raid56.c 68.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "messages.h"
17
#include "misc.h"
D
David Woodhouse 已提交
18 19 20 21 22 23 24 25 26
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

56 57 58 59 60 61 62
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
63 64
	unsigned int pgoff:24;
	unsigned int uptodate:8;
65 66
};

67 68
static void rmw_rbio_work(struct work_struct *work);
static void rmw_rbio_work_locked(struct work_struct *work);
D
David Woodhouse 已提交
69 70 71 72 73
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

74 75
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
static void scrub_rbio_work_locked(struct work_struct *work);
76

77 78 79 80 81 82 83 84
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
{
	kfree(rbio->stripe_pages);
	kfree(rbio->bio_sectors);
	kfree(rbio->stripe_sectors);
	kfree(rbio->finish_pointers);
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	if (!refcount_dec_and_test(&rbio->refs))
		return;

	WARN_ON(!list_empty(&rbio->stripe_cache));
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}

	btrfs_put_bioc(rbio->bioc);
104
	free_raid_bio_pointers(rbio);
105 106 107
	kfree(rbio);
}

108
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
109
{
110 111
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
112 113
}

D
David Woodhouse 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

130 131 132 133 134 135 136
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
137
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
138 139
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
140

141 142 143
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
144 145 146 147 148 149 150 151 152
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
153
	kvfree(x);
D
David Woodhouse 已提交
154 155 156
	return 0;
}

157 158
/*
 * caching an rbio means to copy anything from the
159
 * bio_sectors array into the stripe_pages array.  We
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

175 176
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
177 178 179 180 181 182 183 184
		if (!rbio->bio_sectors[i].page) {
			/*
			 * Even if the sector is not covered by bio, if it is
			 * a data sector it should still be uptodate as it is
			 * read from disk.
			 */
			if (i < rbio->nr_data * rbio->stripe_nsectors)
				ASSERT(rbio->stripe_sectors[i].uptodate);
185
			continue;
186
		}
187 188 189 190 191 192 193 194 195

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
196 197 198
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
199 200 201 202 203
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
204
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
205 206 207 208 209 210 211 212 213 214 215 216

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
{
	const int sector_nr = (page_nr << PAGE_SHIFT) >>
			      rbio->bioc->fs_info->sectorsize_bits;

	/*
	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
	 * we won't have a page which is half data half parity.
	 *
	 * Thus if the first sector of the page belongs to data stripes, then
	 * the full page belongs to data stripes.
	 */
	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
}

288
/*
289 290 291 292 293
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
294 295 296 297 298 299 300 301 302
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
303 304 305 306 307 308 309
		struct page *p = src->stripe_pages[i];

		/*
		 * We don't need to steal P/Q pages as they will always be
		 * regenerated for RMW or full write anyway.
		 */
		if (!is_data_stripe_page(src, i))
310 311
			continue;

312 313 314 315 316 317
		/*
		 * If @src already has RBIO_CACHE_READY_BIT, it should have
		 * all data stripe pages present and uptodate.
		 */
		ASSERT(p);
		ASSERT(full_page_sectors_uptodate(src, i));
318
		steal_rbio_page(src, dest, i);
319
	}
320 321
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
322 323
}

D
David Woodhouse 已提交
324 325 326 327 328 329 330 331 332 333 334 335
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
336 337 338
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
D
David Woodhouse 已提交
339 340 341 342
	bio_list_init(&victim->bio_list);
}

/*
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

359
	table = rbio->bioc->fs_info->stripe_hash_table;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
390
				refcount_dec(&rbio->refs);
391 392 393 394 395 396 397 398 399
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
400
		free_raid_bio(rbio);
401 402 403 404 405 406 407 408 409 410 411 412 413
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

414
	table = rbio->bioc->fs_info->stripe_hash_table;
415 416 417 418 419 420 421 422 423

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
424
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
445 446 447 448 449
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
450
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
451
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
452 453 454
	info->stripe_hash_table = NULL;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

474
	table = rbio->bioc->fs_info->stripe_hash_table;
475 476 477 478 479 480

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
481
		refcount_inc(&rbio->refs);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
527 528
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
529
 */
530
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
531
{
532
	unsigned long flags;
D
David Woodhouse 已提交
533 534 535
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

536
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
537
	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
D
David Woodhouse 已提交
538
		ret = 0;
539
	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
D
David Woodhouse 已提交
540
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
541

D
David Woodhouse 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

562 563 564 565
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
566
	 * steal from cached rbios though, other functions
567 568 569 570 571 572
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

573
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
574 575
		return 0;

576 577 578 579 580 581 582 583 584 585 586
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
587
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
588 589
		return 0;

590
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
591 592
		return 0;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
612 613 614
	return 1;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

634 635 636
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
637
{
638
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
639 640
}

