raid56.c 73.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "misc.h"
D
David Woodhouse 已提交
17 18 19 20 21 22 23 24 25
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

55 56 57 58 59 60 61
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
62 63
	unsigned int pgoff:24;
	unsigned int uptodate:8;
64 65
};

D
David Woodhouse 已提交
66 67
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
68 69
static void rmw_work(struct work_struct *work);
static void read_rebuild_work(struct work_struct *work);
D
David Woodhouse 已提交
70 71 72 73 74 75
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

76 77
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
78
static void scrub_parity_work(struct work_struct *work);
79

80
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
81
{
82 83
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
84 85
}

D
David Woodhouse 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

102 103 104 105 106 107 108
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
109
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
110 111
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
112

113 114 115
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
116 117 118 119 120 121 122 123 124
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
125
	kvfree(x);
D
David Woodhouse 已提交
126 127 128
	return 0;
}

129 130
/*
 * caching an rbio means to copy anything from the
131
 * bio_sectors array into the stripe_pages array.  We
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

147 148 149 150 151 152 153 154 155 156 157 158 159
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
		if (!rbio->bio_sectors[i].page)
			continue;

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
160 161 162
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
163 164 165 166 167
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
168
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
169 170 171 172 173 174 175 176 177 178 179 180

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static void steal_rbio_page(struct btrfs_raid_bio *src,
			    struct btrfs_raid_bio *dest, int page_nr)
{
	const u32 sectorsize = src->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	if (dest->stripe_pages[page_nr])
		__free_page(dest->stripe_pages[page_nr]);
	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
	src->stripe_pages[page_nr] = NULL;

	/* Also update the sector->uptodate bits. */
	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page; i++)
		dest->stripe_sectors[i].uptodate = true;
}

237
/*
238 239 240 241 242
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
243 244 245 246 247 248 249 250 251 252 253
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;
	struct page *s;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
		s = src->stripe_pages[i];
254
		if (!s || !full_page_sectors_uptodate(src, i))
255 256
			continue;

257
		steal_rbio_page(src, dest, i);
258
	}
259 260
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
261 262
}

D
David Woodhouse 已提交
263 264 265 266 267 268 269 270 271 272 273 274
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
275 276 277
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
278
	dest->generic_bio_cnt += victim->generic_bio_cnt;
D
David Woodhouse 已提交
279 280 281 282
	bio_list_init(&victim->bio_list);
}

/*
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

299
	table = rbio->bioc->fs_info->stripe_hash_table;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
330
				refcount_dec(&rbio->refs);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
		__free_raid_bio(rbio);
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

354
	table = rbio->bioc->fs_info->stripe_hash_table;
355 356 357 358 359 360 361 362 363

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
364
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
385 386 387 388 389
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
390
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
391
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
392 393 394
	info->stripe_hash_table = NULL;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

414
	table = rbio->bioc->fs_info->stripe_hash_table;
415 416 417 418 419 420

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
421
		refcount_inc(&rbio->refs);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
467 468
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
469
 */
470
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
471
{
472
	unsigned long flags;
D
David Woodhouse 已提交
473 474 475
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

476
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
D
David Woodhouse 已提交
477 478 479 480
	if (size != rbio->nr_data * rbio->stripe_len)
		ret = 0;
	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
481

D
David Woodhouse 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

502 503 504 505
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
506
	 * steal from cached rbios though, other functions
507 508 509 510 511 512
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

513
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
514 515
		return 0;

516 517 518 519 520 521 522 523 524 525 526
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
527
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
528 529
		return 0;

530
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
531 532
		return 0;

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
552 553 554
	return 1;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

574 575 576
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
577
{
578
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
579 580
}

581 582 583
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
584
{
585 586 587
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
614
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
615 616 617 618
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
619
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
620 621
	int ret = 0;

622
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
623

D
David Woodhouse 已提交
624 625
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
626
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
627
			continue;
628

629
		spin_lock(&cur->bio_list_lock);
630

631 632 633 634 635 636 637
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
638

639 640 641
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
642

643 644
			goto lockit;
		}
D
David Woodhouse 已提交
645

646 647 648
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
649
			spin_unlock(&cur->bio_list_lock);
650
			freeit = rbio;
D
David Woodhouse 已提交
651 652 653
			ret = 1;
			goto out;
		}
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
679
	}
680
lockit:
681
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
682 683 684
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
685 686
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
	if (freeit)
		__free_raid_bio(freeit);
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
701
	int keep_cache = 0;
D
David Woodhouse 已提交
702 703

	bucket = rbio_bucket(rbio);
704
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
705

706 707 708
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
709 710 711 712
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
713 714 715 716 717 718 719 720 721 722 723 724
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
725 726

		list_del_init(&rbio->hash_list);
727
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
744
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
745 746 747
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

748
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
749
				start_async_work(next, read_rebuild_work);
750 751
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
752
				start_async_work(next, read_rebuild_work);
753
			} else if (next->operation == BTRFS_RBIO_WRITE) {
754
				steal_rbio(rbio, next);
755
				start_async_work(next, rmw_work);
756 757
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
758
				start_async_work(next, scrub_parity_work);
759
			}
D
David Woodhouse 已提交
760 761 762 763

			goto done_nolock;
		}
	}
764
done:
D
David Woodhouse 已提交
765 766 767 768
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
769 770
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
771 772 773 774 775 776
}

static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

777
	if (!refcount_dec_and_test(&rbio->refs))
D
David Woodhouse 已提交
778 779
		return;

