raid56.c 76.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "messages.h"
17
#include "misc.h"
D
David Woodhouse 已提交
18 19 20 21 22 23 24 25 26
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

56 57 58 59 60 61 62
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
63 64
	unsigned int pgoff:24;
	unsigned int uptodate:8;
65 66
};

D
David Woodhouse 已提交
67 68
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
69
static void rmw_work(struct work_struct *work);
D
David Woodhouse 已提交
70 71 72 73 74
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

75 76
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
77
static void scrub_parity_work(struct work_struct *work);
78

79 80 81 82 83 84 85 86
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
	kfree(rbio->stripe_pages);
	kfree(rbio->bio_sectors);
	kfree(rbio->stripe_sectors);
	kfree(rbio->finish_pointers);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	if (!refcount_dec_and_test(&rbio->refs))
		return;

	WARN_ON(!list_empty(&rbio->stripe_cache));
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}

	btrfs_put_bioc(rbio->bioc);
106
	free_raid_bio_pointers(rbio);
107 108 109
	kfree(rbio);
}

110
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
111
{
112 113
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
114 115
}

D
David Woodhouse 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

132 133 134 135 136 137 138
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
139
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
140 141
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
142

143 144 145
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
146 147 148 149 150 151 152 153 154
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
155
	kvfree(x);
D
David Woodhouse 已提交
156 157 158
	return 0;
}

159 160
/*
 * caching an rbio means to copy anything from the
161
 * bio_sectors array into the stripe_pages array.  We
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

177 178
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
179 180 181 182 183 184 185 186
		if (!rbio->bio_sectors[i].page) {
			/*
			 * Even if the sector is not covered by bio, if it is
			 * a data sector it should still be uptodate as it is
			 * read from disk.
			 */
			if (i < rbio->nr_data * rbio->stripe_nsectors)
				ASSERT(rbio->stripe_sectors[i].uptodate);
187
			continue;
188
		}
189 190 191 192 193 194 195 196 197

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
198 199 200
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
201 202 203 204 205
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
206
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
207 208 209 210 211 212 213 214 215 216 217 218

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
	const int sector_nr = (page_nr << PAGE_SHIFT) >>
			      rbio->bioc->fs_info->sectorsize_bits;

	/*
	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
	 * we won't have a page which is half data half parity.
	 *
	 * Thus if the first sector of the page belongs to data stripes, then
	 * the full page belongs to data stripes.
	 */
	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}

290
/*
291 292 293 294 295
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
296 297 298 299 300 301 302 303 304
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
305 306 307 308 309 310 311
		struct page *p = src->stripe_pages[i];

		/*
		 * We don't need to steal P/Q pages as they will always be
		 * regenerated for RMW or full write anyway.
		 */
		if (!is_data_stripe_page(src, i))
312 313
			continue;

314 315 316 317 318 319
		/*
		 * If @src already has RBIO_CACHE_READY_BIT, it should have
		 * all data stripe pages present and uptodate.
		 */
		ASSERT(p);
		ASSERT(full_page_sectors_uptodate(src, i));
320
		steal_rbio_page(src, dest, i);
321
	}
322 323
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
324 325
}

D
David Woodhouse 已提交
326 327 328 329 330 331 332 333 334 335 336 337
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
338 339 340
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
D
David Woodhouse 已提交
341 342 343 344
	bio_list_init(&victim->bio_list);
}

/*
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

361
	table = rbio->bioc->fs_info->stripe_hash_table;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
392
				refcount_dec(&rbio->refs);
393 394 395 396 397 398 399 400 401
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
402
		free_raid_bio(rbio);
403 404 405 406 407 408 409 410 411 412 413 414 415
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

416
	table = rbio->bioc->fs_info->stripe_hash_table;
417 418 419 420 421 422 423 424 425

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
426
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
447 448 449 450 451
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
452
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
453
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
454 455 456
	info->stripe_hash_table = NULL;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

476
	table = rbio->bioc->fs_info->stripe_hash_table;
477 478 479 480 481 482

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483
		refcount_inc(&rbio->refs);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
529 530
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
531
 */
532
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
533
{
534
	unsigned long flags;
D
David Woodhouse 已提交
535 536 537
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

538
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
539
	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
D
David Woodhouse 已提交
540
		ret = 0;
541
	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
D
David Woodhouse 已提交
542
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
543

D
David Woodhouse 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

564 565 566 567
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
568
	 * steal from cached rbios though, other functions
569 570 571 572 573 574
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

575
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
576 577
		return 0;

578 579 580 581 582 583 584 585 586 587 588
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
589
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
590 591
		return 0;

592
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
593 594
		return 0;