641 642 643
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
644
{
645 646 647
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
674
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
675 676 677 678
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
679
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
680 681
	int ret = 0;

682
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
683

D
David Woodhouse 已提交
684 685
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
686
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
687
			continue;
688

689
		spin_lock(&cur->bio_list_lock);
690

691 692 693 694 695 696 697
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
698

699 700 701
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
702

703 704
			goto lockit;
		}
D
David Woodhouse 已提交
705

706 707 708
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
709
			spin_unlock(&cur->bio_list_lock);
710
			freeit = rbio;
D
David Woodhouse 已提交
711 712 713
			ret = 1;
			goto out;
		}
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
739
	}
740
lockit:
741
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
742 743 744
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
745 746
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
747
	if (freeit)
748
		free_raid_bio(freeit);
D
David Woodhouse 已提交
749 750 751
	return ret;
}

752 753
static void recover_rbio_work_locked(struct work_struct *work);

D
David Woodhouse 已提交
754 755 756 757 758 759 760 761 762
/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
763
	int keep_cache = 0;
D
David Woodhouse 已提交
764 765

	bucket = rbio_bucket(rbio);
766
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
767

768 769 770
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
771 772 773 774
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
775 776 777 778 779 780 781 782 783 784 785 786
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
787 788

		list_del_init(&rbio->hash_list);
789
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
806
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
807 808 809
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

810
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
811
				start_async_work(next, recover_rbio_work_locked);
812 813
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
814
				start_async_work(next, recover_rbio_work_locked);
815
			} else if (next->operation == BTRFS_RBIO_WRITE) {
816
				steal_rbio(rbio, next);
817
				start_async_work(next, rmw_rbio_work_locked);
818 819
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
820
				start_async_work(next, scrub_rbio_work_locked);
821
			}
D
David Woodhouse 已提交
822 823 824 825

			goto done_nolock;
		}
	}
826
done:
D
David Woodhouse 已提交
827 828 829 830
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
831 832
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
833 834
}

835
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
836
{
837 838 839 840 841 842 843 844 845
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
846 847 848 849 850 851
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
852
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
853 854
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
855
	struct bio *extra;
856

857 858 859 860 861 862
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
863

864 865 866 867 868 869 870 871 872 873
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
874
	free_raid_bio(rbio);
D
David Woodhouse 已提交
875

876 877 878
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
879 880
}

D
David Sterba 已提交
881 882
/*
 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
920 921 922 923
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
924
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
925
					 struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
926
{
927
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
928
	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
929
	const unsigned int num_pages = stripe_npages * real_stripes;
930 931
	const unsigned int stripe_nsectors =
		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
932
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
933 934
	struct btrfs_raid_bio *rbio;

935 936
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
937 938 939 940 941
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
942

943
	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
944
	if (!rbio)
D
David Woodhouse 已提交
945
		return ERR_PTR(-ENOMEM);
946 947 948 949 950 951 952 953 954 955 956 957 958 959
	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
				     GFP_NOFS);
	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				    GFP_NOFS);
	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
				       GFP_NOFS);
	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);

	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
	    !rbio->finish_pointers) {
		free_raid_bio_pointers(rbio);
		kfree(rbio);
		return ERR_PTR(-ENOMEM);
	}
D
David Woodhouse 已提交
960 961

	bio_list_init(&rbio->bio_list);
962
	init_waitqueue_head(&rbio->io_wait);
D
David Woodhouse 已提交
963 964
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
965
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
966
	INIT_LIST_HEAD(&rbio->hash_list);
967
	btrfs_get_bioc(bioc);
968
	rbio->bioc = bioc;
D
David Woodhouse 已提交
969
	rbio->nr_pages = num_pages;
970
	rbio->nr_sectors = num_sectors;
971
	rbio->real_stripes = real_stripes;
972
	rbio->stripe_npages = stripe_npages;
973
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
974 975
	rbio->faila = -1;
	rbio->failb = -1;
976
	refcount_set(&rbio->refs, 1);
977 978
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
979

980 981
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
982 983 984 985 986 987 988

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
989 990 991 992 993 994 995 996
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
997 998
}

999
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1000 1001
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1002
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1003
	int ret;
D
David Woodhouse 已提交
1004

1005 1006 1007 1008 1009 1010 1011
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1012 1013 1014
}

/*
1015 1016 1017 1018
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1019
 */
1020 1021 1022 1023 1024
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
1025
			      enum req_op op)
D
David Woodhouse 已提交
1026
{
1027
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1028 1029 1030
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1031
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1032 1033
	u64 disk_start;

1034 1035 1036 1037 1038 1039 1040 1041 1042
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1043
	stripe = &rbio->bioc->stripes[stripe_nr];
1044
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1045 1046 1047 1048 1049 1050 1051

