raid56.c 65.7 KB
Newer Older
D
David Woodhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/random.h>
#include <linux/iocontext.h>
#include <linux/capability.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
34
#include <linux/vmalloc.h>
D
David Woodhouse 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include <asm/div64.h>
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "rcu-string.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

63
enum btrfs_rbio_ops {
64 65 66 67
	BTRFS_RBIO_WRITE,
	BTRFS_RBIO_READ_REBUILD,
	BTRFS_RBIO_PARITY_SCRUB,
	BTRFS_RBIO_REBUILD_MISSING,
68 69
};

D
David Woodhouse 已提交
70 71 72 73 74 75 76 77 78 79 80
struct btrfs_raid_bio {
	struct btrfs_fs_info *fs_info;
	struct btrfs_bio *bbio;

	/* while we're doing rmw on a stripe
	 * we put it into a hash table so we can
	 * lock the stripe and merge more rbios
	 * into it.
	 */
	struct list_head hash_list;

81 82 83 84 85
	/*
	 * LRU list for the stripe cache
	 */
	struct list_head stripe_cache;

D
David Woodhouse 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
	/*
	 * for scheduling work in the helper threads
	 */
	struct btrfs_work work;

	/*
	 * bio list and bio_list_lock are used
	 * to add more bios into the stripe
	 * in hopes of avoiding the full rmw
	 */
	struct bio_list bio_list;
	spinlock_t bio_list_lock;

99 100 101 102
	/* also protected by the bio_list_lock, the
	 * plug list is used by the plugging code
	 * to collect partial bios while plugged.  The
	 * stripe locking code also uses it to hand off
D
David Woodhouse 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	 * the stripe lock to the next pending IO
	 */
	struct list_head plug_list;

	/*
	 * flags that tell us if it is safe to
	 * merge with this bio
	 */
	unsigned long flags;

	/* size of each individual stripe on disk */
	int stripe_len;

	/* number of data stripes (no p/q) */
	int nr_data;

119 120
	int real_stripes;

121
	int stripe_npages;
D
David Woodhouse 已提交
122 123 124 125 126 127
	/*
	 * set if we're doing a parity rebuild
	 * for a read from higher up, which is handled
	 * differently from a parity rebuild as part of
	 * rmw
	 */
128
	enum btrfs_rbio_ops operation;
D
David Woodhouse 已提交
129 130 131 132 133 134 135

	/* first bad stripe */
	int faila;

	/* second bad stripe (for raid6 use) */
	int failb;

136
	int scrubp;
D
David Woodhouse 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149
	/*
	 * number of pages needed to represent the full
	 * stripe
	 */
	int nr_pages;

	/*
	 * size of all the bios in the bio_list.  This
	 * helps us decide if the rbio maps to a full
	 * stripe or not
	 */
	int bio_list_bytes;

150 151
	int generic_bio_cnt;

D
David Woodhouse 已提交
152 153
	atomic_t refs;

154 155 156
	atomic_t stripes_pending;

	atomic_t error;
D
David Woodhouse 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	/*
	 * these are two arrays of pointers.  We allocate the
	 * rbio big enough to hold them both and setup their
	 * locations when the rbio is allocated
	 */

	/* pointers to pages that we allocated for
	 * reading/writing stripes directly from the disk (including P/Q)
	 */
	struct page **stripe_pages;

	/*
	 * pointers to the pages in the bio_list.  Stored
	 * here for faster lookup
	 */
	struct page **bio_pages;
173 174 175 176 177

	/*
	 * bitmap to record which horizontal stripe has data
	 */
	unsigned long *dbitmap;
D
David Woodhouse 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191
};

static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
static void rmw_work(struct btrfs_work *work);
static void read_rebuild_work(struct btrfs_work *work);
static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
static void async_read_rebuild(struct btrfs_raid_bio *rbio);
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

192 193 194 195
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
static void async_scrub_parity(struct btrfs_raid_bio *rbio);

D
David Woodhouse 已提交
196 197 198 199 200 201 202 203 204 205 206 207
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;
208
	int table_size;
D
David Woodhouse 已提交
209 210 211 212

	if (info->stripe_hash_table)
		return 0;

213 214 215 216 217 218 219 220 221 222 223 224 225 226
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
	table_size = sizeof(*table) + sizeof(*h) * num_entries;
	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
	if (!table) {
		table = vzalloc(table_size);
		if (!table)
			return -ENOMEM;
	}
D
David Woodhouse 已提交
227

228 229 230
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
231 232 233 234 235 236 237 238 239 240
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
		init_waitqueue_head(&cur->wait);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
W
Wang Shilong 已提交
241 242
	if (x)
		kvfree(x);
D
David Woodhouse 已提交
243 244 245
	return 0;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * caching an rbio means to copy anything from the
 * bio_pages array into the stripe_pages array.  We
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	char *s;
	char *d;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

	for (i = 0; i < rbio->nr_pages; i++) {
		if (!rbio->bio_pages[i])
			continue;

		s = kmap(rbio->bio_pages[i]);
		d = kmap(rbio->stripe_pages[i]);

273
		memcpy(d, s, PAGE_SIZE);
274 275 276 277 278 279 280 281

		kunmap(rbio->bio_pages[i]);
		kunmap(rbio->stripe_pages[i]);
		SetPageUptodate(rbio->stripe_pages[i]);
	}
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
282 283 284 285 286
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
287
	u64 num = rbio->bbio->raid_map[0];
D
David Woodhouse 已提交
288 289 290 291 292 293 294 295 296 297 298 299