780
	WARN_ON(!list_empty(&rbio->stripe_cache));
D
David Woodhouse 已提交
781 782 783 784 785 786 787 788 789
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}
790

791
	btrfs_put_bioc(rbio->bioc);
D
David Woodhouse 已提交
792 793 794
	kfree(rbio);
}

795
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
796
{
797 798 799 800 801 802 803 804 805
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
806 807 808 809 810 811
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
812
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
813 814
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
815
	struct bio *extra;
816 817

	if (rbio->generic_bio_cnt)
818
		btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
819 820 821 822 823 824
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
825

826 827 828 829 830 831 832 833 834 835 836
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
	__free_raid_bio(rbio);
D
David Woodhouse 已提交
837

838 839 840
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
841 842 843 844 845 846
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
847
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
848 849
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
850
	blk_status_t err = bio->bi_status;
851
	int max_errors;
D
David Woodhouse 已提交
852 853 854 855 856 857

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

858
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
859 860
		return;

861
	err = BLK_STS_OK;
D
David Woodhouse 已提交
862 863

	/* OK, we have read all the stripes we need to. */
864
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
865
		     0 : rbio->bioc->max_errors;
866
	if (atomic_read(&rbio->error) > max_errors)
867
		err = BLK_STS_IOERR;
D
David Woodhouse 已提交
868

869
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
870 871
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/**
 * Get a sector pointer specified by its @stripe_nr and @sector_nr
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
911 912 913 914
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
915
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
916
					 struct btrfs_io_context *bioc,
917
					 u32 stripe_len)
D
David Woodhouse 已提交
918
{
919 920 921
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
	const unsigned int stripe_npages = stripe_len >> PAGE_SHIFT;
	const unsigned int num_pages = stripe_npages * real_stripes;
922 923
	const unsigned int stripe_nsectors = stripe_len >> fs_info->sectorsize_bits;
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
924 925 926
	struct btrfs_raid_bio *rbio;
	void *p;

927
	ASSERT(IS_ALIGNED(stripe_len, PAGE_SIZE));
928 929
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
930 931 932 933 934
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
935

K
Kees Cook 已提交
936 937
	rbio = kzalloc(sizeof(*rbio) +
		       sizeof(*rbio->stripe_pages) * num_pages +
938
		       sizeof(*rbio->bio_sectors) * num_sectors +
939
		       sizeof(*rbio->stripe_sectors) * num_sectors +
940
		       sizeof(*rbio->finish_pointers) * real_stripes,
K
Kees Cook 已提交
941
		       GFP_NOFS);
942
	if (!rbio)
D
David Woodhouse 已提交
943 944 945 946 947
		return ERR_PTR(-ENOMEM);

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
948
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
949
	INIT_LIST_HEAD(&rbio->hash_list);
950
	rbio->bioc = bioc;
D
David Woodhouse 已提交
951 952
	rbio->stripe_len = stripe_len;
	rbio->nr_pages = num_pages;
953
	rbio->nr_sectors = num_sectors;
954
	rbio->real_stripes = real_stripes;
955
	rbio->stripe_npages = stripe_npages;
956
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
957 958
	rbio->faila = -1;
	rbio->failb = -1;
959
	refcount_set(&rbio->refs, 1);
960 961
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
962 963

	/*
964 965
	 * The stripe_pages, bio_sectors, etc arrays point to the extra memory
	 * we allocated past the end of the rbio.
D
David Woodhouse 已提交
966 967
	 */
	p = rbio + 1;
K
Kees Cook 已提交
968 969 970 971 972
#define CONSUME_ALLOC(ptr, count)	do {				\
		ptr = p;						\
		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
	} while (0)
	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
973
	CONSUME_ALLOC(rbio->bio_sectors, num_sectors);
974
	CONSUME_ALLOC(rbio->stripe_sectors, num_sectors);
K
Kees Cook 已提交
975 976
	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
#undef  CONSUME_ALLOC
D
David Woodhouse 已提交
977

978 979
	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
D
David Woodhouse 已提交
980 981 982 983 984 985 986

	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
987 988 989 990 991 992 993 994
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
995 996
}

997
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
998 999
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1000
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1001
	int ret;
D
David Woodhouse 已提交
1002

1003 1004 1005 1006 1007 1008 1009
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1010 1011 1012
}

/*
1013 1014 1015 1016
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1017
 */
1018 1019 1020 1021 1022 1023 1024
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
			      unsigned long bio_max_len,
			      unsigned int opf)
D
David Woodhouse 已提交
1025
{
1026
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1027 1028 1029
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1030
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1031 1032
	u64 disk_start;

1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1042
	stripe = &rbio->bioc->stripes[stripe_nr];
1043
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1044 1045 1046 1047 1048 1049 1050

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1051
		u64 last_end = last->bi_iter.bi_sector << 9;
1052
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1053 1054 1055 1056 1057