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
614 615 616
	return 1;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

636 637 638
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
639
{
640
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
641 642
}

643 644 645
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
646
{
647 648 649
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
676
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
677 678 679 680
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
681
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
682 683
	int ret = 0;

684
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
685

D
David Woodhouse 已提交
686 687
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
688
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
689
			continue;
690

691
		spin_lock(&cur->bio_list_lock);
692

693 694 695 696 697 698 699
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
700

701 702 703
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
704

705 706
			goto lockit;
		}
D
David Woodhouse 已提交
707

708 709 710
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
711
			spin_unlock(&cur->bio_list_lock);
712
			freeit = rbio;
D
David Woodhouse 已提交
713 714 715
			ret = 1;
			goto out;
		}
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
741
	}
742
lockit:
743
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
744 745 746
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
747 748
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
749
	if (freeit)
750
		free_raid_bio(freeit);
D
David Woodhouse 已提交
751 752 753
	return ret;
}

754 755
static void recover_rbio_work_locked(struct work_struct *work);

D
David Woodhouse 已提交
756 757 758 759 760 761 762 763 764
/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
765
	int keep_cache = 0;
D
David Woodhouse 已提交
766 767

	bucket = rbio_bucket(rbio);
768
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
769

770 771 772
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
773 774 775 776
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
777 778 779 780 781 782 783 784 785 786 787 788
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
789 790

		list_del_init(&rbio->hash_list);
791
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
808
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
809 810 811
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

812
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
813
				start_async_work(next, recover_rbio_work_locked);
814 815
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
816
				start_async_work(next, recover_rbio_work_locked);
817
			} else if (next->operation == BTRFS_RBIO_WRITE) {
818
				steal_rbio(rbio, next);
819
				start_async_work(next, rmw_work);
820 821
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
822
				start_async_work(next, scrub_parity_work);
823
			}
D
David Woodhouse 已提交
824 825 826 827

			goto done_nolock;
		}
	}
828
done:
D
David Woodhouse 已提交
829 830 831 832
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
833 834
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
835 836
}

837
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
838
{
839 840 841 842 843 844 845 846 847
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
848 849 850 851 852 853
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
854
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
855 856
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
857
	struct bio *extra;
858

859 860 861 862 863 864
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
865

866 867 868 869 870 871 872 873 874 875
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
876
	free_raid_bio(rbio);
D
David Woodhouse 已提交
877

878 879 880
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
881 882 883 884 885 886
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
887
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
888 889
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
890
	blk_status_t err = bio->bi_status;
891
	int max_errors;
D
David Woodhouse 已提交
892 893 894 895 896 897

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

898
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
899 900
		return;

901
	err = BLK_STS_OK;
D
David Woodhouse 已提交
902 903

	/* OK, we have read all the stripes we need to. */
904
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
905
		     0 : rbio->bioc->max_errors;
906
	if (atomic_read(&rbio->error) > max_errors)
907
		err = BLK_STS_IOERR;
D
David Woodhouse 已提交
908

909
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
910 911
}

D
David Sterba 已提交
912 913
/*
 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
951 952 953 954
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
955
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
956
					 struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
957
{
958
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
959
	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
960
	const unsigned int num_pages = stripe_npages * real_stripes;
961 962
	const unsigned int stripe_nsectors =
		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
963
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
964 965
	struct btrfs_raid_bio *rbio;

966 967
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
968 969 970 971 972
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
973

974
	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
975
	if (!rbio)
D
David Woodhouse 已提交
976
		return ERR_PTR(-ENOMEM);
977 978 979 980 981 982 983 984 985 986 987 988 989 990
	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
				     GFP_NOFS);
	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				    GFP_NOFS);
	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				       GFP_NOFS);
	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);

	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
	    !rbio->finish_pointers) {
		free_raid_bio_pointers(rbio);
		kfree(rbio);
		return ERR_PTR(-ENOMEM);
	}
D
David Woodhouse 已提交
991 992

	bio_list_init(&rbio->bio_list);
993
	init_waitqueue_head(&rbio->io_wait);
D
David Woodhouse 已提交
994 995
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
996
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
997
	INIT_LIST_HEAD(&rbio->hash_list);
998
	btrfs_get_bioc(bioc);
999
	rbio->bioc = bioc;
D
David Woodhouse 已提交
1000
	rbio->nr_pages = num_pages;
1001
	rbio->nr_sectors = num_sectors;
1002
	rbio->real_stripes = real_stripes;
1003
	rbio->stripe_npages = stripe_npages;
1004
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
1005 1006
	rbio->faila = -1;
	rbio->failb = -1;
1007
	refcount_set(&rbio->refs, 1);
1008 1009
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1010

