio list and bio_list_lock are used
	 * to add more bios into the stripe
	 * in hopes of avoiding the full rmw
	 */
	struct bio_list bio_list;
	spinlock_t bio_list_lock;

101 102 103 104
	/* also protected by the bio_list_lock, the
	 * plug list is used by the plugging code
	 * to collect partial bios while plugged.  The
	 * stripe locking code also uses it to hand off
D
David Woodhouse 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	 * the stripe lock to the next pending IO
	 */
	struct list_head plug_list;

	/*
	 * flags that tell us if it is safe to
	 * merge with this bio
	 */
	unsigned long flags;

	/*
	 * set if we're doing a parity rebuild
	 * for a read from higher up, which is handled
	 * differently from a parity rebuild as part of
	 * rmw
	 */
121
	enum btrfs_rbio_ops operation;
D
David Woodhouse 已提交
122

123 124
	/* Size of each individual stripe on disk */
	u32 stripe_len;
D
David Woodhouse 已提交
125

126 127
	/* How many pages there are for the full stripe including P/Q */
	u16 nr_pages;
D
David Woodhouse 已提交
128

129 130 131
	/* How many sectors there are for the full stripe including P/Q */
	u16 nr_sectors;

132 133 134 135 136 137 138 139 140
	/* Number of data stripes (no p/q) */
	u8 nr_data;

	/* Numer of all stripes (including P/Q) */
	u8 real_stripes;

	/* How many pages there are for each stripe */
	u8 stripe_npages;

141 142 143
	/* How many sectors there are for each stripe */
	u8 stripe_nsectors;

144 145 146 147 148 149 150 151
	/* First bad stripe, -1 means no corruption */
	s8 faila;

	/* Second bad stripe (for RAID6 use) */
	s8 failb;

	/* Stripe number that we're scrubbing  */
	u8 scrubp;
D
David Woodhouse 已提交
152 153 154 155 156 157 158 159

	/*
	 * size of all the bios in the bio_list.  This
	 * helps us decide if the rbio maps to a full
	 * stripe or not
	 */
	int bio_list_bytes;

160 161
	int generic_bio_cnt;

162
	refcount_t refs;
D
David Woodhouse 已提交
163

164 165 166
	atomic_t stripes_pending;

	atomic_t error;
D
David Woodhouse 已提交
167 168 169 170 171 172 173 174 175 176 177
	/*
	 * these are two arrays of pointers.  We allocate the
	 * rbio big enough to hold them both and setup their
	 * locations when the rbio is allocated
	 */

	/* pointers to pages that we allocated for
	 * reading/writing stripes directly from the disk (including P/Q)
	 */
	struct page **stripe_pages;

178 179 180
	/* Pointers to the sectors in the bio_list, for faster lookup */
	struct sector_ptr *bio_sectors;

181
	/*
182 183
	 * For subpage support, we need to map each sector to above
	 * stripe_pages.
184
	 */
185 186 187
	struct sector_ptr *stripe_sectors;

	/* Bitmap to record which horizontal stripe has data */
188
	unsigned long *dbitmap;
K
Kees Cook 已提交
189 190 191 192

	/* allocated with real_stripes-many pointers for finish_*() calls */
	void **finish_pointers;

193
	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
K
Kees Cook 已提交
194
	unsigned long *finish_pbitmap;
D
David Woodhouse 已提交
195 196 197 198 199 200 201 202 203 204 205 206
};

static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
static void rmw_work(struct btrfs_work *work);
static void read_rebuild_work(struct btrfs_work *work);
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

207 208
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
209
static void scrub_parity_work(struct btrfs_work *work);
210

211 212
static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
{
213
	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
214
	btrfs_queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
215 216
}

D
David Woodhouse 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

233 234 235 236 237 238 239
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
240
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
241 242
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
243

244 245 246
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
247 248 249 250 251 252 253 254 255
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
256
	kvfree(x);
D
David Woodhouse 已提交
257 258 259
	return 0;
}

260 261
/*
 * caching an rbio means to copy anything from the
262
 * bio_sectors array into the stripe_pages array.  We
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

278 279 280 281 282 283 284 285 286 287 288 289 290
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
		if (!rbio->bio_sectors[i].page)
			continue;

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
291 292 293
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
294 295 296 297 298
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
299
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
300 301 302 303 304 305 306 307 308 309 310 311

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * stealing an rbio means taking all the uptodate pages from the stripe
 * array in the source rbio and putting them into the destination rbio
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;
	struct page *s;
	struct page *d;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
		s = src->stripe_pages[i];
		if (!s || !PageUptodate(s)) {
			continue;
		}

		d = dest->stripe_pages[i];
		if (d)
			__free_page(d);

		dest->stripe_pages[i] = s;
		src->stripe_pages[i] = NULL;
	}
358 359
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
360 361
}

D
David Woodhouse 已提交
362 363 364 365 366 367 368 369 370 371 372 373
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
374
	dest->generic_bio_cnt += victim->generic_bio_cnt;
D
David Woodhouse 已提交
375 376 377 378
	bio_list_init(&victim->bio_list);
}

/*
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

395
	table = rbio->bioc->fs_info->stripe_hash_table;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
426
				refcount_dec(&rbio->refs);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
		__free_raid_bio(rbio);
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