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1058
		if (last_end == disk_start && !last->bi_status &&
1059
		    last->bi_bdev == stripe->dev->bdev) {
1060 1061 1062
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1063 1064 1065 1066 1067
				return 0;
		}
	}

	/* put a new bio on the list */
1068 1069
	bio = bio_alloc(stripe->dev->bdev, max(bio_max_len >> PAGE_SHIFT, 1UL),
			opf, GFP_NOFS);
1070
	bio->bi_iter.bi_sector = disk_start >> 9;
1071
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1072

1073
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1088
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1089 1090 1091 1092 1093 1094
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1131 1132 1133
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1134 1135 1136
	spin_unlock_irq(&rbio->bio_list_lock);
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
			       struct raid56_bio_trace_info *trace_info)
{
	const struct btrfs_io_context *bioc = rbio->bioc;
	int i;

	ASSERT(bioc);

	/* We rely on bio->bi_bdev to find the stripe number. */
	if (!bio->bi_bdev)
		goto not_found;

	for (i = 0; i < bioc->num_stripes; i++) {
		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
			continue;
		trace_info->stripe_nr = i;
		trace_info->devid = bioc->stripes[i].dev->devid;
		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
				     bioc->stripes[i].physical;
		return;
	}

not_found:
	trace_info->devid = -1;
	trace_info->offset = -1;
	trace_info->stripe_nr = -1;
}

D
David Woodhouse 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
1175
	struct btrfs_io_context *bioc = rbio->bioc;
1176
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
1177
	void **pointers = rbio->finish_pointers;
D
David Woodhouse 已提交
1178
	int nr_data = rbio->nr_data;
1179 1180
	/* The total sector number inside the full stripe. */
	int total_sector_nr;
D
David Woodhouse 已提交
1181
	int stripe;
1182
	/* Sector number inside a stripe. */
1183
	int sectornr;
1184
	bool has_qstripe;
D
David Woodhouse 已提交
1185 1186 1187 1188 1189 1190
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1191 1192 1193 1194 1195
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
D
David Woodhouse 已提交
1196 1197
		BUG();

1198 1199 1200
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

D
David Woodhouse 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1213
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1214 1215 1216 1217

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1218 1219 1220 1221 1222
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1223 1224
	 */
	index_rbio_pages(rbio);
1225 1226 1227 1228
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1229

1230
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1231 1232 1233
		struct sector_ptr *sector;

		/* First collect one sector from each data stripe */
D
David Woodhouse 已提交
1234
		for (stripe = 0; stripe < nr_data; stripe++) {
1235 1236 1237
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
D
David Woodhouse 已提交
1238 1239
		}

1240 1241 1242 1243
		/* Then add the parity stripe */
		sector = rbio_pstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
D
David Woodhouse 已提交
1244

1245
		if (has_qstripe) {
D
David Woodhouse 已提交
1246
			/*
1247 1248
			 * RAID6, add the qstripe and call the library function
			 * to fill in our p/q
D
David Woodhouse 已提交
1249
			 */
1250 1251 1252 1253
			sector = rbio_qstripe_sector(rbio, sectornr);
			sector->uptodate = 1;
			pointers[stripe++] = kmap_local_page(sector->page) +
					     sector->pgoff;
D
David Woodhouse 已提交
1254

1255
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
D
David Woodhouse 已提交
1256 1257 1258
						pointers);
		} else {
			/* raid5 */
1259 1260
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
D
David Woodhouse 已提交
1261
		}
1262 1263
		for (stripe = stripe - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
D
David Woodhouse 已提交
1264 1265 1266
	}

	/*
1267 1268
	 * Start writing.  Make bios for everything from the higher layers (the
	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
D
David Woodhouse 已提交
1269
	 */
1270 1271 1272
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1273

1274 1275
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1276

1277 1278 1279
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
D
David Woodhouse 已提交
1280

1281 1282 1283 1284 1285 1286
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1287
		}
1288 1289 1290 1291 1292 1293

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
					 sectornr, rbio->stripe_len,
					 REQ_OP_WRITE);
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1294 1295
	}

1296
	if (likely(!bioc->num_tgtdevs))
1297 1298
		goto write_data;

1299 1300 1301
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
1302

1303 1304
		stripe = total_sector_nr / rbio->stripe_nsectors;
		sectornr = total_sector_nr % rbio->stripe_nsectors;
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314
		if (!bioc->tgtdev_map[stripe]) {
			/*
			 * We can skip the whole stripe completely, note
			 * total_sector_nr will be increased by one anyway.
			 */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
			continue;
		}
1315

1316 1317 1318
		/* This vertical stripe has no data, skip it. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
1319

1320 1321 1322 1323 1324 1325
		if (stripe < rbio->nr_data) {
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (!sector)
				continue;
		} else {
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1326
		}
1327 1328 1329 1330 1331 1332 1333

		ret = rbio_add_io_sector(rbio, &bio_list, sector,
					 rbio->bioc->tgtdev_map[stripe],
					 sectornr, rbio->stripe_len,
					 REQ_OP_WRITE);
		if (ret)
			goto cleanup;
1334 1335 1336
	}

write_data:
1337 1338
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1339

1340
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1341
		bio->bi_end_io = raid_write_end_io;
1342