1011 1012
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
1013 1014 1015 1016 1017 1018 1019

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
1020 1021 1022 1023 1024 1025 1026 1027
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1028 1029
}

1030
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1031 1032
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1033
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1034
	int ret;
D
David Woodhouse 已提交
1035

1036 1037 1038 1039 1040 1041 1042
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1043 1044 1045
}

/*
1046 1047 1048 1049
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1050
 */
1051 1052 1053 1054 1055
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
1056
			      enum req_op op)
D
David Woodhouse 已提交
1057
{
1058
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1059 1060 1061
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1062
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1063 1064
	u64 disk_start;

1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1074
	stripe = &rbio->bioc->stripes[stripe_nr];
1075
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1076 1077 1078 1079 1080 1081 1082

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1083
		u64 last_end = last->bi_iter.bi_sector << 9;
1084
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1085 1086 1087 1088 1089

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1090
		if (last_end == disk_start && !last->bi_status &&
1091
		    last->bi_bdev == stripe->dev->bdev) {
1092 1093 1094
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1095 1096 1097 1098 1099
				return 0;
		}
	}

	/* put a new bio on the list */
1100 1101
	bio = bio_alloc(stripe->dev->bdev,
			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1102
			op, GFP_NOFS);
1103
	bio->bi_iter.bi_sector = disk_start >> 9;
1104
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1105

1106
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1121
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1122 1123 1124 1125 1126 1127
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1164 1165 1166
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1167 1168 1169
	spin_unlock_irq(&rbio->bio_list_lock);
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/* Generate PQ for one veritical stripe. */
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
	void **pointers = rbio->finish_pointers;
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct sector_ptr *sector;
	int stripe;
	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;

	/* First collect one sector from each data stripe */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
		pointers[stripe] = kmap_local_page(sector->page) +
				   sector->pgoff;
	}

	/* Then add the parity stripe */
	sector = rbio_pstripe_sector(rbio, sectornr);
	sector->uptodate = 1;
	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;

	if (has_qstripe) {
		/*
		 * RAID6, add the qstripe and call the library function
		 * to fill in our p/q
		 */
		sector = rbio_qstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) +
				     sector->pgoff;

		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
					pointers);
	} else {
		/* raid5 */
		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
	}
	for (stripe = stripe - 1; stripe >= 0; stripe--)
		kunmap_local(pointers[stripe]);
}

D
David Woodhouse 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
1250
	struct btrfs_io_context *bioc = rbio->bioc;
1251 1252
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
D
David Woodhouse 已提交
1253
	int stripe;
1254
	/* Sector number inside a stripe. */
1255
	int sectornr;
D
David Woodhouse 已提交
1256 1257 1258 1259 1260 1261
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1262 1263 1264
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

D
David Woodhouse 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1277
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1278 1279 1280 1281

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1282 1283 1284 1285 1286
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1287 1288
	 */
	index_rbio_pages(rbio);
1289 1290 1291 1292
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1293

1294 1295
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		generate_pq_vertical(rbio, sectornr);
D
David Woodhouse 已提交
1296 1297

	/*
1298 1299
	 * Start writing.  Make bios for everything from the higher layers (the
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1300
	 */
1301 1302 1303
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1304

1305 1306
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
D
David Woodhouse 已提交
1307

1308 1309 1310
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1311

1312 1313 1314 1315 1316 1317
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1318
		}
1319 1320

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1321
					 sectornr, REQ_OP_WRITE);
1322 1323
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1324 1325
	}

1326
	if (likely(!bioc->num_tgtdevs))
1327 1328
		goto write_data;

1329 1330 1331
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1332

1333 1334
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344
		if (!bioc->tgtdev_map[stripe]) {
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1345

1346 1347 1348
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1349

1350 1351 1352 1353 1354 1355
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1356
		}
1357 1358 1359

		ret = rbio_add_io_sector(rbio, &bio_list, sector,
					 rbio->bioc->tgtdev_map[stripe],
1360
					 sectornr, REQ_OP_WRITE);
1361 1362
		if (ret)
			goto cleanup;
1363 1364 1365
	}

write_data:
1366 1367
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1368

1369
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1370
		bio->bi_end_io = raid_write_end_io;
1371

1372 1373 1374 1375 1376 1377
		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
1378
		submit_bio(bio);
D
David Woodhouse 已提交
1379 1380 1381 1382
	}
	return;

cleanup:
1383
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1384 1385 1386

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
D
David Woodhouse 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1397
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1398
	int i;
1399
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1400 1401 1402

	physical <<= 9;