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1052
		u64 last_end = last->bi_iter.bi_sector << 9;
1053
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1054 1055 1056 1057 1058

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1059
		if (last_end == disk_start && !last->bi_status &&
1060
		    last->bi_bdev == stripe->dev->bdev) {
1061 1062 1063
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1064 1065 1066 1067 1068
				return 0;
		}
	}

	/* put a new bio on the list */
1069 1070
	bio = bio_alloc(stripe->dev->bdev,
			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1071
			op, GFP_NOFS);
1072
	bio->bi_iter.bi_sector = disk_start >> 9;
1073
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1074

1075
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1076 1077 1078 1079
	bio_list_add(bio_list, bio);
	return 0;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1116 1117 1118
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1119 1120 1121
	spin_unlock_irq(&rbio->bio_list_lock);
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/* Generate PQ for one veritical stripe. */
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
{
	void **pointers = rbio->finish_pointers;
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct sector_ptr *sector;
	int stripe;
	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;

	/* First collect one sector from each data stripe */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
		pointers[stripe] = kmap_local_page(sector->page) +
				   sector->pgoff;
	}

	/* Then add the parity stripe */
	sector = rbio_pstripe_sector(rbio, sectornr);
	sector->uptodate = 1;
	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;

	if (has_qstripe) {
		/*
		 * RAID6, add the qstripe and call the library function
		 * to fill in our p/q
		 */
		sector = rbio_qstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) +
				     sector->pgoff;

		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
					pointers);
	} else {
		/* raid5 */
		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
	}
	for (stripe = stripe - 1; stripe >= 0; stripe--)
		kunmap_local(pointers[stripe]);
}

1192 1193
static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
				   struct bio_list *bio_list)
D
David Woodhouse 已提交
1194
{
1195
	struct bio *bio;
1196 1197
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
1198
	int sectornr;
1199
	int stripe;
D
David Woodhouse 已提交
1200 1201
	int ret;

1202
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1203

1204 1205 1206
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * Reset errors, as we may have errors inherited from from degraded
	 * write.
	 */
	atomic_set(&rbio->error, 0);
	rbio->faila = -1;
	rbio->failb = -1;

D
David Woodhouse 已提交
1215
	/*
1216
	 * Start assembly.  Make bios for everything from the higher layers (the
1217
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1218
	 */
1219 1220 1221
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1222

1223 1224
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
D
David Woodhouse 已提交
1225

1226 1227 1228
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1229

1230 1231 1232 1233 1234 1235
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1236
		}
1237

1238
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1239
					 sectornr, REQ_OP_WRITE);
1240
		if (ret)
1241
			goto error;
D
David Woodhouse 已提交
1242 1243
	}

1244 1245
	if (likely(!rbio->bioc->num_tgtdevs))
		return 0;
1246

1247
	/* Make a copy for the replace target device. */
1248 1249 1250
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1251

1252 1253
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1254

1255
		if (!rbio->bioc->tgtdev_map[stripe]) {
1256 1257 1258 1259 1260 1261 1262 1263
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1264

1265 1266 1267
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1268

1269 1270 1271 1272 1273 1274
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1275
		}
1276

1277
		ret = rbio_add_io_sector(rbio, bio_list, sector,
1278
					 rbio->bioc->tgtdev_map[stripe],
1279
					 sectornr, REQ_OP_WRITE);
1280
		if (ret)
1281
			goto error;
1282 1283
	}

1284 1285 1286 1287 1288 1289 1290
	return 0;
error:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
	return -EIO;
}

D
David Woodhouse 已提交
1291 1292 1293 1294 1295 1296 1297 1298
/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1299
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1300
	int i;
1301
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1302 1303 1304

	physical <<= 9;

1305 1306
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1307
		if (in_range(physical, stripe->physical, BTRFS_STRIPE_LEN) &&
1308
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1323
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1324 1325 1326
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1327
		u64 stripe_start = rbio->bioc->raid_map[i];
1328

1329
		if (in_range(logical, stripe_start, BTRFS_STRIPE_LEN))
D
David Woodhouse 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1352
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1353 1354 1355
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1356
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * For subpage case, we can no longer set page Uptodate directly for
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1400 1401 1402 1403
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1404
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1405
{
1406
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1407
	struct bio_vec *bvec;
1408
	struct bvec_iter_all iter_all;
1409

1410
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static void raid_wait_read_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	if (bio->bi_status)
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(rbio, bio);

	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

static void submit_read_bios(struct btrfs_raid_bio *rbio,
			     struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_read_end_io;

		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
}

1459 1460
static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
				  struct bio_list *bio_list)
D
David Woodhouse 已提交
1461
{
1462
	const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data;
D
David Woodhouse 已提交
1463
	struct bio *bio;
1464 1465
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
1466