450
	table = rbio->bioc->fs_info->stripe_hash_table;
451 452 453 454 455 456 457 458 459

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
460
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
481 482 483 484 485
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
486
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
487
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
488 489 490
	info->stripe_hash_table = NULL;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

510
	table = rbio->bioc->fs_info->stripe_hash_table;
511 512 513 514 515 516

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
517
		refcount_inc(&rbio->refs);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
563 564
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
565
 */
566
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
567
{
568
	unsigned long flags;
D
David Woodhouse 已提交
569 570 571
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

572
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
D
David Woodhouse 已提交
573 574 575 576
	if (size != rbio->nr_data * rbio->stripe_len)
		ret = 0;
	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
577

D
David Woodhouse 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

598 599 600 601
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
602
	 * steal from cached rbios though, other functions
603 604 605 606 607 608
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

609
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
610 611
		return 0;

612 613 614 615 616 617 618 619 620 621 622
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
623
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
624 625
		return 0;

626
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
627 628
		return 0;

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
648 649 650
	return 1;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

670 671 672
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
673
{
674
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
675 676
}

677 678 679
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
680
{
681 682 683
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
710
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
711 712 713 714
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
715
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
716 717
	int ret = 0;

718
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
719

D
David Woodhouse 已提交
720 721
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
722
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
723
			continue;
724

725
		spin_lock(&cur->bio_list_lock);
726

727 728 729 730 731 732 733
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
734

735 736 737
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
738

739 740
			goto lockit;
		}
D
David Woodhouse 已提交
741

742 743 744
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
745
			spin_unlock(&cur->bio_list_lock);
746
			freeit = rbio;
D
David Woodhouse 已提交
747 748 749
			ret = 1;
			goto out;
		}
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
775
	}
776
lockit:
777
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
778 779 780
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
781 782
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796
	if (freeit)
		__free_raid_bio(freeit);
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
797
	int keep_cache = 0;
D
David Woodhouse 已提交
798 799

	bucket = rbio_bucket(rbio);
800
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
801

802 803 804
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
805 806 807 808
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
809 810 811 812 813 814 815 816 817 818 819 820
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
821 822

		list_del_init(&rbio->hash_list);
823
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
840
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
841 842 843
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

844
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
845
				start_async_work(next, read_rebuild_work);
846 847
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
848
				start_async_work(next, read_rebuild_work);
849
			} else if (next->operation == BTRFS_RBIO_WRITE) {
850
				steal_rbio(rbio, next);
851
				start_async_work(next, rmw_work);
852 853
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
854
				start_async_work(next, scrub_parity_work);
855
			}
D
David Woodhouse 已提交
856 857 858 859

			goto done_nolock;
		}
	}
860
done:
D
David Woodhouse 已提交
861 862 863 864
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
865 866
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
867 868 869 870 871 872
}

static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

873
	if (!refcount_dec_and_test(&rbio->refs))
D
David Woodhouse 已提交
874 875
		return;

876
	WARN_ON(!list_empty(&rbio->stripe_cache));
D
David Woodhouse 已提交
877 878 879 880 881 882 883 884 885
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}
886

887
	btrfs_put_bioc(rbio->bioc);
D
David Woodhouse 已提交
888 889 890
	kfree(rbio);
}

891
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
892
{
893 894 895 896 897 898 899 900 901
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
902 903 904 905 906 907
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
908
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
909 910
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
911
	struct bio *extra;
912 913

	if (rbio->generic_bio_cnt)
914
		btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
915

916 917 918 919 920 921 922 923 924 925 926
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
	__free_raid_bio(rbio);
D
David Woodhouse 已提交
927

928 929 930
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
931 932 933 934 935 936
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
937
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
938 939
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
940
	blk_status_t err = bio->bi_status;
941
	int max_errors;
D
David Woodhouse 已提交
942 943 944 945 946 947

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

948
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
949 950
		return;

951
	err = BLK_STS_OK;
D
David Woodhouse 已提交
952 953

	/* OK, we have read all the stripes we need to. */
954
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
955
		     0 : rbio->bioc->max_errors;
956
	if (atomic_read(&rbio->error) > max_errors)
957
		err = BLK_STS_IOERR;
D
David Woodhouse 已提交
958

959
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
960 961
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/**
 * Get a sector pointer specified by its @stripe_nr and @sector_nr
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
1001 1002 1003 1004
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
1005
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
1006
					 struct btrfs_io_context *bioc,
1007
					 u32 stripe_len)
D
David Woodhouse 已提交
1008
{
1009 1010 1011
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
	const unsigned int stripe_npages = stripe_len >> PAGE_SHIFT;
	const unsigned int num_pages = stripe_npages * real_stripes;
1012 1013
	const unsigned int stripe_nsectors = stripe_len >> fs_info->sectorsize_bits;
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
1014 1015 1016 1017
	struct btrfs_raid_bio *rbio;
	int nr_data = 0;
	void *p;