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * stealing an rbio means taking all the uptodate pages from the stripe
 * array in the source rbio and putting them into the destination rbio
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;
	struct page *s;
	struct page *d;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
		s = src->stripe_pages[i];
		if (!s || !PageUptodate(s)) {
			continue;
		}

		d = dest->stripe_pages[i];
		if (d)
			__free_page(d);

		dest->stripe_pages[i] = s;
		src->stripe_pages[i] = NULL;
	}
}

D
David Woodhouse 已提交
328 329 330 331 332 333 334 335 336 337 338 339
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
340
	dest->generic_bio_cnt += victim->generic_bio_cnt;
D
David Woodhouse 已提交
341 342 343 344
	bio_list_init(&victim->bio_list);
}

/*
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
				atomic_dec(&rbio->refs);
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
		__free_raid_bio(rbio);
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
426
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
447 448 449 450 451
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
452
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
453
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
454 455 456
	info->stripe_hash_table = NULL;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

	table = rbio->fs_info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
		atomic_inc(&rbio->refs);

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
 * returns true if the bio list inside this rbio
 * covers an entire stripe (no rmw required).
 * Must be called with the bio list lock held, or
 * at a time when you know it is impossible to add
 * new bios into the list
 */
static int __rbio_is_full(struct btrfs_raid_bio *rbio)
{
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

	if (size != rbio->nr_data * rbio->stripe_len)
		ret = 0;

	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
	return ret;
}

static int rbio_is_full(struct btrfs_raid_bio *rbio)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);
	ret = __rbio_is_full(rbio);
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

575 576 577 578
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
579
	 * steal from cached rbios though, other functions
580 581 582 583 584 585
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

586 587
	if (last->bbio->raid_map[0] !=
	    cur->bbio->raid_map[0])
D
David Woodhouse 已提交
588 589
		return 0;

590 591 592 593 594 595 596 597 598 599 600 601 602
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
603 604
		return 0;

605 606 607 608
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
		return 0;

D
David Woodhouse 已提交
609 610 611
	return 1;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
				  int index)
{
	return stripe * rbio->stripe_npages + index;
}

/*
 * these are just the pages from the rbio array, not from anything
 * the FS sent down to us
 */
static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
				     int index)
{
	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
}

D
David Woodhouse 已提交
628 629 630 631 632
/*
 * helper to index into the pstripe
 */
static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
{
633
	return rbio_stripe_page(rbio, rbio->nr_data, index);
D
David Woodhouse 已提交
634 635 636 637 638 639 640 641
}

/*
 * helper to index into the qstripe, returns null
 * if there is no qstripe
 */
static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
{
642
	if (rbio->nr_data + 1 == rbio->real_stripes)
D
David Woodhouse 已提交
643
		return NULL;
644
	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
D
David Woodhouse 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	DEFINE_WAIT(wait);
	struct btrfs_raid_bio *freeit = NULL;
678
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
679 680 681 682
	int ret = 0;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
683
		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
D
David Woodhouse 已提交
684 685
			spin_lock(&cur->bio_list_lock);

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
			/* can we steal this cached rbio's pages? */
			if (bio_list_empty(&cur->bio_list) &&
			    list_empty(&cur->plug_list) &&
			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
				list_del_init(&cur->hash_list);
				atomic_dec(&cur->refs);

				steal_rbio(cur, rbio);
				cache_drop = cur;
				spin_unlock(&cur->bio_list_lock);

				goto lockit;
			}

D
David Woodhouse 已提交
701 702 703 704 705 706 707 708 709
			/* can we merge into the lock owner? */
			if (rbio_can_merge(cur, rbio)) {
				merge_rbio(cur, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}

710

D
David Woodhouse 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			/*
			 * we couldn't merge with the running
			 * rbio, see if we can merge with the
			 * pending ones.  We don't have to
			 * check for rmw_locked because there
			 * is no way they are inside finish_rmw
			 * right now
			 */
			list_for_each_entry(pending, &cur->plug_list,
					    plug_list) {
				if (rbio_can_merge(pending, rbio)) {
					merge_rbio(pending, rbio);
					spin_unlock(&cur->bio_list_lock);
					freeit = rbio;
					ret = 1;
					goto out;
				}
			}

			/* no merging, put us on the tail of the plug list,
			 * our rbio will be started with the currently
			 * running rbio unlocks
			 */
			list_add_tail(&rbio->plug_list, &cur->plug_list);
			spin_unlock(&cur->bio_list_lock);
			ret = 1;
			goto out;
		}
	}
740
lockit:
D
David Woodhouse 已提交
741 742 743 744
	atomic_inc(&rbio->refs);
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
745 746
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (freeit)
		__free_raid_bio(freeit);
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
761
	int keep_cache = 0;
D
David Woodhouse 已提交
762 763 764 765

	bucket = rbio_bucket(rbio);
	h = rbio->fs_info->stripe_hash_table->table + bucket;

766 767 768
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
769 770 771 772
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
773 774 775 776 777 778 779 780 781 782 783 784
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

		list_del_init(&rbio->hash_list);
		atomic_dec(&rbio->refs);

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
			atomic_inc(&next->refs);
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