1403 1404
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1405
		if (in_range(physical, stripe->physical, BTRFS_STRIPE_LEN) &&
1406
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1421
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1422 1423 1424
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1425
		u64 stripe_start = rbio->bioc->raid_map[i];
1426

1427
		if (in_range(logical, stripe_start, BTRFS_STRIPE_LEN))
D
David Woodhouse 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1450
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1451 1452 1453
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1454
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/*
 * For subpage case, we can no longer set page Uptodate directly for
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1498 1499 1500 1501
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1502
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1503
{
1504
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1505
	struct bio_vec *bvec;
1506
	struct bvec_iter_all iter_all;
1507

1508
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static void raid_wait_read_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	if (bio->bi_status)
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(rbio, bio);

	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

static void submit_read_bios(struct btrfs_raid_bio *rbio,
			     struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_read_end_io;

		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
}

1557
static void raid56_bio_end_io(struct bio *bio)
D
David Woodhouse 已提交
1558 1559 1560
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1561
	if (bio->bi_status)
D
David Woodhouse 已提交
1562 1563
		fail_bio_stripe(rbio, bio);
	else
1564
		set_bio_pages_uptodate(rbio, bio);
D
David Woodhouse 已提交
1565 1566 1567

	bio_put(bio);

1568 1569 1570 1571
	if (atomic_dec_and_test(&rbio->stripes_pending))
		queue_work(rbio->bioc->fs_info->endio_raid56_workers,
			   &rbio->end_io_work);
}
D
David Woodhouse 已提交
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * End io handler for the read phase of the RMW cycle.  All the bios here are
 * physical stripe bios we've read from the disk so we can recalculate the
 * parity of the stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
static void raid56_rmw_end_io_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);

	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
		return;
	}
D
David Woodhouse 已提交
1590 1591

	/*
1592 1593
	 * This will normally call finish_rmw to start our write but if there
	 * are any failed stripes we'll reconstruct from parity first.
D
David Woodhouse 已提交
1594 1595 1596 1597
	 */
	validate_rbio_for_rmw(rbio);
}

1598 1599
static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
				  struct bio_list *bio_list)
D
David Woodhouse 已提交
1600
{
1601
	const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data;
D
David Woodhouse 已提交
1602
	struct bio *bio;
1603 1604
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
1605

1606
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1607

1608 1609 1610 1611 1612 1613
	/* Build a list of bios to read all the missing data sectors. */
	for (total_sector_nr = 0; total_sector_nr < nr_data_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1614

1615 1616 1617 1618 1619 1620 1621 1622
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk.  If sector_in_rbio() finds a page
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;
D
David Woodhouse 已提交
1623

1624 1625 1626 1627 1628 1629 1630
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate page.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;
1631

1632
		ret = rbio_add_io_sector(rbio, bio_list, sector,
1633
			       stripe, sectornr, REQ_OP_READ);
1634 1635
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1636
	}
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	return 0;

cleanup:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
	return ret;
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

	atomic_set(&rbio->error, 0);

	ret = rmw_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto cleanup;
D
David Woodhouse 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
1682 1683
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
1684
	 */
1685
	atomic_set(&rbio->stripes_pending, bios_to_read);
1686
	INIT_WORK(&rbio->end_io_work, raid56_rmw_end_io_work);
1687
	while ((bio = bio_list_pop(&bio_list))) {
1688
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
1689

1690 1691
		if (trace_raid56_read_partial_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
D
David Woodhouse 已提交
1692

1693 1694 1695
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_read_partial(rbio, bio, &trace_info);
		}
1696
		submit_bio(bio);
D
David Woodhouse 已提交
1697 1698 1699 1700 1701
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1702
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1703 1704 1705 1706

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1723
	if (ret)
D
David Woodhouse 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		return ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
1743
		start_async_work(rbio, rmw_work);
D
David Woodhouse 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1772
	struct work_struct work;
1773 1774 1775 1776 1777
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1778 1779
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1780
{
1781 1782 1783 1784
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1785 1786
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1812 1813
			int ret;

1814
			/* we have a full stripe, send it down */
1815 1816
			ret = full_stripe_write(cur);
			BUG_ON(ret);
1817 1818 1819 1820 1821
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
1822
				free_raid_bio(cur);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
1840
static void unplug_work(struct work_struct *work)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1853 1854
		INIT_WORK(&plug->work, unplug_work);
		queue_work(plug->info->rmw_workers, &plug->work);
1855 1856 1857 1858 1859
		return;
	}
	run_plug(plug);
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
1872
	       rbio->nr_data * BTRFS_STRIPE_LEN);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1887 1888 1889
/*
 * our main entry point for writes from the rest of the FS.
 */
1890
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
1891
{
1892
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1893
	struct btrfs_raid_bio *rbio;
1894 1895
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1896
	int ret = 0;
D
David Woodhouse 已提交
1897