1018
	ASSERT(IS_ALIGNED(stripe_len, PAGE_SIZE));
1019 1020
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
1021

K
Kees Cook 已提交
1022 1023
	rbio = kzalloc(sizeof(*rbio) +
		       sizeof(*rbio->stripe_pages) * num_pages +
1024
		       sizeof(*rbio->bio_sectors) * num_sectors +
1025
		       sizeof(*rbio->stripe_sectors) * num_sectors +
K
Kees Cook 已提交
1026
		       sizeof(*rbio->finish_pointers) * real_stripes +
1027 1028
		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_nsectors) +
		       sizeof(*rbio->finish_pbitmap) * BITS_TO_LONGS(stripe_nsectors),
K
Kees Cook 已提交
1029
		       GFP_NOFS);
1030
	if (!rbio)
D
David Woodhouse 已提交
1031 1032 1033 1034 1035
		return ERR_PTR(-ENOMEM);

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
1036
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
1037
	INIT_LIST_HEAD(&rbio->hash_list);
1038
	rbio->bioc = bioc;
D
David Woodhouse 已提交
1039 1040
	rbio->stripe_len = stripe_len;
	rbio->nr_pages = num_pages;
1041
	rbio->nr_sectors = num_sectors;
1042
	rbio->real_stripes = real_stripes;
1043
	rbio->stripe_npages = stripe_npages;
1044
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
1045 1046
	rbio->faila = -1;
	rbio->failb = -1;
1047
	refcount_set(&rbio->refs, 1);
1048 1049
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1050 1051

	/*
1052 1053
	 * The stripe_pages, bio_sectors, etc arrays point to the extra memory
	 * we allocated past the end of the rbio.
D
David Woodhouse 已提交
1054 1055
	 */
	p = rbio + 1;
K
Kees Cook 已提交
1056 1057 1058 1059 1060
#define CONSUME_ALLOC(ptr, count)	do {				\
		ptr = p;						\
		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
	} while (0)
	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1061
	CONSUME_ALLOC(rbio->bio_sectors, num_sectors);
1062
	CONSUME_ALLOC(rbio->stripe_sectors, num_sectors);
K
Kees Cook 已提交
1063
	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1064 1065
	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_nsectors));
	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_nsectors));
K
Kees Cook 已提交
1066
#undef  CONSUME_ALLOC
D
David Woodhouse 已提交
1067

1068
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1069
		nr_data = real_stripes - 1;
1070
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1071
		nr_data = real_stripes - 2;
D
David Woodhouse 已提交
1072
	else
Z
Zhao Lei 已提交
1073
		BUG();
D
David Woodhouse 已提交
1074 1075 1076 1077 1078 1079 1080 1081

	rbio->nr_data = nr_data;
	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
1082 1083 1084 1085 1086 1087 1088 1089
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1090 1091
}

1092
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1093 1094
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1095
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1096
	int ret;
D
David Woodhouse 已提交
1097

1098 1099 1100 1101 1102 1103 1104
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1105 1106 1107
}

/*
1108 1109 1110 1111
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1112
 */
1113 1114 1115 1116 1117 1118 1119
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
			      unsigned long bio_max_len,
			      unsigned int opf)
D
David Woodhouse 已提交
1120
{
1121
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1122 1123 1124
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1125
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1126 1127
	u64 disk_start;

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

	/* We don't yet support subpage, thus pgoff should always be 0 */
	ASSERT(sector->pgoff == 0);

1140
	stripe = &rbio->bioc->stripes[stripe_nr];
1141
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1142 1143 1144 1145 1146 1147 1148

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1149
		u64 last_end = last->bi_iter.bi_sector << 9;
1150
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1151 1152 1153 1154 1155

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1156
		if (last_end == disk_start && !last->bi_status &&
1157
		    last->bi_bdev == stripe->dev->bdev) {
1158 1159 1160
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1161 1162 1163 1164 1165
				return 0;
		}
	}

	/* put a new bio on the list */
1166 1167
	bio = bio_alloc(stripe->dev->bdev, max(bio_max_len >> PAGE_SHIFT, 1UL),
			opf, GFP_NOFS);
1168
	bio->bi_iter.bi_sector = disk_start >> 9;
1169
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1170

1171
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1186
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1187 1188 1189 1190 1191 1192
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	if (bio_flagged(bio, BIO_CLONED))
		bio->bi_iter = btrfs_bio(bio)->iter;

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1232 1233 1234
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	spin_unlock_irq(&rbio->bio_list_lock);
}

/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
1248
	struct btrfs_io_context *bioc = rbio->bioc;
1249
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
1250
	void **pointers = rbio->finish_pointers;
D
David Woodhouse 已提交
1251 1252
	int nr_data = rbio->nr_data;
	int stripe;
1253
	int sectornr;
1254
	bool has_qstripe;
D
David Woodhouse 已提交
1255 1256 1257 1258 1259 1260
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1261 1262 1263 1264 1265
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
D
David Woodhouse 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		BUG();

	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1280
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1281 1282 1283 1284

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1285 1286 1287 1288 1289
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1290 1291
	 */
	index_rbio_pages(rbio);
1292 1293 1294 1295
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1296

1297
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1298 1299 1300
		struct sector_ptr *sector;

		/* First collect one sector from each data stripe */
D
David Woodhouse 已提交
1301
		for (stripe = 0; stripe < nr_data; stripe++) {
1302 1303 1304
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
D
David Woodhouse 已提交
1305 1306
		}