808
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
D
David Woodhouse 已提交
809
				async_read_rebuild(next);
810 811 812 813
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
				async_read_rebuild(next);
			} else if (next->operation == BTRFS_RBIO_WRITE) {
814
				steal_rbio(rbio, next);
D
David Woodhouse 已提交
815
				async_rmw_stripe(next);
816 817 818
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
				async_scrub_parity(next);
819
			}
D
David Woodhouse 已提交
820 821

			goto done_nolock;
822 823 824 825 826
			/*
			 * The barrier for this waitqueue_active is not needed,
			 * we're protected by h->lock and can't miss a wakeup.
			 */
		} else if (waitqueue_active(&h->wait)) {
D
David Woodhouse 已提交
827 828 829 830 831 832
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);
			wake_up(&h->wait);
			goto done_nolock;
		}
	}
833
done:
D
David Woodhouse 已提交
834 835 836 837
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
838 839
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
840 841 842 843 844 845 846 847 848 849
}

static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

	WARN_ON(atomic_read(&rbio->refs) < 0);
	if (!atomic_dec_and_test(&rbio->refs))
		return;

850
	WARN_ON(!list_empty(&rbio->stripe_cache));
D
David Woodhouse 已提交
851 852 853 854 855 856 857 858 859
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}
860

861
	btrfs_put_bbio(rbio->bbio);
D
David Woodhouse 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874
	kfree(rbio);
}

static void free_raid_bio(struct btrfs_raid_bio *rbio)
{
	unlock_stripe(rbio);
	__free_raid_bio(rbio);
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
875
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
D
David Woodhouse 已提交
876 877 878
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
	struct bio *next;
879 880 881 882

	if (rbio->generic_bio_cnt)
		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);

D
David Woodhouse 已提交
883 884 885 886 887
	free_raid_bio(rbio);

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
888 889
		cur->bi_error = err;
		bio_endio(cur);
D
David Woodhouse 已提交
890 891 892 893 894 895 896 897
		cur = next;
	}
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
898
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
899 900
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
901
	int err = bio->bi_error;
902
	int max_errors;
D
David Woodhouse 已提交
903 904 905 906 907 908

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

909
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
910 911 912 913 914
		return;

	err = 0;

	/* OK, we have read all the stripes we need to. */
915 916 917
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
		     0 : rbio->bbio->max_errors;
	if (atomic_read(&rbio->error) > max_errors)
D
David Woodhouse 已提交
918 919
		err = -EIO;

920
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
}

/*
 * the read/modify/write code wants to use the original bio for
 * any pages it included, and then use the rbio for everything
 * else.  This function decides if a given index (stripe number)
 * and page number in that stripe fall inside the original bio
 * or the rbio.
 *
 * if you set bio_list_only, you'll get a NULL back for any ranges
 * that are outside the bio_list
 *
 * This doesn't take any refs on anything, you get a bare page pointer
 * and the caller must bump refs as required.
 *
 * You must call index_rbio_pages once before you can trust
 * the answers from this function.
 */
static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
				 int index, int pagenr, int bio_list_only)
{
	int chunk_page;
	struct page *p = NULL;

	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;

	spin_lock_irq(&rbio->bio_list_lock);
	p = rbio->bio_pages[chunk_page];
	spin_unlock_irq(&rbio->bio_list_lock);

	if (p || bio_list_only)
		return p;

	return rbio->stripe_pages[chunk_page];
}

/*
 * number of pages we need for the entire stripe across all the
 * drives
 */
static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
{
963
	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
D
David Woodhouse 已提交
964 965 966 967 968 969
}

/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
970 971 972
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
					 struct btrfs_bio *bbio,
					 u64 stripe_len)
D
David Woodhouse 已提交
973 974 975
{
	struct btrfs_raid_bio *rbio;
	int nr_data = 0;
976 977
	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
978
	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
D
David Woodhouse 已提交
979 980
	void *p;

981
	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
982 983
		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
		       sizeof(long), GFP_NOFS);
984
	if (!rbio)
D
David Woodhouse 已提交
985 986 987 988 989
		return ERR_PTR(-ENOMEM);

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
990
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
991 992
	INIT_LIST_HEAD(&rbio->hash_list);
	rbio->bbio = bbio;
993
	rbio->fs_info = fs_info;
D
David Woodhouse 已提交
994 995
	rbio->stripe_len = stripe_len;
	rbio->nr_pages = num_pages;
996
	rbio->real_stripes = real_stripes;
997
	rbio->stripe_npages = stripe_npages;
D
David Woodhouse 已提交
998 999 1000
	rbio->faila = -1;
	rbio->failb = -1;
	atomic_set(&rbio->refs, 1);
1001 1002
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1003 1004 1005 1006 1007 1008 1009 1010

	/*
	 * the stripe_pages and bio_pages array point to the extra
	 * memory we allocated past the end of the rbio
	 */
	p = rbio + 1;
	rbio->stripe_pages = p;
	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1011
	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
D
David Woodhouse 已提交
1012

Z
Zhao Lei 已提交
1013 1014 1015
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		nr_data = real_stripes - 1;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1016
		nr_data = real_stripes - 2;
D
David Woodhouse 已提交
1017
	else
Z
Zhao Lei 已提交
1018
		BUG();
D
David Woodhouse 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	rbio->nr_data = nr_data;
	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	struct page *page;

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i])
			continue;
		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[i] = page;
	}
	return 0;
}

1041
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1042 1043 1044 1045 1046
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	struct page *page;