1467
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1468

1469 1470 1471 1472 1473 1474
	/* Build a list of bios to read all the missing data sectors. */
	for (total_sector_nr = 0; total_sector_nr < nr_data_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1475

1476 1477 1478 1479 1480 1481 1482 1483
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk.  If sector_in_rbio() finds a page
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;
D
David Woodhouse 已提交
1484

1485 1486 1487 1488 1489 1490 1491
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate page.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;
1492

1493
		ret = rbio_add_io_sector(rbio, bio_list, sector,
1494
			       stripe, sectornr, REQ_OP_READ);
1495 1496
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1497
	}
1498 1499 1500 1501 1502 1503 1504 1505
	return 0;

cleanup:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
	return ret;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
{
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
	int ret;

	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1530
	struct work_struct work;
1531 1532 1533 1534 1535
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1536 1537
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1538
{
1539 1540 1541 1542
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1543 1544
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1545 1546 1547 1548 1549 1550 1551 1552

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

1553
static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1554
{
1555
	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1556 1557 1558 1559
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	list_sort(NULL, &plug->rbio_list, plug_cmp);
1560

1561 1562 1563 1564 1565 1566
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1567 1568
			/* We have a full stripe, queue it down. */
			start_async_work(cur, rmw_rbio_work);
1569 1570 1571 1572 1573
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
1574
				free_raid_bio(cur);
1575 1576
				continue;
			}
1577
			start_async_work(last, rmw_rbio_work);
1578 1579 1580
		}
		last = cur;
	}
1581 1582
	if (last)
		start_async_work(last, rmw_rbio_work);
1583 1584 1585
	kfree(plug);
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
1598
	       rbio->nr_data * BTRFS_STRIPE_LEN);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1613 1614 1615
/*
 * our main entry point for writes from the rest of the FS.
 */
1616
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
D
David Woodhouse 已提交
1617
{
1618
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1619
	struct btrfs_raid_bio *rbio;
1620 1621
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1622
	int ret = 0;
D
David Woodhouse 已提交
1623

1624
	rbio = alloc_rbio(fs_info, bioc);
1625
	if (IS_ERR(rbio)) {
1626
		ret = PTR_ERR(rbio);
1627
		goto fail;
1628
	}
1629
	rbio->operation = BTRFS_RBIO_WRITE;
1630
	rbio_add_bio(rbio, bio);
1631 1632

	/*
1633
	 * Don't plug on full rbios, just get them out the door
1634 1635
	 * as quickly as we can
	 */
1636 1637
	if (rbio_is_full(rbio))
		goto queue_rbio;
1638

1639
	cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1640 1641 1642
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1643
			plug->info = fs_info;
1644 1645 1646
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1647
		return;
1648
	}
1649 1650 1651 1652 1653 1654
queue_rbio:
	/*
	 * Either we don't have any existing plug, or we're doing a full stripe,
	 * can queue the rmw work now.
	 */
	start_async_work(rbio, rmw_rbio_work);
1655 1656 1657

	return;

1658
fail:
1659 1660
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
D
David Woodhouse 已提交
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/*
 * Recover a vertical stripe specified by @sector_nr.
 * @*pointers are the pre-allocated pointers by the caller, so we don't
 * need to allocate/free the pointers again and again.
 */
static void recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
			     void **pointers, void **unmap_array)
{
	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	struct sector_ptr *sector;
	const u32 sectorsize = fs_info->sectorsize;
	const int faila = rbio->faila;
	const int failb = rbio->failb;
	int stripe_nr;

	/*
	 * Now we just use bitmap to mark the horizontal stripes in
	 * which we have data when doing parity scrub.
	 */
	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
	    !test_bit(sector_nr, &rbio->dbitmap))
		return;

	/*
	 * Setup our array of pointers with sectors from each stripe
	 *
	 * NOTE: store a duplicate array of pointers to preserve the
	 * pointer order.
	 */
	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
		/*
		 * If we're rebuilding a read, we have to use
		 * pages from the bio list
		 */
		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
		    (stripe_nr == faila || stripe_nr == failb)) {
			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
		} else {
			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
		}
		ASSERT(sector->page);
		pointers[stripe_nr] = kmap_local_page(sector->page) +
				   sector->pgoff;
		unmap_array[stripe_nr] = pointers[stripe_nr];
	}

	/* All raid6 handling here */
	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
		/* Single failure, rebuild from parity raid5 style */
		if (failb < 0) {
			if (faila == rbio->nr_data)
				/*
				 * Just the P stripe has failed, without
				 * a bad data or Q stripe.
				 * We have nothing to do, just skip the
				 * recovery for this stripe.
				 */
				goto cleanup;
			/*
			 * a single failure in raid6 is rebuilt
			 * in the pstripe code below
			 */
			goto pstripe;
		}