1307 1308 1309 1310
		/* Then add the parity stripe */
		sector = rbio_pstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
D
David Woodhouse 已提交
1311

1312
		if (has_qstripe) {
D
David Woodhouse 已提交
1313
			/*
1314 1315
			 * RAID6, add the qstripe and call the library function
			 * to fill in our p/q
D
David Woodhouse 已提交
1316
			 */
1317 1318 1319 1320
			sector = rbio_qstripe_sector(rbio, sectornr);
			sector->uptodate = 1;
			pointers[stripe++] = kmap_local_page(sector->page) +
					     sector->pgoff;
D
David Woodhouse 已提交
1321

1322
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
D
David Woodhouse 已提交
1323 1324 1325
						pointers);
		} else {
			/* raid5 */
1326 1327
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
D
David Woodhouse 已提交
1328
		}
1329 1330
		for (stripe = stripe - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
D
David Woodhouse 已提交
1331 1332 1333 1334 1335 1336 1337
	}

	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
1338
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1339 1340 1341
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

D
David Woodhouse 已提交
1342
			if (stripe < rbio->nr_data) {
1343 1344
				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
				if (!sector)
D
David Woodhouse 已提交
1345 1346
					continue;
			} else {
1347
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1348 1349
			}

1350 1351 1352
			ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
						 sectornr, rbio->stripe_len,
						 REQ_OP_WRITE);
D
David Woodhouse 已提交
1353 1354 1355 1356 1357
			if (ret)
				goto cleanup;
		}
	}

1358
	if (likely(!bioc->num_tgtdevs))
1359 1360 1361
		goto write_data;

	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1362
		if (!bioc->tgtdev_map[stripe])
1363 1364
			continue;

1365 1366 1367
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

1368
			if (stripe < rbio->nr_data) {
1369 1370
				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
				if (!sector)
1371 1372
					continue;
			} else {
1373
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
1374 1375
			}

1376
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
1377
					       rbio->bioc->tgtdev_map[stripe],
1378
					       sectornr, rbio->stripe_len,
1379
					       REQ_OP_WRITE);
1380 1381 1382 1383 1384 1385
			if (ret)
				goto cleanup;
		}
	}

write_data:
1386 1387
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1388

1389
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1390
		bio->bi_end_io = raid_write_end_io;
1391 1392

		submit_bio(bio);
D
David Woodhouse 已提交
1393 1394 1395 1396
	}
	return;

cleanup:
1397
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1398 1399 1400

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
D
David Woodhouse 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1411
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1412
	int i;
1413
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1414 1415 1416

	physical <<= 9;

1417 1418
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1419
		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1420
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1435
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1436 1437 1438
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1439
		u64 stripe_start = rbio->bioc->raid_map[i];
1440 1441

		if (in_range(logical, stripe_start, rbio->stripe_len))
D
David Woodhouse 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1464
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1465 1466 1467
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1468
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
static void set_bio_pages_uptodate(struct bio *bio)
{
1499
	struct bio_vec *bvec;
1500
	struct bvec_iter_all iter_all;
1501

1502
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1503

1504
	bio_for_each_segment_all(bvec, bio, iter_all)
1505
		SetPageUptodate(bvec->bv_page);
D
David Woodhouse 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
1516
static void raid_rmw_end_io(struct bio *bio)
D
David Woodhouse 已提交
1517 1518 1519
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1520
	if (bio->bi_status)
D
David Woodhouse 已提交
1521 1522 1523 1524 1525 1526
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

1527
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
1528 1529
		return;

1530
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
D
David Woodhouse 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		goto cleanup;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_rmw(rbio);
	return;

cleanup:

1543
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
1555
	int sectornr;
D
David Woodhouse 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1567
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1568 1569 1570 1571 1572
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1573 1574 1575
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

D
David Woodhouse 已提交
1576
			/*
1577 1578 1579 1580
			 * We want to find all the sectors missing from the
			 * rbio and read them from the disk.  If * sector_in_rbio()
			 * finds a page in the bio list we don't need to read
			 * it off the stripe.
D
David Woodhouse 已提交
1581
			 */
1582 1583
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (sector)
D
David Woodhouse 已提交
1584 1585
				continue;

1586
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1587
			/*
1588 1589
			 * The bio cache may have handed us an uptodate page.
			 * If so, be happy and use it.
1590
			 */
1591
			if (sector->uptodate)
1592 1593
				continue;

1594 1595
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
				       stripe, sectornr, rbio->stripe_len,
1596
				       REQ_OP_READ);
D
David Woodhouse 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
1614 1615
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
1616
	 */
1617
	atomic_set(&rbio->stripes_pending, bios_to_read);
1618
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1619 1620
		bio->bi_end_io = raid_rmw_end_io;

1621
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
1622

1623
		submit_bio(bio);
D
David Woodhouse 已提交
1624 1625 1626 1627 1628
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1629
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1630 1631 1632 1633

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1650 1651
	if (ret) {
		__free_raid_bio(rbio);
D
David Woodhouse 已提交
1652
		return ret;
1653
	}
D
David Woodhouse 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
1672
		start_async_work(rbio, rmw_work);
D
David Woodhouse 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
	struct btrfs_work work;
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1707 1708
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1709
{
1710 1711 1712 1713
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1714 1715
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1741 1742
			int ret;