1898
	rbio = alloc_rbio(fs_info, bioc);
1899
	if (IS_ERR(rbio)) {
1900
		ret = PTR_ERR(rbio);
1901
		goto fail;
1902
	}
1903
	rbio->operation = BTRFS_RBIO_WRITE;
1904
	rbio_add_bio(rbio, bio);
1905 1906 1907 1908 1909

	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1910 1911
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
1912
		if (ret) {
1913
			free_raid_bio(rbio);
1914
			goto fail;
1915
		}
1916
		return;
1917
	}
1918

1919
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1920 1921 1922
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1923
			plug->info = fs_info;
1924 1925 1926 1927
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
	} else {
1928
		ret = __raid56_parity_write(rbio);
1929
		if (ret) {
1930
			free_raid_bio(rbio);
1931
			goto fail;
1932
		}
1933
	}
1934 1935 1936

	return;

1937
fail:
1938 1939
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
D
David Woodhouse 已提交
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/*
 * Recover a vertical stripe specified by @sector_nr.
 * @*pointers are the pre-allocated pointers by the caller, so we don't
 * need to allocate/free the pointers again and again.
 */
static void recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
			     void **pointers, void **unmap_array)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	const u32 sectorsize = fs_info->sectorsize;
	const int faila = rbio->faila;
	const int failb = rbio->failb;
	int stripe_nr;

	/*
	 * Now we just use bitmap to mark the horizontal stripes in
	 * which we have data when doing parity scrub.
	 */
	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
	    !test_bit(sector_nr, &rbio->dbitmap))
		return;

	/*
	 * Setup our array of pointers with sectors from each stripe
	 *
	 * NOTE: store a duplicate array of pointers to preserve the
	 * pointer order.
	 */
	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		/*
		 * If we're rebuilding a read, we have to use
		 * pages from the bio list
		 */
		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
		    (stripe_nr == faila || stripe_nr == failb)) {
			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
		} else {
			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
		}
		ASSERT(sector->page);
		pointers[stripe_nr] = kmap_local_page(sector->page) +
				   sector->pgoff;
		unmap_array[stripe_nr] = pointers[stripe_nr];
	}

	/* All raid6 handling here */
	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
		/* Single failure, rebuild from parity raid5 style */
		if (failb < 0) {
			if (faila == rbio->nr_data)
				/*
				 * Just the P stripe has failed, without
				 * a bad data or Q stripe.
				 * We have nothing to do, just skip the
				 * recovery for this stripe.
				 */
				goto cleanup;
			/*
			 * a single failure in raid6 is rebuilt
			 * in the pstripe code below
			 */
			goto pstripe;
		}

		/*
		 * If the q stripe is failed, do a pstripe reconstruction from
		 * the xors.
		 * If both the q stripe and the P stripe are failed, we're
		 * here due to a crc mismatch and we can't give them the
		 * data they want.
		 */
		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
			if (rbio->bioc->raid_map[faila] ==
			    RAID5_P_STRIPE)
				/*
				 * Only P and Q are corrupted.
				 * We only care about data stripes recovery,
				 * can skip this vertical stripe.
				 */
				goto cleanup;
			/*
			 * Otherwise we have one bad data stripe and
			 * a good P stripe.  raid5!
			 */
			goto pstripe;
		}

		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
			raid6_datap_recov(rbio->real_stripes, sectorsize,
					  faila, pointers);
		} else {
			raid6_2data_recov(rbio->real_stripes, sectorsize,
					  faila, failb, pointers);
		}
	} else {
		void *p;

		/* Rebuild from P stripe here (raid5 or raid6). */
		ASSERT(failb == -1);
pstripe:
		/* Copy parity block into failed block to start with */
		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);

		/* Rearrange the pointer array */
		p = pointers[faila];
		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
		     stripe_nr++)
			pointers[stripe_nr] = pointers[stripe_nr + 1];
		pointers[rbio->nr_data - 1] = p;

		/* Xor in the rest */
		run_xor(pointers, rbio->nr_data - 1, sectorsize);

	}

	/*
	 * No matter if this is a RMW or recovery, we should have all
	 * failed sectors repaired in the vertical stripe, thus they are now
	 * uptodate.
	 * Especially if we determine to cache the rbio, we need to
	 * have at least all data sectors uptodate.
	 */
	if (rbio->faila >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->faila, sector_nr);
		sector->uptodate = 1;
	}
	if (rbio->failb >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->failb, sector_nr);
		sector->uptodate = 1;
	}

cleanup:
	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
		kunmap_local(unmap_array[stripe_nr]);
}