		/*
		 * If the q stripe is failed, do a pstripe reconstruction from
		 * the xors.
		 * If both the q stripe and the P stripe are failed, we're
		 * here due to a crc mismatch and we can't give them the
		 * data they want.
		 */
		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
			if (rbio->bioc->raid_map[faila] ==
			    RAID5_P_STRIPE)
				/*
				 * Only P and Q are corrupted.
				 * We only care about data stripes recovery,
				 * can skip this vertical stripe.
				 */
				goto cleanup;
			/*
			 * Otherwise we have one bad data stripe and
			 * a good P stripe.  raid5!
			 */
			goto pstripe;
		}

		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
			raid6_datap_recov(rbio->real_stripes, sectorsize,
					  faila, pointers);
		} else {
			raid6_2data_recov(rbio->real_stripes, sectorsize,
					  faila, failb, pointers);
		}
	} else {
		void *p;

		/* Rebuild from P stripe here (raid5 or raid6). */
		ASSERT(failb == -1);
pstripe:
		/* Copy parity block into failed block to start with */
		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);

		/* Rearrange the pointer array */
		p = pointers[faila];
		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
		     stripe_nr++)
			pointers[stripe_nr] = pointers[stripe_nr + 1];
		pointers[rbio->nr_data - 1] = p;

		/* Xor in the rest */
		run_xor(pointers, rbio->nr_data - 1, sectorsize);

	}

	/*
	 * No matter if this is a RMW or recovery, we should have all
	 * failed sectors repaired in the vertical stripe, thus they are now
	 * uptodate.
	 * Especially if we determine to cache the rbio, we need to
	 * have at least all data sectors uptodate.
	 */
	if (rbio->faila >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->faila, sector_nr);
		sector->uptodate = 1;
	}
	if (rbio->failb >= 0) {
		sector = rbio_stripe_sector(rbio, rbio->failb, sector_nr);
		sector->uptodate = 1;
	}

cleanup:
	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
		kunmap_local(unmap_array[stripe_nr]);
}

1801
static int recover_sectors(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
1802
{
1803 1804
	void **pointers = NULL;
	void **unmap_array = NULL;
1805 1806
	int sectornr;
	int ret = 0;
D
David Woodhouse 已提交
1807

1808
	/*
1809 1810 1811 1812
	 * @pointers array stores the pointer for each sector.
	 *
	 * @unmap_array stores copy of pointers that does not get reordered
	 * during reconstruction so that kunmap_local works.
1813
	 */
1814
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1815
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1816 1817 1818
	if (!pointers || !unmap_array) {
		ret = -ENOMEM;
		goto out;
1819 1820
	}

1821 1822 1823
	/* Make sure faila and fail b are in order. */
	if (rbio->faila >= 0 && rbio->failb >= 0 && rbio->faila > rbio->failb)
		swap(rbio->faila, rbio->failb);
D
David Woodhouse 已提交
1824

1825 1826
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1827 1828 1829 1830 1831 1832 1833
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1834 1835
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		recover_vertical(rbio, sectornr, pointers, unmap_array);
D
David Woodhouse 已提交
1836

1837
out:
D
David Woodhouse 已提交
1838
	kfree(pointers);
1839 1840 1841 1842
	kfree(unmap_array);
	return ret;
}

1843 1844
static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
				      struct bio_list *bio_list)
D
David Woodhouse 已提交
1845 1846
{
	struct bio *bio;
1847 1848
	int total_sector_nr;
	int ret = 0;
D
David Woodhouse 已提交
1849

1850
	ASSERT(bio_list_size(bio_list) == 0);
D
David Woodhouse 已提交
1851
	/*
1852 1853 1854 1855 1856 1857
	 * Read everything that hasn't failed. However this time we will
	 * not trust any cached sector.
	 * As we may read out some stale data but higher layer is not reading
	 * that stale part.
	 *
	 * So here we always re-read everything in recovery path.
D
David Woodhouse 已提交
1858
	 */
1859 1860 1861 1862 1863 1864
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

1865
		if (rbio->faila == stripe || rbio->failb == stripe) {
1866
			atomic_inc(&rbio->error);
1867 1868 1869
			/* Skip the current stripe. */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
D
David Woodhouse 已提交
1870
			continue;
1871
		}
1872
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1873
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1874
					 sectornr, REQ_OP_READ);
1875
		if (ret < 0)
1876
			goto error;
D
David Woodhouse 已提交
1877
	}
1878 1879 1880 1881 1882 1883 1884 1885
	return 0;
error:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);

	return -EIO;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static int recover_rbio(struct btrfs_raid_bio *rbio)
{
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	/*
	 * Either we're doing recover for a read failure or degraded write,
	 * caller should have set faila/b correctly.
	 */
	ASSERT(rbio->faila >= 0 || rbio->failb >= 0);
	bio_list_init(&bio_list);