1743
			/* we have a full stripe, send it down */
1744 1745
			ret = full_stripe_write(cur);
			BUG_ON(ret);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
				__free_raid_bio(cur);
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
static void unplug_work(struct btrfs_work *work)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1782
		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1783 1784
		btrfs_queue_work(plug->info->rmw_workers,
				 &plug->work);
1785 1786 1787 1788 1789
		return;
	}
	run_plug(plug);
}

D
David Woodhouse 已提交
1790 1791 1792
/*
 * our main entry point for writes from the rest of the FS.
 */
1793
int raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc, u32 stripe_len)
D
David Woodhouse 已提交
1794
{
1795
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1796
	struct btrfs_raid_bio *rbio;
1797 1798
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1799
	int ret;
D
David Woodhouse 已提交
1800

1801
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
1802
	if (IS_ERR(rbio)) {
1803
		btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
1804
		return PTR_ERR(rbio);
1805
	}
D
David Woodhouse 已提交
1806
	bio_list_add(&rbio->bio_list, bio);
1807
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1808
	rbio->operation = BTRFS_RBIO_WRITE;
1809

1810
	btrfs_bio_counter_inc_noblocked(fs_info);
1811 1812
	rbio->generic_bio_cnt = 1;

1813 1814 1815 1816
	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1817 1818 1819
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
		if (ret)
1820
			btrfs_bio_counter_dec(fs_info);
1821 1822
		return ret;
	}
1823

1824
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1825 1826 1827
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1828
			plug->info = fs_info;
1829 1830 1831
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1832
		ret = 0;
1833
	} else {
1834 1835
		ret = __raid56_parity_write(rbio);
		if (ret)
1836
			btrfs_bio_counter_dec(fs_info);
1837
	}
1838
	return ret;
D
David Woodhouse 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
1848 1849
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	int sectornr, stripe;
D
David Woodhouse 已提交
1850
	void **pointers;
1851
	void **unmap_array;
D
David Woodhouse 已提交
1852
	int faila = -1, failb = -1;
1853
	blk_status_t err;
D
David Woodhouse 已提交
1854 1855
	int i;

1856 1857 1858 1859
	/*
	 * This array stores the pointer for each sector, thus it has the extra
	 * pgoff value added from each sector
	 */
1860
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
D
David Woodhouse 已提交
1861
	if (!pointers) {
1862
		err = BLK_STS_RESOURCE;
D
David Woodhouse 已提交
1863 1864 1865
		goto cleanup_io;
	}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	/*
	 * Store copy of pointers that does not get reordered during
	 * reconstruction so that kunmap_local works.
	 */
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	if (!unmap_array) {
		err = BLK_STS_RESOURCE;
		goto cleanup_pointers;
	}

D
David Woodhouse 已提交
1876 1877 1878
	faila = rbio->faila;
	failb = rbio->failb;

1879 1880
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1881 1882 1883 1884 1885 1886 1887
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1888 1889 1890
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		struct sector_ptr *sector;

1891 1892 1893 1894 1895
		/*
		 * Now we just use bitmap to mark the horizontal stripes in
		 * which we have data when doing parity scrub.
		 */
		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1896
		    !test_bit(sectornr, rbio->dbitmap))
1897 1898
			continue;

1899
		/*
1900
		 * Setup our array of pointers with sectors from each stripe
1901 1902 1903
		 *
		 * NOTE: store a duplicate array of pointers to preserve the
		 * pointer order
D
David Woodhouse 已提交
1904
		 */
1905
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1906
			/*
1907
			 * If we're rebuilding a read, we have to use
D
David Woodhouse 已提交
1908 1909
			 * pages from the bio list
			 */
1910 1911
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1912
			    (stripe == faila || stripe == failb)) {
1913
				sector = sector_in_rbio(rbio, stripe, sectornr, 0);
D
David Woodhouse 已提交
1914
			} else {
1915
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1916
			}
1917 1918 1919
			ASSERT(sector->page);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
1920
			unmap_array[stripe] = pointers[stripe];
D
David Woodhouse 已提交
1921 1922
		}

1923
		/* All raid6 handling here */
1924
		if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1925
			/* Single failure, rebuild from parity raid5 style */
D
David Woodhouse 已提交
1926 1927 1928 1929 1930 1931 1932
			if (failb < 0) {
				if (faila == rbio->nr_data) {
					/*
					 * Just the P stripe has failed, without
					 * a bad data or Q stripe.
					 * TODO, we should redo the xor here.
					 */
1933
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
					goto cleanup;
				}
				/*
				 * a single failure in raid6 is rebuilt
				 * in the pstripe code below
				 */
				goto pstripe;
			}

			/* make sure our ps and qs are in order */
1944 1945
			if (faila > failb)
				swap(faila, failb);
D
David Woodhouse 已提交
1946 1947 1948 1949 1950 1951 1952

			/* if the q stripe is failed, do a pstripe reconstruction
			 * from the xors.
			 * If both the q stripe and the P stripe are failed, we're
			 * here due to a crc mismatch and we can't give them the
			 * data they want
			 */
1953 1954
			if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
				if (rbio->bioc->raid_map[faila] ==
1955
				    RAID5_P_STRIPE) {
1956
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
					goto cleanup;
				}
				/*
				 * otherwise we have one bad data stripe and
				 * a good P stripe.  raid5!
				 */
				goto pstripe;
			}