1047
	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
D
David Woodhouse 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	for (; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i])
			continue;
		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!page)
			return -ENOMEM;
		rbio->stripe_pages[i] = page;
	}
	return 0;
}

/*
 * add a single page from a specific stripe into our list of bios for IO
 * this will try to merge into existing bios if possible, and returns
 * zero if all went well.
 */
1065 1066 1067 1068 1069 1070
static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
			    struct bio_list *bio_list,
			    struct page *page,
			    int stripe_nr,
			    unsigned long page_index,
			    unsigned long bio_max_len)
D
David Woodhouse 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	struct bio *last = bio_list->tail;
	u64 last_end = 0;
	int ret;
	struct bio *bio;
	struct btrfs_bio_stripe *stripe;
	u64 disk_start;

	stripe = &rbio->bbio->stripes[stripe_nr];
1080
	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
D
David Woodhouse 已提交
1081 1082 1083 1084 1085 1086 1087

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
1088 1089
		last_end = (u64)last->bi_iter.bi_sector << 9;
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1090 1091 1092 1093 1094 1095

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
		if (last_end == disk_start && stripe->dev->bdev &&
1096
		    !last->bi_error &&
D
David Woodhouse 已提交
1097
		    last->bi_bdev == stripe->dev->bdev) {
1098 1099
			ret = bio_add_page(last, page, PAGE_SIZE, 0);
			if (ret == PAGE_SIZE)
D
David Woodhouse 已提交
1100 1101 1102 1103 1104
				return 0;
		}
	}

	/* put a new bio on the list */
1105
	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
D
David Woodhouse 已提交
1106 1107 1108
	if (!bio)
		return -ENOMEM;

1109
	bio->bi_iter.bi_size = 0;
D
David Woodhouse 已提交
1110
	bio->bi_bdev = stripe->dev->bdev;
1111
	bio->bi_iter.bi_sector = disk_start >> 9;
D
David Woodhouse 已提交
1112

1113
	bio_add_page(bio, page, PAGE_SIZE, 0);
D
David Woodhouse 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1128
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;
1146
	struct bio_vec *bvec;
D
David Woodhouse 已提交
1147 1148 1149 1150 1151 1152 1153
	u64 start;
	unsigned long stripe_offset;
	unsigned long page_index;
	int i;

	spin_lock_irq(&rbio->bio_list_lock);
	bio_list_for_each(bio, &rbio->bio_list) {
1154
		start = (u64)bio->bi_iter.bi_sector << 9;
1155
		stripe_offset = start - rbio->bbio->raid_map[0];
1156
		page_index = stripe_offset >> PAGE_SHIFT;
D
David Woodhouse 已提交
1157

1158 1159
		bio_for_each_segment_all(bvec, bio, i)
			rbio->bio_pages[page_index + i] = bvec->bv_page;
D
David Woodhouse 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	}
	spin_unlock_irq(&rbio->bio_list_lock);
}

/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
	struct btrfs_bio *bbio = rbio->bbio;
1175
	void *pointers[rbio->real_stripes];
D
David Woodhouse 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	int nr_data = rbio->nr_data;
	int stripe;
	int pagenr;
	int p_stripe = -1;
	int q_stripe = -1;
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1187 1188 1189 1190 1191
	if (rbio->real_stripes - rbio->nr_data == 1) {
		p_stripe = rbio->real_stripes - 1;
	} else if (rbio->real_stripes - rbio->nr_data == 2) {
		p_stripe = rbio->real_stripes - 2;
		q_stripe = rbio->real_stripes - 1;
D
David Woodhouse 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	} else {
		BUG();
	}

	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1208
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1209 1210 1211 1212

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1213 1214 1215 1216 1217
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1218 1219
	 */
	index_rbio_pages(rbio);
1220 1221 1222 1223
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1224

1225
	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		struct page *p;
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
			p = page_in_rbio(rbio, stripe, pagenr, 0);
			pointers[stripe] = kmap(p);
		}

		/* then add the parity stripe */
		p = rbio_pstripe_page(rbio, pagenr);
		SetPageUptodate(p);
		pointers[stripe++] = kmap(p);

		if (q_stripe != -1) {

			/*
			 * raid6, add the qstripe and call the
			 * library function to fill in our p/q
			 */
			p = rbio_qstripe_page(rbio, pagenr);
			SetPageUptodate(p);
			pointers[stripe++] = kmap(p);

1248
			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
D
David Woodhouse 已提交
1249 1250 1251 1252
						pointers);
		} else {
			/* raid5 */
			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1253
			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
D
David Woodhouse 已提交
1254 1255 1256
		}


1257
		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
D
David Woodhouse 已提交
1258 1259 1260 1261 1262 1263 1264 1265
			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
	}

	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
1266
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1267
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
			struct page *page;
			if (stripe < rbio->nr_data) {
				page = page_in_rbio(rbio, stripe, pagenr, 1);
				if (!page)
					continue;
			} else {
			       page = rbio_stripe_page(rbio, stripe, pagenr);
			}

			ret = rbio_add_io_page(rbio, &bio_list,
				       page, stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

1284 1285 1286 1287 1288 1289 1290
	if (likely(!bbio->num_tgtdevs))
		goto write_data;

	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
		if (!bbio->tgtdev_map[stripe])
			continue;