1343 1344 1345 1346 1347 1348
		if (trace_raid56_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_write_stripe(rbio, bio, &trace_info);
		}
1349
		submit_bio(bio);
D
David Woodhouse 已提交
1350 1351 1352 1353
	}
	return;

cleanup:
1354
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1355 1356 1357

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
D
David Woodhouse 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1368
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1369
	int i;
1370
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1371 1372 1373

	physical <<= 9;

1374 1375
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1376
		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1377
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1392
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1393 1394 1395
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1396
		u64 stripe_start = rbio->bioc->raid_map[i];
1397 1398

		if (in_range(logical, stripe_start, rbio->stripe_len))
D
David Woodhouse 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1421
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1422 1423 1424
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1425
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * For subpage case, we can no longer set page Uptodate directly for
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1469 1470 1471 1472
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1473
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1474
{
1475
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1476
	struct bio_vec *bvec;
1477
	struct bvec_iter_all iter_all;
1478

1479
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1493 1494
}

1495
static void raid56_bio_end_io(struct bio *bio)
D
David Woodhouse 已提交
1496 1497 1498
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1499
	if (bio->bi_status)
D
David Woodhouse 已提交
1500 1501
		fail_bio_stripe(rbio, bio);
	else
1502
		set_bio_pages_uptodate(rbio, bio);
D
David Woodhouse 已提交
1503 1504 1505

	bio_put(bio);

1506 1507 1508 1509
	if (atomic_dec_and_test(&rbio->stripes_pending))
		queue_work(rbio->bioc->fs_info->endio_raid56_workers,
			   &rbio->end_io_work);
}
D
David Woodhouse 已提交
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * End io handler for the read phase of the RMW cycle.  All the bios here are
 * physical stripe bios we've read from the disk so we can recalculate the
 * parity of the stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
static void raid56_rmw_end_io_work(struct work_struct *work)
{
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);

	if (atomic_read(&rbio->error) > rbio->bioc->max_errors) {
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
		return;
	}
D
David Woodhouse 已提交
1528 1529

	/*
1530 1531
	 * This will normally call finish_rmw to start our write but if there
	 * are any failed stripes we'll reconstruct from parity first.
D
David Woodhouse 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	 */
	validate_rbio_for_rmw(rbio);
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
1544
	const int nr_data_sectors = rbio->stripe_nsectors * rbio->nr_data;
D
David Woodhouse 已提交
1545
	int ret;
1546
	int total_sector_nr;
D
David Woodhouse 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1557
	atomic_set(&rbio->error, 0);
1558 1559 1560 1561 1562 1563
	/* Build a list of bios to read all the missing data sectors. */
	for (total_sector_nr = 0; total_sector_nr < nr_data_sectors;
	     total_sector_nr++) {
		struct sector_ptr *sector;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1564

1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk.  If sector_in_rbio() finds a page
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;
D
David Woodhouse 已提交
1573

1574 1575 1576 1577 1578 1579 1580
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate page.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;
1581

1582 1583 1584 1585 1586
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
			       stripe, sectornr, rbio->stripe_len,
			       REQ_OP_READ);
		if (ret)
			goto cleanup;
D
David Woodhouse 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
1601 1602
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
1603
	 */
1604
	atomic_set(&rbio->stripes_pending, bios_to_read);
1605
	INIT_WORK(&rbio->end_io_work, raid56_rmw_end_io_work);
1606
	while ((bio = bio_list_pop(&bio_list))) {
1607
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
1608

1609 1610 1611 1612 1613 1614
		if (trace_raid56_read_partial_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_read_partial(rbio, bio, &trace_info);
		}
1615
		submit_bio(bio);
D
David Woodhouse 已提交
1616 1617 1618 1619 1620
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1621
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1622 1623 1624 1625

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1642 1643
	if (ret) {
		__free_raid_bio(rbio);
D
David Woodhouse 已提交
1644
		return ret;
1645
	}
D
David Woodhouse 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
1664
		start_async_work(rbio, rmw_work);
D
David Woodhouse 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1693
	struct work_struct work;
1694 1695 1696 1697 1698
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1699 1700
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1701
{
1702 1703 1704 1705
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1706 1707
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1733 1734
			int ret;

1735
			/* we have a full stripe, send it down */
1736 1737
			ret = full_stripe_write(cur);
			BUG_ON(ret);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
				__free_raid_bio(cur);
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
1761
static void unplug_work(struct work_struct *work)
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1774 1775
		INIT_WORK(&plug->work, unplug_work);
		queue_work(plug->info->rmw_workers, &plug->work);
1776 1777 1778 1779 1780
		return;
	}
	run_plug(plug);
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
	       rbio->nr_data * rbio->stripe_len);

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1808 1809 1810
/*
 * our main entry point for writes from the rest of the FS.
 */
1811
int raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc, u32 stripe_len)
D
David Woodhouse 已提交
1812
{
1813
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1814
	struct btrfs_raid_bio *rbio;
1815 1816
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1817
	int ret;
D
David Woodhouse 已提交
1818

1819
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
1820
	if (IS_ERR(rbio)) {
1821
		btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
1822
		return PTR_ERR(rbio);
1823
	}
1824
	rbio->operation = BTRFS_RBIO_WRITE;
1825
	rbio_add_bio(rbio, bio);
1826