2080
static int recover_sectors(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
2081
{
2082 2083
	void **pointers = NULL;
	void **unmap_array = NULL;
2084 2085
	int sectornr;
	int ret = 0;
D
David Woodhouse 已提交
2086

2087
	/*
2088 2089 2090 2091
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
2092
	 */
2093
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2094
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2095 2096 2097
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
2098 2099
	}

2100 2101 2102
	/* Make sure faila and fail b are in order. */
	if (rbio->faila >= 0 && rbio->failb >= 0 && rbio->faila > rbio->failb)
		swap(rbio->faila, rbio->failb);
D
David Woodhouse 已提交
2103

2104 2105
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
2106 2107 2108 2109 2110 2111 2112
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

2113 2114
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		recover_vertical(rbio, sectornr, pointers, unmap_array);
D
David Woodhouse 已提交
2115

2116
out:
D
David Woodhouse 已提交
2117
	kfree(pointers);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	kfree(unmap_array);
	return ret;
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = recover_sectors(rbio);
D
David Woodhouse 已提交
2132

2133 2134 2135 2136 2137 2138 2139
	/*
	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
	 * valid rbio which is consistent with ondisk content, thus such a
	 * valid rbio can be cached to avoid further disk reads.
	 */
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
		/*
		 * - In case of two failures, where rbio->failb != -1:
		 *
		 *   Do not cache this rbio since the above read reconstruction
		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
		 *   changed some content of stripes which are not identical to
		 *   on-disk content any more, otherwise, a later write/recover
		 *   may steal stripe_pages from this rbio and end up with
		 *   corruptions or rebuild failures.
		 *
		 * - In case of single failure, where rbio->failb == -1:
		 *
		 *   Cache this rbio iff the above read reconstruction is
2153
		 *   executed without problems.
2154
		 */
2155
		if (!ret && rbio->failb < 0)
2156 2157 2158 2159
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

2160 2161
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	} else if (!ret) {
D
David Woodhouse 已提交
2162 2163
		rbio->faila = -1;
		rbio->failb = -1;
2164 2165 2166 2167 2168 2169 2170

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
2171
	} else {
2172
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
D
David Woodhouse 已提交
2173 2174 2175 2176
	}
}

/*
2177 2178
 * This is called only for stripes we've read from disk to reconstruct the
 * parity.
D
David Woodhouse 已提交
2179
 */
2180
static void raid_recover_end_io_work(struct work_struct *work)
D
David Woodhouse 已提交
2181
{
2182 2183
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
D
David Woodhouse 已提交
2184

2185
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2186
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
2187 2188 2189 2190
	else
		__raid_recover_end_io(rbio);
}

2191 2192
static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
				      struct bio_list *bio_list)
D
David Woodhouse 已提交
2193 2194
{
	struct bio *bio;
2195 2196
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
2197

2198
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
2199
	/*
2200 2201 2202 2203 2204 2205
	 * Read everything that hasn't failed. However this time we will
	 * not trust any cached sector.
	 * As we may read out some stale data but higher layer is not reading
	 * that stale part.
	 *
	 * So here we always re-read everything in recovery path.
D
David Woodhouse 已提交
2206
	 */
2207 2208 2209 2210 2211 2212
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

2213
		if (rbio->faila == stripe || rbio->failb == stripe) {
2214
			atomic_inc(&rbio->error);
2215 2216 2217
			/* Skip the current stripe. */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
D
David Woodhouse 已提交
2218
			continue;
2219
		}
2220
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2221
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
2222
					 sectornr, REQ_OP_READ);
2223
		if (ret < 0)
2224
			goto error;
D
David Woodhouse 已提交
2225
	}
2226 2227 2228 2229 2230 2231 2232 2233
	return 0;
error:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);

	return -EIO;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static int recover_rbio(struct btrfs_raid_bio *rbio)
{
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	/*
	 * Either we're doing recover for a read failure or degraded write,
	 * caller should have set faila/b correctly.
	 */
	ASSERT(rbio->faila >= 0 || rbio->failb >= 0);
	bio_list_init(&bio_list);

	/*
	 * Reset error to 0, as we will later increase error for missing
	 * devices.
	 */
	atomic_set(&rbio->error, 0);

	/* For recovery, we need to read all sectors including P/Q. */
	ret = alloc_rbio_pages(rbio);
	if (ret < 0)
		goto out;

	index_rbio_pages(rbio);

	ret = recover_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto out;

	submit_read_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);