	/*
	 * Reset error to 0, as we will later increase error for missing
	 * devices.
	 */
	atomic_set(&rbio->error, 0);

	/* For recovery, we need to read all sectors including P/Q. */
	ret = alloc_rbio_pages(rbio);
	if (ret < 0)
		goto out;

	index_rbio_pages(rbio);

	ret = recover_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto out;

	submit_read_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);

	/* We have more errors than our tolerance during the read. */
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		ret = -EIO;
		goto out;
	}

	ret = recover_sectors(rbio);

out:
	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

	return ret;
}

static void recover_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = lock_stripe_add(rbio);
	if (ret == 0) {
		ret = recover_rbio(rbio);
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	}
}

static void recover_rbio_work_locked(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = recover_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
}

D
David Woodhouse 已提交
1959 1960 1961 1962 1963 1964
/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
1965
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
1966
			   int mirror_num)
D
David Woodhouse 已提交
1967
{
1968
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1969 1970
	struct btrfs_raid_bio *rbio;

1971
	rbio = alloc_rbio(fs_info, bioc);
1972
	if (IS_ERR(rbio)) {
1973
		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1974 1975
		bio_endio(bio);
		return;
1976
	}
D
David Woodhouse 已提交
1977

1978
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
1979
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
1980 1981 1982

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
1983
		btrfs_warn(fs_info,
1984
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
1985
			   __func__, bio->bi_iter.bi_sector << 9,
1986
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
1987
		free_raid_bio(rbio);
1988
		bio->bi_status = BLK_STS_IOERR;
1989 1990
		bio_endio(bio);
		return;
D
David Woodhouse 已提交
1991 1992 1993
	}

	/*
L
Liu Bo 已提交
1994 1995 1996
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
1997
	 */
L
Liu Bo 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2009

2010
	start_async_work(rbio, recover_rbio_work);
D
David Woodhouse 已提交
2011 2012
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static int rmw_read_and_wait(struct btrfs_raid_bio *rbio)
{
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);
	atomic_set(&rbio->error, 0);

	ret = rmw_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto out;

	submit_read_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
	return ret;
out:
	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

	return ret;
}

static void raid_wait_write_end_io(struct bio *bio)
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
	blk_status_t err = bio->bi_status;

	if (err)
		fail_bio_stripe(rbio, bio);
	bio_put(bio);
	if (atomic_dec_and_test(&rbio->stripes_pending))
		wake_up(&rbio->io_wait);
}

static void submit_write_bios(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list)
{
	struct bio *bio;

	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
	while ((bio = bio_list_pop(bio_list))) {
		bio->bi_end_io = raid_wait_write_end_io;

		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
		submit_bio(bio);
	}
}

2067
static int rmw_rbio(struct btrfs_raid_bio *rbio)
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
{
	struct bio_list bio_list;
	int sectornr;
	int ret = 0;

	/*
	 * Allocate the pages for parity first, as P/Q pages will always be
	 * needed for both full-stripe and sub-stripe writes.
	 */
	ret = alloc_rbio_parity_pages(rbio);
	if (ret < 0)
		return ret;

	/* Full stripe write, can write the full stripe right now. */
	if (rbio_is_full(rbio))
		goto write;
	/*
	 * Now we're doing sub-stripe write, also need all data stripes to do
	 * the full RMW.
	 */
	ret = alloc_rbio_data_pages(rbio);
	if (ret < 0)
		return ret;

	atomic_set(&rbio->error, 0);
	index_rbio_pages(rbio);

	ret = rmw_read_and_wait(rbio);
	if (ret < 0)
		return ret;

	/* Too many read errors, beyond our tolerance. */
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
		return ret;

	/* Have read failures but under tolerance, needs recovery. */
	if (rbio->faila >= 0 || rbio->failb >= 0) {
		ret = recover_rbio(rbio);
		if (ret < 0)
			return ret;
	}
write:
	/*
	 * At this stage we're not allowed to add any new bios to the
	 * bio list any more, anyone else that wants to change this stripe
	 * needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

	atomic_set(&rbio->error, 0);

	index_rbio_pages(rbio);

	/*
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
	 */
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
		generate_pq_vertical(rbio, sectornr);

	bio_list_init(&bio_list);
	ret = rmw_assemble_write_bios(rbio, &bio_list);
	if (ret < 0)
		return ret;

	/* We should have at least one bio assembled. */
	ASSERT(bio_list_size(&bio_list));
	submit_write_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);