1827
	btrfs_bio_counter_inc_noblocked(fs_info);
1828 1829
	rbio->generic_bio_cnt = 1;

1830 1831 1832 1833
	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1834 1835 1836
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
		if (ret)
1837
			btrfs_bio_counter_dec(fs_info);
1838 1839
		return ret;
	}
1840

1841
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1842 1843 1844
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1845
			plug->info = fs_info;
1846 1847 1848
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1849
		ret = 0;
1850
	} else {
1851 1852
		ret = __raid56_parity_write(rbio);
		if (ret)
1853
			btrfs_bio_counter_dec(fs_info);
1854
	}
1855
	return ret;
D
David Woodhouse 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
1865 1866
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	int sectornr, stripe;
D
David Woodhouse 已提交
1867
	void **pointers;
1868
	void **unmap_array;
D
David Woodhouse 已提交
1869
	int faila = -1, failb = -1;
1870
	blk_status_t err;
D
David Woodhouse 已提交
1871 1872
	int i;

1873 1874 1875 1876
	/*
	 * This array stores the pointer for each sector, thus it has the extra
	 * pgoff value added from each sector
	 */
1877
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
D
David Woodhouse 已提交
1878
	if (!pointers) {
1879
		err = BLK_STS_RESOURCE;
D
David Woodhouse 已提交
1880 1881 1882
		goto cleanup_io;
	}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/*
	 * Store copy of pointers that does not get reordered during
	 * reconstruction so that kunmap_local works.
	 */
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	if (!unmap_array) {
		err = BLK_STS_RESOURCE;
		goto cleanup_pointers;
	}

D
David Woodhouse 已提交
1893 1894 1895
	faila = rbio->faila;
	failb = rbio->failb;

1896 1897
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1898 1899 1900 1901 1902 1903 1904
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1905 1906 1907
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		struct sector_ptr *sector;

1908 1909 1910 1911 1912
		/*
		 * Now we just use bitmap to mark the horizontal stripes in
		 * which we have data when doing parity scrub.
		 */
		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1913
		    !test_bit(sectornr, &rbio->dbitmap))
1914 1915
			continue;

1916
		/*
1917
		 * Setup our array of pointers with sectors from each stripe
1918 1919 1920
		 *
		 * NOTE: store a duplicate array of pointers to preserve the
		 * pointer order
D
David Woodhouse 已提交
1921
		 */
1922
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1923
			/*
1924
			 * If we're rebuilding a read, we have to use
D
David Woodhouse 已提交
1925 1926
			 * pages from the bio list
			 */
1927 1928
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1929
			    (stripe == faila || stripe == failb)) {
1930
				sector = sector_in_rbio(rbio, stripe, sectornr, 0);
D
David Woodhouse 已提交
1931
			} else {
1932
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1933
			}
1934 1935 1936
			ASSERT(sector->page);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
1937
			unmap_array[stripe] = pointers[stripe];
D
David Woodhouse 已提交
1938 1939
		}

1940
		/* All raid6 handling here */
1941
		if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1942
			/* Single failure, rebuild from parity raid5 style */
D
David Woodhouse 已提交
1943 1944 1945 1946 1947 1948 1949
			if (failb < 0) {
				if (faila == rbio->nr_data) {
					/*
					 * Just the P stripe has failed, without
					 * a bad data or Q stripe.
					 * TODO, we should redo the xor here.
					 */
1950
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
					goto cleanup;
				}
				/*
				 * a single failure in raid6 is rebuilt
				 * in the pstripe code below
				 */
				goto pstripe;
			}

			/* make sure our ps and qs are in order */
1961 1962
			if (faila > failb)
				swap(faila, failb);
D
David Woodhouse 已提交
1963 1964 1965 1966 1967 1968 1969

			/* if the q stripe is failed, do a pstripe reconstruction
			 * from the xors.
			 * If both the q stripe and the P stripe are failed, we're
			 * here due to a crc mismatch and we can't give them the
			 * data they want
			 */
1970 1971
			if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
				if (rbio->bioc->raid_map[faila] ==
1972
				    RAID5_P_STRIPE) {
1973
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
					goto cleanup;
				}
				/*
				 * otherwise we have one bad data stripe and
				 * a good P stripe.  raid5!
				 */
				goto pstripe;
			}

1983
			if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1984
				raid6_datap_recov(rbio->real_stripes,
1985
						  sectorsize, faila, pointers);
D
David Woodhouse 已提交
1986
			} else {
1987
				raid6_2data_recov(rbio->real_stripes,
1988
						  sectorsize, faila, failb,
D
David Woodhouse 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997
						  pointers);
			}
		} else {
			void *p;

			/* rebuild from P stripe here (raid5 or raid6) */
			BUG_ON(failb != -1);
pstripe:
			/* Copy parity block into failed block to start with */
1998
			memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
D
David Woodhouse 已提交
1999 2000 2001 2002 2003 2004 2005 2006

			/* rearrange the pointer array */
			p = pointers[faila];
			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
				pointers[stripe] = pointers[stripe + 1];
			pointers[rbio->nr_data - 1] = p;