1291
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			struct page *page;
			if (stripe < rbio->nr_data) {
				page = page_in_rbio(rbio, stripe, pagenr, 1);
				if (!page)
					continue;
			} else {
			       page = rbio_stripe_page(rbio, stripe, pagenr);
			}

			ret = rbio_add_io_page(rbio, &bio_list, page,
					       rbio->bbio->tgtdev_map[stripe],
					       pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

write_data:
1310 1311
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1312 1313 1314 1315 1316 1317 1318 1319

	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_write_end_io;
M
Mike Christie 已提交
1320
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1321 1322

		submit_bio(bio);
D
David Woodhouse 已提交
1323 1324 1325 1326
	}
	return;

cleanup:
1327
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1338
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	u64 stripe_start;
	int i;
	struct btrfs_bio_stripe *stripe;

	physical <<= 9;

	for (i = 0; i < rbio->bbio->num_stripes; i++) {
		stripe = &rbio->bbio->stripes[i];
		stripe_start = stripe->physical;
		if (physical >= stripe_start &&
1349 1350
		    physical < stripe_start + rbio->stripe_len &&
		    bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
1365
	u64 logical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1366 1367 1368 1369 1370 1371
	u64 stripe_start;
	int i;

	logical <<= 9;

	for (i = 0; i < rbio->nr_data; i++) {
1372
		stripe_start = rbio->bbio->raid_map[i];
D
David Woodhouse 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		if (logical >= stripe_start &&
		    logical < stripe_start + rbio->stripe_len) {
			return i;
		}
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1398
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1399 1400 1401
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1402
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
static void set_bio_pages_uptodate(struct bio *bio)
{
1433
	struct bio_vec *bvec;
D
David Woodhouse 已提交
1434 1435
	int i;

1436 1437
	bio_for_each_segment_all(bvec, bio, i)
		SetPageUptodate(bvec->bv_page);
D
David Woodhouse 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
1448
static void raid_rmw_end_io(struct bio *bio)
D
David Woodhouse 已提交
1449 1450 1451
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1452
	if (bio->bi_error)
D
David Woodhouse 已提交
1453 1454 1455 1456 1457 1458
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

1459
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
1460 1461
		return;

1462
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
D
David Woodhouse 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		goto cleanup;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_rmw(rbio);
	return;

cleanup:

1475
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1476 1477 1478 1479
}

static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
{
1480 1481
	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
D
David Woodhouse 已提交
1482 1483 1484 1485
}

static void async_read_rebuild(struct btrfs_raid_bio *rbio)
{
1486 1487
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			read_rebuild_work, NULL, NULL);
D
David Woodhouse 已提交
1488

1489
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
D
David Woodhouse 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1513
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1514 1515 1516 1517 1518
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1519
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
			struct page *page;
			/*
			 * we want to find all the pages missing from
			 * the rbio and read them from the disk.  If
			 * page_in_rbio finds a page in the bio list
			 * we don't need to read it off the stripe.
			 */
			page = page_in_rbio(rbio, stripe, pagenr, 1);
			if (page)
				continue;

			page = rbio_stripe_page(rbio, stripe, pagenr);
1532 1533 1534 1535 1536 1537 1538
			/*
			 * the bio cache may have handed us an uptodate
			 * page.  If so, be happy and use it
			 */
			if (PageUptodate(page))
				continue;

D
David Woodhouse 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
			ret = rbio_add_io_page(rbio, &bio_list, page,
				       stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
1561
	atomic_set(&rbio->stripes_pending, bios_to_read);
D
David Woodhouse 已提交
1562 1563 1564 1565 1566 1567 1568
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_rmw_end_io;
M
Mike Christie 已提交
1569
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
D
David Woodhouse 已提交
1570

1571
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
1572

1573
		submit_bio(bio);
D
David Woodhouse 已提交
1574 1575 1576 1577 1578
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1579
	rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1596 1597
	if (ret) {
		__free_raid_bio(rbio);
D
David Woodhouse 已提交
1598
		return ret;
1599
	}
D
David Woodhouse 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		async_rmw_stripe(rbio);
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
	struct btrfs_work work;
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						 plug_list);
	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						 plug_list);
1659 1660
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
			/* we have a full stripe, send it down */
			full_stripe_write(cur);
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
				__free_raid_bio(cur);
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
static void unplug_work(struct btrfs_work *work)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1724 1725
		btrfs_init_work(&plug->work, btrfs_rmw_helper,
				unplug_work, NULL, NULL);
1726 1727
		btrfs_queue_work(plug->info->rmw_workers,
				 &plug->work);
1728 1729 1730 1731 1732
		return;
	}
	run_plug(plug);
}

D
David Woodhouse 已提交
1733 1734 1735
/*
 * our main entry point for writes from the rest of the FS.
 */
1736
int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1737
			struct btrfs_bio *bbio, u64 stripe_len)
D
David Woodhouse 已提交
1738 1739
{
	struct btrfs_raid_bio *rbio;
1740 1741
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1742
	int ret;
D
David Woodhouse 已提交
1743

1744
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1745
	if (IS_ERR(rbio)) {
1746
		btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
1747
		return PTR_ERR(rbio);
1748
	}
D
David Woodhouse 已提交
1749
	bio_list_add(&rbio->bio_list, bio);
1750
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1751
	rbio->operation = BTRFS_RBIO_WRITE;
1752

1753
	btrfs_bio_counter_inc_noblocked(fs_info);
1754 1755
	rbio->generic_bio_cnt = 1;