	/* We have more errors than our tolerance during the read. */
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		ret = -EIO;
		goto out;
	}

	ret = recover_sectors(rbio);

out:
	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

	return ret;
}

static void recover_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = lock_stripe_add(rbio);
	if (ret == 0) {
		ret = recover_rbio(rbio);
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	}
}

static void recover_rbio_work_locked(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = recover_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);

	ret = recover_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto cleanup;
D
David Woodhouse 已提交
2333 2334 2335 2336 2337 2338 2339 2340

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2341
		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
D
David Woodhouse 已提交
2342
			__raid_recover_end_io(rbio);
2343
			return 0;
D
David Woodhouse 已提交
2344 2345 2346 2347 2348 2349
		} else {
			goto cleanup;
		}
	}

	/*
2350 2351
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
2352
	 */
2353
	atomic_set(&rbio->stripes_pending, bios_to_read);
2354
	INIT_WORK(&rbio->end_io_work, raid_recover_end_io_work);
2355
	while ((bio = bio_list_pop(&bio_list))) {
2356
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
2357

2358 2359
		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
D
David Woodhouse 已提交
2360

2361 2362 2363
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
2364
		submit_bio(bio);
D
David Woodhouse 已提交
2365
	}
2366

D
David Woodhouse 已提交
2367 2368 2369
	return 0;

cleanup:
2370 2371
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2372
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2373 2374 2375 2376

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2386
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2387
			   int mirror_num)
D
David Woodhouse 已提交
2388
{
2389
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2390 2391
	struct btrfs_raid_bio *rbio;

2392
	rbio = alloc_rbio(fs_info, bioc);
2393
	if (IS_ERR(rbio)) {
2394
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2395 2396
		bio_endio(bio);
		return;
2397
	}
D
David Woodhouse 已提交
2398

2399
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2400
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2401 2402 2403

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2404
		btrfs_warn(fs_info,
2405
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
2406
			   __func__, bio->bi_iter.bi_sector << 9,
2407
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
2408
		free_raid_bio(rbio);
2409
		bio->bi_status = BLK_STS_IOERR;
2410 2411
		bio_endio(bio);
		return;
D
David Woodhouse 已提交
2412 2413 2414
	}

	/*
L
Liu Bo 已提交
2415 2416 2417
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2418
	 */
L
Liu Bo 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2430

2431
	start_async_work(rbio, recover_rbio_work);
D
David Woodhouse 已提交
2432 2433
}

2434
static void rmw_work(struct work_struct *work)
D
David Woodhouse 已提交
2435 2436 2437 2438 2439 2440 2441
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

2442 2443 2444
/*
 * The following code is used to scrub/replace the parity stripe
 *
2445
 * Caller must have already increased bio_counter for getting @bioc.
2446
 *
2447 2448 2449 2450 2451
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2452 2453
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2454
				struct btrfs_device *scrub_dev,
2455
				unsigned long *dbitmap, int stripe_nsectors)
2456
{
2457
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2458 2459 2460
	struct btrfs_raid_bio *rbio;
	int i;

2461
	rbio = alloc_rbio(fs_info, bioc);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2472
	/*
2473
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2474 2475 2476 2477
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2478
		if (bioc->stripes[i].dev == scrub_dev) {
2479 2480 2481 2482
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2483
	ASSERT(i < rbio->real_stripes);
2484

2485
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2486 2487 2488
	return rbio;
}

2489 2490
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2491
			    unsigned int pgoff, u64 logical)
2492
{
2493
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2494 2495 2496
	int stripe_offset;
	int index;

2497
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2498
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2499
				       BTRFS_STRIPE_LEN * rbio->nr_data);
2500
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2501 2502 2503
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2504 2505 2506 2507 2508 2509 2510 2511
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2512
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2513
	int total_sector_nr;
2514

2515 2516 2517 2518 2519
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2520

2521 2522 2523 2524 2525 2526 2527 2528
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2529
	}
2530
	index_stripe_sectors(rbio);
2531 2532 2533 2534 2535 2536
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2537
	struct btrfs_io_context *bioc = rbio->bioc;
2538
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2539
	void **pointers = rbio->finish_pointers;
2540
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2541 2542
	int nr_data = rbio->nr_data;
	int stripe;
2543
	int sectornr;
2544
	bool has_qstripe;
2545 2546
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2547 2548
	struct bio_list bio_list;
	struct bio *bio;
2549
	int is_replace = 0;
2550 2551 2552 2553
	int ret;

	bio_list_init(&bio_list);

2554 2555 2556 2557 2558
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2559 2560
		BUG();