			/* xor in the rest */
2007
			run_xor(pointers, rbio->nr_data - 1, sectorsize);
D
David Woodhouse 已提交
2008 2009 2010 2011 2012 2013 2014
		}
		/* if we're doing this rebuild as part of an rmw, go through
		 * and set all of our private rbio pages in the
		 * failed stripes as uptodate.  This way finish_rmw will
		 * know they can be trusted.  If this was a read reconstruction,
		 * other endio functions will fiddle the uptodate bits
		 */
2015
		if (rbio->operation == BTRFS_RBIO_WRITE) {
2016
			for (i = 0;  i < rbio->stripe_nsectors; i++) {
D
David Woodhouse 已提交
2017
				if (faila != -1) {
2018 2019
					sector = rbio_stripe_sector(rbio, faila, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2020 2021
				}
				if (failb != -1) {
2022 2023
					sector = rbio_stripe_sector(rbio, failb, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2024 2025 2026
				}
			}
		}
2027 2028
		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
			kunmap_local(unmap_array[stripe]);
D
David Woodhouse 已提交
2029 2030
	}

2031
	err = BLK_STS_OK;
D
David Woodhouse 已提交
2032
cleanup:
2033 2034
	kfree(unmap_array);
cleanup_pointers:
D
David Woodhouse 已提交
2035 2036 2037
	kfree(pointers);

cleanup_io:
2038 2039 2040 2041 2042 2043 2044
	/*
	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
	 * valid rbio which is consistent with ondisk content, thus such a
	 * valid rbio can be cached to avoid further disk reads.
	 */
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		/*
		 * - In case of two failures, where rbio->failb != -1:
		 *
		 *   Do not cache this rbio since the above read reconstruction
		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
		 *   changed some content of stripes which are not identical to
		 *   on-disk content any more, otherwise, a later write/recover
		 *   may steal stripe_pages from this rbio and end up with
		 *   corruptions or rebuild failures.
		 *
		 * - In case of single failure, where rbio->failb == -1:
		 *
		 *   Cache this rbio iff the above read reconstruction is
2058
		 *   executed without problems.
2059 2060
		 */
		if (err == BLK_STS_OK && rbio->failb < 0)
2061 2062 2063 2064
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

2065
		rbio_orig_end_io(rbio, err);
2066
	} else if (err == BLK_STS_OK) {
D
David Woodhouse 已提交
2067 2068
		rbio->faila = -1;
		rbio->failb = -1;
2069 2070 2071 2072 2073 2074 2075

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
2076
	} else {
2077
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
2078 2079 2080 2081
	}
}

/*
2082 2083
 * This is called only for stripes we've read from disk to reconstruct the
 * parity.
D
David Woodhouse 已提交
2084
 */
2085
static void raid_recover_end_io_work(struct work_struct *work)
D
David Woodhouse 已提交
2086
{
2087 2088
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
D
David Woodhouse 已提交
2089

2090
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2091
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	else
		__raid_recover_end_io(rbio);
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2109
	int total_sector_nr;
D
David Woodhouse 已提交
2110 2111 2112 2113 2114 2115 2116 2117
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

2118
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
2119 2120

	/*
2121 2122 2123
	 * read everything that hasn't failed.  Thanks to the
	 * stripe cache, it is possible that some or all of these
	 * pages are going to be uptodate.
D
David Woodhouse 已提交
2124
	 */
2125 2126 2127 2128 2129 2130
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		struct sector_ptr *sector;

2131
		if (rbio->faila == stripe || rbio->failb == stripe) {
2132
			atomic_inc(&rbio->error);
2133 2134 2135
			/* Skip the current stripe. */
			ASSERT(sectornr == 0);
			total_sector_nr += rbio->stripe_nsectors - 1;
D
David Woodhouse 已提交
2136
			continue;
2137
		}
2138 2139 2140 2141
		/* The RMW code may have already read this page in. */
		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		if (sector->uptodate)
			continue;
D
David Woodhouse 已提交
2142

2143 2144 2145 2146 2147
		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
					 sectornr, rbio->stripe_len,
					 REQ_OP_READ);
		if (ret < 0)
			goto cleanup;
D
David Woodhouse 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2157
		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
D
David Woodhouse 已提交
2158
			__raid_recover_end_io(rbio);
2159
			return 0;
D
David Woodhouse 已提交
2160 2161 2162 2163 2164 2165
		} else {
			goto cleanup;
		}
	}

	/*
2166 2167
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
2168
	 */
2169
	atomic_set(&rbio->stripes_pending, bios_to_read);
2170
	INIT_WORK(&rbio->end_io_work, raid_recover_end_io_work);
2171
	while ((bio = bio_list_pop(&bio_list))) {
2172
		bio->bi_end_io = raid56_bio_end_io;
D
David Woodhouse 已提交
2173

2174 2175 2176 2177 2178 2179
		if (trace_raid56_scrub_read_recover_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
		}
2180
		submit_bio(bio);
D
David Woodhouse 已提交
2181
	}
2182

D
David Woodhouse 已提交
2183 2184 2185
	return 0;

cleanup:
2186 2187
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2188
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2189 2190 2191 2192