1756 1757 1758 1759
	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1760 1761 1762
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
		if (ret)
1763
			btrfs_bio_counter_dec(fs_info);
1764 1765
		return ret;
	}
1766

1767
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1768 1769 1770
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1771
			plug->info = fs_info;
1772 1773 1774
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1775
		ret = 0;
1776
	} else {
1777 1778
		ret = __raid56_parity_write(rbio);
		if (ret)
1779
			btrfs_bio_counter_dec(fs_info);
1780
	}
1781
	return ret;
D
David Woodhouse 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
	int pagenr, stripe;
	void **pointers;
	int faila = -1, failb = -1;
	struct page *page;
	int err;
	int i;

1798
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
D
David Woodhouse 已提交
1799 1800 1801 1802 1803 1804 1805 1806
	if (!pointers) {
		err = -ENOMEM;
		goto cleanup_io;
	}

	faila = rbio->faila;
	failb = rbio->failb;

1807 1808
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1809 1810 1811 1812 1813 1814 1815
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1816
	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1817 1818 1819 1820 1821 1822 1823 1824
		/*
		 * Now we just use bitmap to mark the horizontal stripes in
		 * which we have data when doing parity scrub.
		 */
		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
		    !test_bit(pagenr, rbio->dbitmap))
			continue;

D
David Woodhouse 已提交
1825 1826 1827
		/* setup our array of pointers with pages
		 * from each stripe
		 */
1828
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1829 1830 1831 1832
			/*
			 * if we're rebuilding a read, we have to use
			 * pages from the bio list
			 */
1833 1834
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
			    (stripe == faila || stripe == failb)) {
				page = page_in_rbio(rbio, stripe, pagenr, 0);
			} else {
				page = rbio_stripe_page(rbio, stripe, pagenr);
			}
			pointers[stripe] = kmap(page);
		}

		/* all raid6 handling here */
Z
Zhao Lei 已提交
1844
		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
D
David Woodhouse 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
			/*
			 * single failure, rebuild from parity raid5
			 * style
			 */
			if (failb < 0) {
				if (faila == rbio->nr_data) {
					/*
					 * Just the P stripe has failed, without
					 * a bad data or Q stripe.
					 * TODO, we should redo the xor here.
					 */
					err = -EIO;
					goto cleanup;
				}
				/*
				 * a single failure in raid6 is rebuilt
				 * in the pstripe code below
				 */
				goto pstripe;
			}

			/* make sure our ps and qs are in order */
			if (faila > failb) {
				int tmp = failb;
				failb = faila;
				faila = tmp;
			}

			/* if the q stripe is failed, do a pstripe reconstruction
			 * from the xors.
			 * If both the q stripe and the P stripe are failed, we're
			 * here due to a crc mismatch and we can't give them the
			 * data they want
			 */
1879 1880 1881
			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
				if (rbio->bbio->raid_map[faila] ==
				    RAID5_P_STRIPE) {
D
David Woodhouse 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
					err = -EIO;
					goto cleanup;
				}
				/*
				 * otherwise we have one bad data stripe and
				 * a good P stripe.  raid5!
				 */
				goto pstripe;
			}

1892
			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1893
				raid6_datap_recov(rbio->real_stripes,
D
David Woodhouse 已提交
1894 1895
						  PAGE_SIZE, faila, pointers);
			} else {
1896
				raid6_2data_recov(rbio->real_stripes,
D
David Woodhouse 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
						  PAGE_SIZE, faila, failb,
						  pointers);
			}
		} else {
			void *p;

			/* rebuild from P stripe here (raid5 or raid6) */
			BUG_ON(failb != -1);
pstripe:
			/* Copy parity block into failed block to start with */
			memcpy(pointers[faila],
			       pointers[rbio->nr_data],
1909
			       PAGE_SIZE);
D
David Woodhouse 已提交
1910 1911 1912 1913 1914 1915 1916 1917

			/* rearrange the pointer array */
			p = pointers[faila];
			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
				pointers[stripe] = pointers[stripe + 1];
			pointers[rbio->nr_data - 1] = p;

			/* xor in the rest */
1918
			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
D
David Woodhouse 已提交
1919 1920 1921 1922 1923 1924 1925
		}
		/* if we're doing this rebuild as part of an rmw, go through
		 * and set all of our private rbio pages in the
		 * failed stripes as uptodate.  This way finish_rmw will
		 * know they can be trusted.  If this was a read reconstruction,
		 * other endio functions will fiddle the uptodate bits
		 */
1926
		if (rbio->operation == BTRFS_RBIO_WRITE) {
1927
			for (i = 0;  i < rbio->stripe_npages; i++) {
D
David Woodhouse 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
				if (faila != -1) {
					page = rbio_stripe_page(rbio, faila, i);
					SetPageUptodate(page);
				}
				if (failb != -1) {
					page = rbio_stripe_page(rbio, failb, i);
					SetPageUptodate(page);
				}
			}
		}
1938
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
1939 1940 1941 1942
			/*
			 * if we're rebuilding a read, we have to use
			 * pages from the bio list
			 */
1943 1944
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
			    (stripe == faila || stripe == failb)) {
				page = page_in_rbio(rbio, stripe, pagenr, 0);
			} else {
				page = rbio_stripe_page(rbio, stripe, pagenr);
			}
			kunmap(page);
		}
	}

	err = 0;
cleanup:
	kfree(pointers);

cleanup_io:
1959
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1960
		if (err == 0)
1961 1962 1963 1964
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