1966
			if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1967
				raid6_datap_recov(rbio->real_stripes,
1968
						  sectorsize, faila, pointers);
D
David Woodhouse 已提交
1969
			} else {
1970
				raid6_2data_recov(rbio->real_stripes,
1971
						  sectorsize, faila, failb,
D
David Woodhouse 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980
						  pointers);
			}
		} else {
			void *p;

			/* rebuild from P stripe here (raid5 or raid6) */
			BUG_ON(failb != -1);
pstripe:
			/* Copy parity block into failed block to start with */
1981
			memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
D
David Woodhouse 已提交
1982 1983 1984 1985 1986 1987 1988 1989

			/* rearrange the pointer array */
			p = pointers[faila];
			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
				pointers[stripe] = pointers[stripe + 1];
			pointers[rbio->nr_data - 1] = p;

			/* xor in the rest */
1990
			run_xor(pointers, rbio->nr_data - 1, sectorsize);
D
David Woodhouse 已提交
1991 1992 1993 1994 1995 1996 1997
		}
		/* if we're doing this rebuild as part of an rmw, go through
		 * and set all of our private rbio pages in the
		 * failed stripes as uptodate.  This way finish_rmw will
		 * know they can be trusted.  If this was a read reconstruction,
		 * other endio functions will fiddle the uptodate bits
		 */
1998
		if (rbio->operation == BTRFS_RBIO_WRITE) {
1999
			for (i = 0;  i < rbio->stripe_nsectors; i++) {
D
David Woodhouse 已提交
2000
				if (faila != -1) {
2001 2002
					sector = rbio_stripe_sector(rbio, faila, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2003 2004
				}
				if (failb != -1) {
2005 2006
					sector = rbio_stripe_sector(rbio, failb, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2007 2008 2009
				}
			}
		}
2010 2011
		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
			kunmap_local(unmap_array[stripe]);
D
David Woodhouse 已提交
2012 2013
	}

2014
	err = BLK_STS_OK;
D
David Woodhouse 已提交
2015
cleanup:
2016 2017
	kfree(unmap_array);
cleanup_pointers:
D
David Woodhouse 已提交
2018 2019 2020
	kfree(pointers);

cleanup_io:
2021 2022 2023 2024 2025 2026 2027
	/*
	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
	 * valid rbio which is consistent with ondisk content, thus such a
	 * valid rbio can be cached to avoid further disk reads.
	 */
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		/*
		 * - In case of two failures, where rbio->failb != -1:
		 *
		 *   Do not cache this rbio since the above read reconstruction
		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
		 *   changed some content of stripes which are not identical to
		 *   on-disk content any more, otherwise, a later write/recover
		 *   may steal stripe_pages from this rbio and end up with
		 *   corruptions or rebuild failures.
		 *
		 * - In case of single failure, where rbio->failb == -1:
		 *
		 *   Cache this rbio iff the above read reconstruction is
2041
		 *   executed without problems.
2042 2043
		 */
		if (err == BLK_STS_OK && rbio->failb < 0)
2044 2045 2046 2047
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

2048
		rbio_orig_end_io(rbio, err);
2049
	} else if (err == BLK_STS_OK) {
D
David Woodhouse 已提交
2050 2051
		rbio->faila = -1;
		rbio->failb = -1;
2052 2053 2054 2055 2056 2057 2058

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
2059
	} else {
2060
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
2061 2062 2063 2064 2065 2066 2067
	}
}

/*
 * This is called only for stripes we've read from disk to
 * reconstruct the parity.
 */
2068
static void raid_recover_end_io(struct bio *bio)
D
David Woodhouse 已提交
2069 2070 2071 2072 2073 2074 2075
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	/*
	 * we only read stripe pages off the disk, set them
	 * up to date if there were no errors
	 */
2076
	if (bio->bi_status)
D
David Woodhouse 已提交
2077 2078 2079 2080 2081
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);
	bio_put(bio);

2082
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
2083 2084
		return;

2085
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2086
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	else
		__raid_recover_end_io(rbio);
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2104
	int sectornr;
D
David Woodhouse 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

2114
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
2115 2116

	/*
2117 2118 2119
	 * read everything that hasn't failed.  Thanks to the
	 * stripe cache, it is possible that some or all of these
	 * pages are going to be uptodate.
D
David Woodhouse 已提交
2120
	 */
2121
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2122
		if (rbio->faila == stripe || rbio->failb == stripe) {
2123
			atomic_inc(&rbio->error);
D
David Woodhouse 已提交
2124
			continue;
2125
		}
D
David Woodhouse 已提交
2126

2127 2128
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;
D
David Woodhouse 已提交
2129 2130 2131 2132 2133

			/*
			 * the rmw code may have already read this
			 * page in
			 */
2134 2135
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
			if (sector->uptodate)
D
David Woodhouse 已提交
2136 2137
				continue;