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2202
int raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2203
			  u32 stripe_len, int mirror_num, int generic_io)
D
David Woodhouse 已提交
2204
{
2205
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2206 2207 2208
	struct btrfs_raid_bio *rbio;
	int ret;

2209
	if (generic_io) {
2210
		ASSERT(bioc->mirror_num == mirror_num);
2211
		btrfs_bio(bio)->mirror_num = mirror_num;
2212 2213
	}

2214
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2215
	if (IS_ERR(rbio)) {
2216
		if (generic_io)
2217
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2218
		return PTR_ERR(rbio);
2219
	}
D
David Woodhouse 已提交
2220

2221
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2222
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2223 2224 2225

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2226
		btrfs_warn(fs_info,
2227
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
2228
			   __func__, bio->bi_iter.bi_sector << 9,
2229
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
2230
		if (generic_io)
2231
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2232 2233 2234 2235
		kfree(rbio);
		return -EIO;
	}

2236
	if (generic_io) {
2237
		btrfs_bio_counter_inc_noblocked(fs_info);
2238 2239
		rbio->generic_bio_cnt = 1;
	} else {
2240
		btrfs_get_bioc(bioc);
2241 2242
	}

D
David Woodhouse 已提交
2243
	/*
L
Liu Bo 已提交
2244 2245 2246
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2247
	 */
L
Liu Bo 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	ret = lock_stripe_add(rbio);

	/*
	 * __raid56_parity_recover will end the bio with
	 * any errors it hits.  We don't want to return
	 * its error value up the stack because our caller
	 * will end up calling bio_endio with any nonzero
	 * return
	 */
	if (ret == 0)
		__raid56_parity_recover(rbio);
	/*
	 * our rbio has been added to the list of
	 * rbios that will be handled after the
	 * currently lock owner is done
	 */
	return 0;

}

2280
static void rmw_work(struct work_struct *work)
D
David Woodhouse 已提交
2281 2282 2283 2284 2285 2286 2287
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

2288
static void read_rebuild_work(struct work_struct *work)
D
David Woodhouse 已提交
2289 2290 2291 2292 2293 2294
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2295 2296 2297 2298

/*
 * The following code is used to scrub/replace the parity stripe
 *
2299
 * Caller must have already increased bio_counter for getting @bioc.
2300
 *
2301 2302 2303 2304 2305
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2306 2307
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2308
				u32 stripe_len, struct btrfs_device *scrub_dev,
2309
				unsigned long *dbitmap, int stripe_nsectors)
2310
{
2311
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2312 2313 2314
	struct btrfs_raid_bio *rbio;
	int i;

2315
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2326
	/*
2327
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2328 2329 2330 2331
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2332
		if (bioc->stripes[i].dev == scrub_dev) {
2333 2334 2335 2336
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2337
	ASSERT(i < rbio->real_stripes);
2338

2339
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2340

2341
	/*
2342
	 * We have already increased bio_counter when getting bioc, record it
2343 2344 2345 2346
	 * so we can free it at rbio_orig_end_io().
	 */
	rbio->generic_bio_cnt = 1;

2347 2348 2349
	return rbio;
}

2350 2351
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2352
			    unsigned int pgoff, u64 logical)
2353
{
2354
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2355 2356 2357
	int stripe_offset;
	int index;

2358
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2359
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2360
				rbio->stripe_len * rbio->nr_data);
2361
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2362 2363 2364
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2365 2366 2367 2368 2369 2370 2371 2372
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2373
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2374
	int total_sector_nr;
2375

2376 2377 2378 2379 2380
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		struct page *page;
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2381

2382 2383 2384 2385 2386 2387 2388 2389
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
		if (rbio->stripe_pages[index])
			continue;
		page = alloc_page(GFP_NOFS);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[index] = page;
2390
	}
2391
	index_stripe_sectors(rbio);
2392 2393 2394 2395 2396 2397
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2398
	struct btrfs_io_context *bioc = rbio->bioc;
2399
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2400
	void **pointers = rbio->finish_pointers;
2401
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2402 2403
	int nr_data = rbio->nr_data;
	int stripe;
2404
	int sectornr;
2405
	bool has_qstripe;
2406 2407
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2408 2409
	struct bio_list bio_list;
	struct bio *bio;
2410
	int is_replace = 0;
2411 2412 2413 2414
	int ret;

	bio_list_init(&bio_list);

2415 2416 2417 2418 2419
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2420 2421
		BUG();

2422
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2423
		is_replace = 1;
2424
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2425 2426
	}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2437 2438
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2439
		goto cleanup;
2440 2441
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2442

2443
	if (has_qstripe) {
I
Ira Weiny 已提交
2444
		/* RAID6, allocate and map temp space for the Q stripe */
2445 2446 2447 2448
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2449 2450
			goto cleanup;
		}
2451 2452 2453
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2454 2455 2456 2457
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2458
	/* Map the parity stripe just once */
2459
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2460

2461
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2462
		struct sector_ptr *sector;
2463
		void *parity;
2464

2465 2466
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2467 2468 2469
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2470 2471
		}

2472
		if (has_qstripe) {
I
Ira Weiny 已提交
2473
			/* RAID6, call the library function to fill in our P/Q */
2474
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2475 2476 2477
						pointers);
		} else {
			/* raid5 */
2478 2479
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2480 2481
		}