2561
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2562
		is_replace = 1;
2563
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2564 2565
	}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2576 2577
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2578
		goto cleanup;
2579 2580
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2581

2582
	if (has_qstripe) {
I
Ira Weiny 已提交
2583
		/* RAID6, allocate and map temp space for the Q stripe */
2584 2585 2586 2587
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2588 2589
			goto cleanup;
		}
2590 2591 2592
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2593 2594 2595 2596
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2597
	/* Map the parity stripe just once */
2598
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2599

2600
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2601
		struct sector_ptr *sector;
2602
		void *parity;
2603

2604 2605
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2606 2607 2608
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2609 2610
		}

2611
		if (has_qstripe) {
I
Ira Weiny 已提交
2612
			/* RAID6, call the library function to fill in our P/Q */
2613
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2614 2615 2616
						pointers);
		} else {
			/* raid5 */
2617 2618
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2619 2620
		}

2621
		/* Check scrubbing parity and repair it */
2622 2623 2624 2625
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2626 2627
		else
			/* Parity is right, needn't writeback */
2628
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2629
		kunmap_local(parity);
2630

2631 2632
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2633 2634
	}

2635
	kunmap_local(pointers[nr_data]);
2636 2637 2638
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2639
		kunmap_local(pointers[rbio->real_stripes - 1]);
2640 2641
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2642
	}
2643 2644 2645 2646 2647 2648 2649

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2650
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2651
		struct sector_ptr *sector;
2652

2653 2654
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2655
					 sectornr, REQ_OP_WRITE);
2656 2657 2658 2659
		if (ret)
			goto cleanup;
	}

2660 2661 2662
	if (!is_replace)
		goto submit_write;

2663 2664
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2665

2666 2667
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2668
				       bioc->tgtdev_map[rbio->scrubp],
2669
				       sectornr, REQ_OP_WRITE);
2670 2671 2672 2673 2674
		if (ret)
			goto cleanup;
	}

submit_write:
2675 2676 2677
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2678
		rbio_orig_end_io(rbio, BLK_STS_OK);
2679 2680 2681 2682 2683
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

2684
	while ((bio = bio_list_pop(&bio_list))) {
2685
		bio->bi_end_io = raid_write_end_io;
2686

2687 2688 2689 2690 2691 2692
		if (trace_raid56_scrub_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_write_stripe(rbio, bio, &trace_info);
		}
2693
		submit_bio(bio);
2694 2695 2696 2697
	}
	return;

cleanup:
2698
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2699 2700 2701

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
2720
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
2741
		if (dfail > rbio->bioc->max_errors - 1)
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2756
		 * is scrubbing parity, luckily, use the other one to repair
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2769
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2780
static void raid56_parity_scrub_end_io_work(struct work_struct *work)
2781
{
2782 2783
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
2784 2785

	/*
2786 2787
	 * This will normally call finish_rmw to start our write, but if there
	 * are any failed stripes we'll reconstruct from parity first
2788 2789 2790 2791 2792 2793 2794 2795 2796
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2797
	int total_sector_nr;
2798 2799
	struct bio *bio;

L
Liu Bo 已提交
2800 2801
	bio_list_init(&bio_list);

2802 2803 2804 2805 2806
	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
2807 2808 2809 2810 2811 2812
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2813

2814 2815 2816
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2836
					 sectornr, REQ_OP_READ);
2837 2838
		if (ret)
			goto cleanup;
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
2853 2854
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
2855 2856
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
2857
	INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work);
2858
	while ((bio = bio_list_pop(&bio_list))) {
2859
		bio->bi_end_io = raid56_bio_end_io;
2860

2861 2862
		if (trace_raid56_scrub_read_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };
2863

2864 2865 2866
			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read(rbio, bio, &trace_info);
		}
2867
		submit_bio(bio);
2868 2869 2870 2871 2872
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2873
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2874 2875 2876 2877

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2878 2879 2880 2881 2882 2883
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

2884
static void scrub_parity_work(struct work_struct *work)
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2895
		start_async_work(rbio, scrub_parity_work);
2896
}
2897 2898 2899 2900

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2901
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2902
{
2903
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2904 2905
	struct btrfs_raid_bio *rbio;

2906
	rbio = alloc_rbio(fs_info, bioc);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2920 2921 2922
		btrfs_warn_rl(fs_info,
	"can not determine the failed stripe number for full stripe %llu",
			      bioc->raid_map[0]);
2923
		free_raid_bio(rbio);
2924 2925 2926 2927 2928 2929 2930 2931
		return NULL;
	}

	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
2932
	start_async_work(rbio, recover_rbio_work);
2933
}