2138 2139 2140
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
						 stripe, sectornr, rbio->stripe_len,
						 REQ_OP_READ);
D
David Woodhouse 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
			if (ret < 0)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2153
		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
D
David Woodhouse 已提交
2154
			__raid_recover_end_io(rbio);
2155
			return 0;
D
David Woodhouse 已提交
2156 2157 2158 2159 2160 2161
		} else {
			goto cleanup;
		}
	}

	/*
2162 2163
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
2164
	 */
2165
	atomic_set(&rbio->stripes_pending, bios_to_read);
2166
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
2167 2168
		bio->bi_end_io = raid_recover_end_io;

2169
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
2170

2171
		submit_bio(bio);
D
David Woodhouse 已提交
2172
	}
2173

D
David Woodhouse 已提交
2174 2175 2176
	return 0;

cleanup:
2177 2178
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2179
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2180 2181 2182 2183

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2193
int raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2194
			  u32 stripe_len, int mirror_num, int generic_io)
D
David Woodhouse 已提交
2195
{
2196
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2197 2198 2199
	struct btrfs_raid_bio *rbio;
	int ret;

2200
	if (generic_io) {
2201
		ASSERT(bioc->mirror_num == mirror_num);
2202
		btrfs_bio(bio)->mirror_num = mirror_num;
2203 2204
	}

2205
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2206
	if (IS_ERR(rbio)) {
2207
		if (generic_io)
2208
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2209
		return PTR_ERR(rbio);
2210
	}
D
David Woodhouse 已提交
2211

2212
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
D
David Woodhouse 已提交
2213
	bio_list_add(&rbio->bio_list, bio);
2214
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
D
David Woodhouse 已提交
2215 2216 2217

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2218
		btrfs_warn(fs_info,
2219
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
2220
			   __func__, bio->bi_iter.bi_sector << 9,
2221
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
2222
		if (generic_io)
2223
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2224 2225 2226 2227
		kfree(rbio);
		return -EIO;
	}

2228
	if (generic_io) {
2229
		btrfs_bio_counter_inc_noblocked(fs_info);
2230 2231
		rbio->generic_bio_cnt = 1;
	} else {
2232
		btrfs_get_bioc(bioc);
2233 2234
	}

D
David Woodhouse 已提交
2235
	/*
L
Liu Bo 已提交
2236 2237 2238
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2239
	 */
L
Liu Bo 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	ret = lock_stripe_add(rbio);

	/*
	 * __raid56_parity_recover will end the bio with
	 * any errors it hits.  We don't want to return
	 * its error value up the stack because our caller
	 * will end up calling bio_endio with any nonzero
	 * return
	 */
	if (ret == 0)
		__raid56_parity_recover(rbio);
	/*
	 * our rbio has been added to the list of
	 * rbios that will be handled after the
	 * currently lock owner is done
	 */
	return 0;

}

static void rmw_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

static void read_rebuild_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2287 2288 2289 2290

/*
 * The following code is used to scrub/replace the parity stripe
 *
2291
 * Caller must have already increased bio_counter for getting @bioc.
2292
 *
2293 2294 2295 2296 2297
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2298 2299
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2300
				u32 stripe_len, struct btrfs_device *scrub_dev,
2301
				unsigned long *dbitmap, int stripe_nsectors)
2302
{
2303
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2304 2305 2306
	struct btrfs_raid_bio *rbio;
	int i;

2307
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2318
	/*
2319
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2320 2321 2322 2323
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2324
		if (bioc->stripes[i].dev == scrub_dev) {
2325 2326 2327 2328
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2329
	ASSERT(i < rbio->real_stripes);
2330 2331

	/* Now we just support the sectorsize equals to page size */
2332
	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2333 2334 2335
	ASSERT(rbio->stripe_npages == stripe_nsectors);
	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);

2336
	/*
2337
	 * We have already increased bio_counter when getting bioc, record it
2338 2339 2340 2341
	 * so we can free it at rbio_orig_end_io().
	 */
	rbio->generic_bio_cnt = 1;

2342 2343 2344
	return rbio;
}

2345 2346
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2347
			    unsigned int pgoff, u64 logical)
2348
{
2349
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2350 2351 2352
	int stripe_offset;
	int index;

2353
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2354
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2355
				rbio->stripe_len * rbio->nr_data);
2356
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2357 2358 2359
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int bit;
	int index;
	struct page *page;

	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2374
		for (i = 0; i < rbio->real_stripes; i++) {
2375 2376 2377 2378
			index = i * rbio->stripe_npages + bit;
			if (rbio->stripe_pages[index])
				continue;

2379
			page = alloc_page(GFP_NOFS);
2380 2381 2382 2383 2384
			if (!page)
				return -ENOMEM;
			rbio->stripe_pages[index] = page;
		}
	}
2385
	index_stripe_sectors(rbio);
2386 2387 2388 2389 2390 2391
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2392
	struct btrfs_io_context *bioc = rbio->bioc;
2393
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2394 2395
	void **pointers = rbio->finish_pointers;
	unsigned long *pbitmap = rbio->finish_pbitmap;
2396 2397
	int nr_data = rbio->nr_data;
	int stripe;
2398
	int sectornr;
2399
	bool has_qstripe;
2400 2401
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2402 2403
	struct bio_list bio_list;
	struct bio *bio;
2404
	int is_replace = 0;
2405 2406 2407 2408
	int ret;

	bio_list_init(&bio_list);