2482
		/* Check scrubbing parity and repair it */
2483 2484 2485 2486
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2487 2488
		else
			/* Parity is right, needn't writeback */
2489
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2490
		kunmap_local(parity);
2491

2492 2493
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2494 2495
	}

2496
	kunmap_local(pointers[nr_data]);
2497 2498 2499
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2500
		kunmap_local(pointers[rbio->real_stripes - 1]);
2501 2502
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2503
	}
2504 2505 2506 2507 2508 2509 2510

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2511
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2512
		struct sector_ptr *sector;
2513

2514 2515 2516
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
					 sectornr, rbio->stripe_len, REQ_OP_WRITE);
2517 2518 2519 2520
		if (ret)
			goto cleanup;
	}

2521 2522 2523
	if (!is_replace)
		goto submit_write;

2524 2525
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2526

2527 2528
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2529
				       bioc->tgtdev_map[rbio->scrubp],
2530
				       sectornr, rbio->stripe_len, REQ_OP_WRITE);
2531 2532 2533 2534 2535
		if (ret)
			goto cleanup;
	}

submit_write:
2536 2537 2538
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2539
		rbio_orig_end_io(rbio, BLK_STS_OK);
2540 2541 2542 2543 2544
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

2545
	while ((bio = bio_list_pop(&bio_list))) {
2546
		bio->bi_end_io = raid_write_end_io;
2547

2548 2549 2550 2551 2552 2553
		if (trace_raid56_scrub_write_stripe_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_write_stripe(rbio, bio, &trace_info);
		}
2554
		submit_bio(bio);
2555 2556 2557 2558
	}
	return;

cleanup:
2559
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2560 2561 2562

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
2581
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
2602
		if (dfail > rbio->bioc->max_errors - 1)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2617
		 * is scrubbing parity, luckily, use the other one to repair
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2630
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2641
static void raid56_parity_scrub_end_io_work(struct work_struct *work)
2642
{
2643 2644
	struct btrfs_raid_bio *rbio =
		container_of(work, struct btrfs_raid_bio, end_io_work);
2645 2646

	/*
2647 2648
	 * This will normally call finish_rmw to start our write, but if there
	 * are any failed stripes we'll reconstruct from parity first
2649 2650 2651 2652 2653 2654 2655 2656 2657
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2658
	int total_sector_nr;
2659 2660
	struct bio *bio;

L
Liu Bo 已提交
2661 2662
	bio_list_init(&bio_list);

2663 2664 2665 2666 2667
	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
2668 2669 2670 2671 2672 2673
	/* Build a list of bios to read all the missing parts. */
	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
	     total_sector_nr++) {
		int sectornr = total_sector_nr % rbio->stripe_nsectors;
		int stripe = total_sector_nr / rbio->stripe_nsectors;
		struct sector_ptr *sector;
2674

2675 2676 2677
		/* No data in the vertical stripe, no need to read. */
		if (!test_bit(sectornr, &rbio->dbitmap))
			continue;
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		/*
		 * We want to find all the sectors missing from the rbio and
		 * read them from the disk. If sector_in_rbio() finds a sector
		 * in the bio list we don't need to read it off the stripe.
		 */
		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
		if (sector)
			continue;

		sector = rbio_stripe_sector(rbio, stripe, sectornr);
		/*
		 * The bio cache may have handed us an uptodate sector.  If so,
		 * use it.
		 */
		if (sector->uptodate)
			continue;

		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
					 sectornr, rbio->stripe_len, REQ_OP_READ);
		if (ret)
			goto cleanup;
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
2714 2715
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
2716 2717
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
2718
	INIT_WORK(&rbio->end_io_work, raid56_parity_scrub_end_io_work);
2719
	while ((bio = bio_list_pop(&bio_list))) {
2720
		bio->bi_end_io = raid56_bio_end_io;
2721

2722 2723 2724 2725 2726 2727
		if (trace_raid56_scrub_read_enabled()) {
			struct raid56_bio_trace_info trace_info = { 0 };

			bio_get_trace_info(rbio, bio, &trace_info);
			trace_raid56_scrub_read(rbio, bio, &trace_info);
		}
2728
		submit_bio(bio);
2729 2730 2731 2732 2733
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2734
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2735 2736 2737 2738

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2739 2740 2741 2742 2743 2744
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

2745
static void scrub_parity_work(struct work_struct *work)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2756
		start_async_work(rbio, scrub_parity_work);
2757
}
2758 2759 2760 2761

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2762 2763
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc,
			  u64 length)
2764
{
2765
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2766 2767
	struct btrfs_raid_bio *rbio;

2768
	rbio = alloc_rbio(fs_info, bioc, length);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
		BUG();
		kfree(rbio);
		return NULL;
	}

2787
	/*
2788
	 * When we get bioc, we have already increased bio_counter, record it
2789 2790 2791 2792
	 * so we can free it at rbio_orig_end_io()
	 */
	rbio->generic_bio_cnt = 1;

2793 2794 2795 2796 2797 2798
	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2799
		start_async_work(rbio, read_rebuild_work);
2800
}