	/* We have more errors than our tolerance during the read. */
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
		ret = -EIO;
	return ret;
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static void rmw_rbio_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio;
	int ret;

	rbio = container_of(work, struct btrfs_raid_bio, work);

	ret = lock_stripe_add(rbio);
	if (ret == 0) {
		ret = rmw_rbio(rbio);
		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
	}
}

static void rmw_rbio_work_locked(struct work_struct *work)
D
David Woodhouse 已提交
2168 2169
{
	struct btrfs_raid_bio *rbio;
2170
	int ret;
D
David Woodhouse 已提交
2171 2172

	rbio = container_of(work, struct btrfs_raid_bio, work);
2173 2174 2175

	ret = rmw_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
D
David Woodhouse 已提交
2176 2177
}

2178 2179 2180
/*
 * The following code is used to scrub/replace the parity stripe
 *
2181
 * Caller must have already increased bio_counter for getting @bioc.
2182
 *
2183 2184 2185 2186 2187
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2188 2189
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2190
				struct btrfs_device *scrub_dev,
2191
				unsigned long *dbitmap, int stripe_nsectors)
2192
{
2193
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2194 2195 2196
	struct btrfs_raid_bio *rbio;
	int i;

2197
	rbio = alloc_rbio(fs_info, bioc);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2208
	/*
2209
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2210 2211 2212 2213
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2214
		if (bioc->stripes[i].dev == scrub_dev) {
2215 2216 2217 2218
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2219
	ASSERT(i < rbio->real_stripes);
2220

2221
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2222 2223 2224
	return rbio;
}

2225 2226
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2227
			    unsigned int pgoff, u64 logical)
2228
{
2229
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2230 2231 2232
	int stripe_offset;
	int index;

2233
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2234
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2235
				       BTRFS_STRIPE_LEN * rbio->nr_data);
2236
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2237 2238 2239
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2240 2241 2242 2243 2244 2245 2246 2247
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2248
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2249
	int total_sector_nr;
2250

2251 2252 2253 2254 2255
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2256

2257 2258 2259 2260 2261 2262 2263 2264
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2265
	}
2266
	index_stripe_sectors(rbio);
2267 2268 2269
	return 0;
}

2270
static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
2271
{
2272
	struct btrfs_io_context *bioc = rbio->bioc;
2273
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2274
	void **pointers = rbio->finish_pointers;
2275
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2276 2277
	int nr_data = rbio->nr_data;
	int stripe;
2278
	int sectornr;
2279
	bool has_qstripe;
2280 2281
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2282 2283
	struct bio_list bio_list;
	struct bio *bio;
2284
	int is_replace = 0;
2285 2286 2287 2288
	int ret;

	bio_list_init(&bio_list);

2289 2290 2291 2292 2293
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2294 2295
		BUG();

2296
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2297
		is_replace = 1;
2298
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2299 2300
	}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2311 2312
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2313
		return -ENOMEM;
2314 2315
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2316

2317
	if (has_qstripe) {
I
Ira Weiny 已提交
2318
		/* RAID6, allocate and map temp space for the Q stripe */
2319 2320 2321 2322
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2323
			return -ENOMEM;
2324
		}
2325 2326 2327
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2328 2329 2330 2331
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2332
	/* Map the parity stripe just once */
2333
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2334

2335
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2336
		struct sector_ptr *sector;
2337
		void *parity;
2338

2339 2340
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2341 2342 2343
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2344 2345
		}

2346
		if (has_qstripe) {
I
Ira Weiny 已提交
2347
			/* RAID6, call the library function to fill in our P/Q */
2348
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2349 2350 2351
						pointers);
		} else {
			/* raid5 */
2352 2353
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2354 2355
		}

2356
		/* Check scrubbing parity and repair it */
2357 2358 2359 2360
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2361 2362
		else
			/* Parity is right, needn't writeback */
2363
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2364
		kunmap_local(parity);
2365

2366 2367
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2368 2369
	}

2370
	kunmap_local(pointers[nr_data]);
2371 2372 2373
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2374
		kunmap_local(pointers[rbio->real_stripes - 1]);
2375 2376
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2377
	}
2378 2379 2380 2381 2382 2383 2384

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2385
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2386
		struct sector_ptr *sector;
2387

2388 2389
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2390
					 sectornr, REQ_OP_WRITE);
2391 2392 2393 2394
		if (ret)
			goto cleanup;
	}

2395 2396 2397
	if (!is_replace)
		goto submit_write;

2398 2399
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2400

2401 2402
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2403
				       bioc->tgtdev_map[rbio->scrubp],
2404
				       sectornr, REQ_OP_WRITE);
2405 2406 2407 2408 2409
		if (ret)
			goto cleanup;
	}

submit_write:
2410 2411
	submit_write_bios(rbio, &bio_list);
	return 0;
2412 2413

cleanup:
L
Liu Bo 已提交
2414 2415
	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2416
	return ret;
2417 2418 2419 2420 2421 2422 2423 2424 2425
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