1965
		rbio_orig_end_io(rbio, err);
1966
	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1967
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
1968 1969 1970
	} else if (err == 0) {
		rbio->faila = -1;
		rbio->failb = -1;
1971 1972 1973 1974 1975 1976 1977

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
1978
	} else {
1979
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
1980 1981 1982 1983 1984 1985 1986
	}
}

/*
 * This is called only for stripes we've read from disk to
 * reconstruct the parity.
 */
1987
static void raid_recover_end_io(struct bio *bio)
D
David Woodhouse 已提交
1988 1989 1990 1991 1992 1993 1994
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	/*
	 * we only read stripe pages off the disk, set them
	 * up to date if there were no errors
	 */
1995
	if (bio->bi_error)
D
David Woodhouse 已提交
1996 1997 1998 1999 2000
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);
	bio_put(bio);

2001
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
2002 2003
		return;

2004
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2005
		rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	else
		__raid_recover_end_io(rbio);
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

2033
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
2034 2035

	/*
2036 2037 2038
	 * read everything that hasn't failed.  Thanks to the
	 * stripe cache, it is possible that some or all of these
	 * pages are going to be uptodate.
D
David Woodhouse 已提交
2039
	 */
2040
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2041
		if (rbio->faila == stripe || rbio->failb == stripe) {
2042
			atomic_inc(&rbio->error);
D
David Woodhouse 已提交
2043
			continue;
2044
		}
D
David Woodhouse 已提交
2045

2046
		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
D
David Woodhouse 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
			struct page *p;

			/*
			 * the rmw code may have already read this
			 * page in
			 */
			p = rbio_stripe_page(rbio, stripe, pagenr);
			if (PageUptodate(p))
				continue;

			ret = rbio_add_io_page(rbio, &bio_list,
				       rbio_stripe_page(rbio, stripe, pagenr),
				       stripe, pagenr, rbio->stripe_len);
			if (ret < 0)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2072
		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
D
David Woodhouse 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
			__raid_recover_end_io(rbio);
			goto out;
		} else {
			goto cleanup;
		}
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
2084
	atomic_set(&rbio->stripes_pending, bios_to_read);
D
David Woodhouse 已提交
2085 2086 2087 2088 2089 2090 2091
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid_recover_end_io;
M
Mike Christie 已提交
2092
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
D
David Woodhouse 已提交
2093

2094
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
2095

2096
		submit_bio(bio);
D
David Woodhouse 已提交
2097 2098 2099 2100 2101
	}
out:
	return 0;

cleanup:
2102 2103
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2104
		rbio_orig_end_io(rbio, -EIO);
D
David Woodhouse 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2114
int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2115 2116
			  struct btrfs_bio *bbio, u64 stripe_len,
			  int mirror_num, int generic_io)
D
David Woodhouse 已提交
2117 2118 2119 2120
{
	struct btrfs_raid_bio *rbio;
	int ret;

2121
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2122
	if (IS_ERR(rbio)) {
2123 2124
		if (generic_io)
			btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
2125
		return PTR_ERR(rbio);
2126
	}
D
David Woodhouse 已提交
2127

2128
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
D
David Woodhouse 已提交
2129
	bio_list_add(&rbio->bio_list, bio);
2130
	rbio->bio_list_bytes = bio->bi_iter.bi_size;
D
David Woodhouse 已提交
2131 2132 2133

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2134
		btrfs_warn(fs_info,
L
Liu Bo 已提交
2135 2136 2137
	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
			   __func__, (u64)bio->bi_iter.bi_sector << 9,
			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2138 2139
		if (generic_io)
			btrfs_put_bbio(bbio);
D
David Woodhouse 已提交
2140 2141 2142 2143
		kfree(rbio);
		return -EIO;
	}

2144
	if (generic_io) {
2145
		btrfs_bio_counter_inc_noblocked(fs_info);
2146 2147
		rbio->generic_bio_cnt = 1;
	} else {
2148
		btrfs_get_bbio(bbio);
2149 2150
	}

D
David Woodhouse 已提交
2151 2152 2153 2154 2155
	/*
	 * reconstruct from the q stripe if they are
	 * asking for mirror 3
	 */
	if (mirror_num == 3)
2156
		rbio->failb = rbio->real_stripes - 2;
D
David Woodhouse 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	ret = lock_stripe_add(rbio);

	/*
	 * __raid56_parity_recover will end the bio with
	 * any errors it hits.  We don't want to return
	 * its error value up the stack because our caller
	 * will end up calling bio_endio with any nonzero
	 * return
	 */
	if (ret == 0)
		__raid56_parity_recover(rbio);
	/*
	 * our rbio has been added to the list of
	 * rbios that will be handled after the
	 * currently lock owner is done
	 */
	return 0;

}

static void rmw_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

static void read_rebuild_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

/*
 * The following code is used to scrub/replace the parity stripe
 *
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

struct btrfs_raid_bio *
2203
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2204 2205
			       struct btrfs_bio *bbio, u64 stripe_len,
			       struct btrfs_device *scrub_dev,
2206 2207 2208 2209 2210
			       unsigned long *dbitmap, int stripe_nsectors)
{
	struct btrfs_raid_bio *rbio;
	int i;