2409 2410 2411 2412 2413
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2414 2415
		BUG();

2416
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2417
		is_replace = 1;
2418
		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_nsectors);
2419 2420
	}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2431 2432
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2433
		goto cleanup;
2434 2435
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2436

2437
	if (has_qstripe) {
I
Ira Weiny 已提交
2438
		/* RAID6, allocate and map temp space for the Q stripe */
2439 2440 2441 2442
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2443 2444
			goto cleanup;
		}
2445 2446 2447
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2448 2449 2450 2451
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2452
	/* Map the parity stripe just once */
2453
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2454

2455
	for_each_set_bit(sectornr, rbio->dbitmap, rbio->stripe_nsectors) {
2456
		struct sector_ptr *sector;
2457
		void *parity;
2458

2459 2460
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2461 2462 2463
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2464 2465
		}

2466
		if (has_qstripe) {
I
Ira Weiny 已提交
2467
			/* RAID6, call the library function to fill in our P/Q */
2468
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2469 2470 2471
						pointers);
		} else {
			/* raid5 */
2472 2473
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2474 2475
		}

2476
		/* Check scrubbing parity and repair it */
2477 2478 2479 2480
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2481 2482
		else
			/* Parity is right, needn't writeback */
2483
			bitmap_clear(rbio->dbitmap, sectornr, 1);
2484
		kunmap_local(parity);
2485

2486 2487
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2488 2489
	}

2490
	kunmap_local(pointers[nr_data]);
2491 2492 2493
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2494
		kunmap_local(pointers[rbio->real_stripes - 1]);
2495 2496
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2497
	}
2498 2499 2500 2501 2502 2503 2504

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2505 2506
	for_each_set_bit(sectornr, rbio->dbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2507

2508 2509 2510
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
					 sectornr, rbio->stripe_len, REQ_OP_WRITE);
2511 2512 2513 2514
		if (ret)
			goto cleanup;
	}

2515 2516 2517
	if (!is_replace)
		goto submit_write;

2518 2519
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2520

2521 2522
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2523
				       bioc->tgtdev_map[rbio->scrubp],
2524
				       sectornr, rbio->stripe_len, REQ_OP_WRITE);
2525 2526 2527 2528 2529
		if (ret)
			goto cleanup;
	}

submit_write:
2530 2531 2532
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2533
		rbio_orig_end_io(rbio, BLK_STS_OK);
2534 2535 2536 2537 2538
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

2539
	while ((bio = bio_list_pop(&bio_list))) {
2540
		bio->bi_end_io = raid_write_end_io;
2541 2542

		submit_bio(bio);
2543 2544 2545 2546
	}
	return;

cleanup:
2547
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2548 2549 2550

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
2569
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
2590
		if (dfail > rbio->bioc->max_errors - 1)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2605
		 * is scrubbing parity, luckily, use the other one to repair
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2618
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2629
static void raid56_parity_scrub_end_io(struct bio *bio)
2630 2631 2632
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

2633
	if (bio->bi_status)
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

	if (!atomic_dec_and_test(&rbio->stripes_pending))
		return;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2656
	int sectornr;
2657 2658 2659
	int stripe;
	struct bio *bio;

L
Liu Bo 已提交
2660 2661
	bio_list_init(&bio_list);

2662 2663 2664 2665 2666 2667 2668 2669 2670
	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
2671
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2672 2673
		for_each_set_bit(sectornr , rbio->dbitmap, rbio->stripe_nsectors) {
			struct sector_ptr *sector;
2674
			/*
2675 2676 2677 2678
			 * We want to find all the sectors missing from the
			 * rbio and read them from the disk.  If * sector_in_rbio()
			 * finds a sector in the bio list we don't need to read
			 * it off the stripe.
2679
			 */
2680 2681
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (sector)
2682 2683
				continue;

2684
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
2685
			/*
2686 2687
			 * The bio cache may have handed us an uptodate sector.
			 * If so, be happy and use it.
2688
			 */
2689
			if (sector->uptodate)
2690 2691
				continue;

2692 2693 2694
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
						 stripe, sectornr, rbio->stripe_len,
						 REQ_OP_READ);
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
2712 2713
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
2714 2715
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
2716
	while ((bio = bio_list_pop(&bio_list))) {
2717 2718
		bio->bi_end_io = raid56_parity_scrub_end_io;

2719
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2720

2721
		submit_bio(bio);
2722 2723 2724 2725 2726
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2727
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2728 2729 2730 2731

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

static void scrub_parity_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2749
		start_async_work(rbio, scrub_parity_work);
2750
}
2751 2752 2753 2754

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2755 2756
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc,
			  u64 length)
2757
{
2758
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2759 2760
	struct btrfs_raid_bio *rbio;

2761
	rbio = alloc_rbio(fs_info, bioc, length);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
		BUG();
		kfree(rbio);
		return NULL;
	}

2780
	/*
2781
	 * When we get bioc, we have already increased bio_counter, record it
2782 2783 2784 2785
	 * so we can free it at rbio_orig_end_io()
	 */
	rbio->generic_bio_cnt = 1;

2786 2787 2788 2789 2790 2791
	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2792
		start_async_work(rbio, read_rebuild_work);
2793
}