2426
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2427
{
2428 2429
	int dfail = 0, failp = -1;
	int ret;
2430

2431 2432
	/* No error case should be already handled by the caller. */
	ASSERT(rbio->faila >= 0 || rbio->failb >= 0);
2433

2434 2435 2436 2437
	if (is_data_stripe(rbio, rbio->faila))
		dfail++;
	else if (is_parity_stripe(rbio->faila))
		failp = rbio->faila;
2438

2439 2440 2441 2442
	if (is_data_stripe(rbio, rbio->failb))
		dfail++;
	else if (is_parity_stripe(rbio->failb))
		failp = rbio->failb;
2443

2444 2445 2446 2447 2448 2449 2450
	/*
	 * Because we can not use a scrubbing parity to repair
	 * the data, so the capability of the repair is declined.
	 * (In the case of RAID5, we can not repair anything)
	 */
	if (dfail > rbio->bioc->max_errors - 1)
		return -EIO;
2451

2452 2453 2454 2455 2456 2457
	/*
	 * If all data is good, only parity is correctly, just
	 * repair the parity.
	 */
	if (dfail == 0)
		return 0;
2458 2459

	/*
2460 2461 2462 2463
	 * Here means we got one corrupted data stripe and one
	 * corrupted parity on RAID6, if the corrupted parity
	 * is scrubbing parity, luckily, use the other one to repair
	 * the data, or we can not repair the data stripe.
2464
	 */
2465 2466 2467 2468 2469 2470
	if (failp != rbio->scrubp)
		return -EIO;

	/* We have some corrupted sectors, need to repair them. */
	ret = recover_sectors(rbio);
	return ret;
2471 2472
}

2473 2474
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
				    struct bio_list *bio_list)
2475 2476
{
	struct bio *bio;
2477 2478
	int total_sector_nr;
	int ret = 0;
2479

2480
	ASSERT(bio_list_size(bio_list) == 0);
2481

2482 2483 2484 2485 2486 2487
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2488

2489 2490 2491
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

2510
		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
2511
					 sectornr, REQ_OP_READ);
2512
		if (ret)
2513
			goto error;
2514
	}
2515 2516 2517 2518 2519 2520 2521
	return 0;
error:
	while ((bio = bio_list_pop(bio_list)))
		bio_put(bio);
	return ret;
}

2522
static int scrub_rbio(struct btrfs_raid_bio *rbio)
2523
{
2524
	bool need_check = false;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	struct bio_list bio_list;
	int ret;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
	ret = scrub_assemble_read_bios(rbio, &bio_list);
	if (ret < 0)
		goto cleanup;
2539

2540 2541
	submit_read_bios(rbio, &bio_list);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2542

2543 2544 2545 2546
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		ret = -EIO;
		goto cleanup;
	}
2547
	/*
2548 2549
	 * No error during read, can finish the scrub and need to verify the
	 * P/Q sectors;
2550
	 */
2551 2552 2553 2554
	if (atomic_read(&rbio->error) == 0) {
		need_check = true;
		goto finish;
	}
2555

2556 2557 2558 2559
	/* We have some failures, need to recover the failed sectors first. */
	ret = recover_scrub_rbio(rbio);
	if (ret < 0)
		goto cleanup;
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
finish:
	/*
	 * We have every sector properly prepared. Can finish the scrub
	 * and writeback the good content.
	 */
	ret = finish_parity_scrub(rbio, need_check);
	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
		ret = -EIO;
	return ret;
2571 2572

cleanup:
L
Liu Bo 已提交
2573 2574 2575
	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2576
	return ret;
2577 2578
}

2579
static void scrub_rbio_work_locked(struct work_struct *work)
2580 2581
{
	struct btrfs_raid_bio *rbio;
2582
	int ret;
2583 2584

	rbio = container_of(work, struct btrfs_raid_bio, work);
2585 2586
	ret = scrub_rbio(rbio);
	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2587 2588 2589 2590 2591
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2592
		start_async_work(rbio, scrub_rbio_work_locked);
2593
}
2594 2595 2596 2597

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2598
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
2599
{
2600
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2601 2602
	struct btrfs_raid_bio *rbio;

2603
	rbio = alloc_rbio(fs_info, bioc);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2617 2618 2619
		btrfs_warn_rl(fs_info,
	"can not determine the failed stripe number for full stripe %llu",
			      bioc->raid_map[0]);
2620
		free_raid_bio(rbio);
2621 2622 2623 2624 2625 2626 2627 2628
		return NULL;
	}

	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
2629
	start_async_work(rbio, recover_rbio_work);
2630
}