2211
	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

2222
	for (i = 0; i < rbio->real_stripes; i++) {
2223 2224 2225 2226 2227 2228 2229
		if (bbio->stripes[i].dev == scrub_dev) {
			rbio->scrubp = i;
			break;
		}
	}

	/* Now we just support the sectorsize equals to page size */
2230
	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2231 2232 2233 2234 2235 2236
	ASSERT(rbio->stripe_npages == stripe_nsectors);
	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);

	return rbio;
}

2237 2238 2239
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
			    u64 logical)
2240 2241 2242 2243
{
	int stripe_offset;
	int index;

2244 2245
	ASSERT(logical >= rbio->bbio->raid_map[0]);
	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2246
				rbio->stripe_len * rbio->nr_data);
2247
	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2248
	index = stripe_offset >> PAGE_SHIFT;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	rbio->bio_pages[index] = page;
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int bit;
	int index;
	struct page *page;

	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2264
		for (i = 0; i < rbio->real_stripes; i++) {
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
			index = i * rbio->stripe_npages + bit;
			if (rbio->stripe_pages[index])
				continue;

			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
			if (!page)
				return -ENOMEM;
			rbio->stripe_pages[index] = page;
		}
	}
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2281
	struct btrfs_bio *bbio = rbio->bbio;
2282
	void *pointers[rbio->real_stripes];
2283
	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2284 2285 2286 2287 2288 2289 2290 2291 2292
	int nr_data = rbio->nr_data;
	int stripe;
	int pagenr;
	int p_stripe = -1;
	int q_stripe = -1;
	struct page *p_page = NULL;
	struct page *q_page = NULL;
	struct bio_list bio_list;
	struct bio *bio;
2293
	int is_replace = 0;
2294 2295 2296 2297
	int ret;

	bio_list_init(&bio_list);

2298 2299 2300 2301 2302
	if (rbio->real_stripes - rbio->nr_data == 1) {
		p_stripe = rbio->real_stripes - 1;
	} else if (rbio->real_stripes - rbio->nr_data == 2) {
		p_stripe = rbio->real_stripes - 2;
		q_stripe = rbio->real_stripes - 1;
2303 2304 2305 2306
	} else {
		BUG();
	}

2307 2308 2309 2310 2311
	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
		is_replace = 1;
		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
	}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
	if (!p_page)
		goto cleanup;
	SetPageUptodate(p_page);

	if (q_stripe != -1) {
		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
		if (!q_page) {
			__free_page(p_page);
			goto cleanup;
		}
		SetPageUptodate(q_page);
	}

	atomic_set(&rbio->error, 0);

	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
		struct page *p;
		void *parity;
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
			p = page_in_rbio(rbio, stripe, pagenr, 0);
			pointers[stripe] = kmap(p);
		}

		/* then add the parity stripe */
		pointers[stripe++] = kmap(p_page);

		if (q_stripe != -1) {

			/*
			 * raid6, add the qstripe and call the
			 * library function to fill in our p/q
			 */
			pointers[stripe++] = kmap(q_page);

2358
			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2359 2360 2361 2362
						pointers);
		} else {
			/* raid5 */
			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2363
			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2364 2365
		}

2366
		/* Check scrubbing parity and repair it */
2367 2368
		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		parity = kmap(p);
2369 2370
		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2371 2372 2373 2374 2375
		else
			/* Parity is right, needn't writeback */
			bitmap_clear(rbio->dbitmap, pagenr, 1);
		kunmap(p);

2376
		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
	}

	__free_page(p_page);
	if (q_page)
		__free_page(q_page);

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
		struct page *page;

		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		ret = rbio_add_io_page(rbio, &bio_list,
			       page, rbio->scrubp, pagenr, rbio->stripe_len);
		if (ret)
			goto cleanup;
	}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	if (!is_replace)
		goto submit_write;

	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
		struct page *page;

		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
		ret = rbio_add_io_page(rbio, &bio_list, page,
				       bbio->tgtdev_map[rbio->scrubp],
				       pagenr, rbio->stripe_len);
		if (ret)
			goto cleanup;
	}

submit_write:
2415 2416 2417
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2418
		rbio_orig_end_io(rbio, 0);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
2430
		bio->bi_end_io = raid_write_end_io;
M
Mike Christie 已提交
2431
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2432 2433

		submit_bio(bio);
2434 2435 2436 2437
	}
	return;

cleanup:
2438
	rbio_orig_end_io(rbio, -EIO);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
		if (dfail > rbio->bbio->max_errors - 1)
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2493
		 * is scrubbing parity, luckily, use the other one to repair
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2506
	rbio_orig_end_io(rbio, -EIO);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2517
static void raid56_parity_scrub_end_io(struct bio *bio)
2518 2519 2520
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

2521
	if (bio->bi_error)
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		fail_bio_stripe(rbio, bio);
	else
		set_bio_pages_uptodate(bio);

	bio_put(bio);

	if (!atomic_dec_and_test(&rbio->stripes_pending))
		return;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
	int pagenr;
	int stripe;
	struct bio *bio;

	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	bio_list_init(&bio_list);

	atomic_set(&rbio->error, 0);
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
2559
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
			struct page *page;
			/*
			 * we want to find all the pages missing from
			 * the rbio and read them from the disk.  If
			 * page_in_rbio finds a page in the bio list
			 * we don't need to read it off the stripe.
			 */
			page = page_in_rbio(rbio, stripe, pagenr, 1);
			if (page)
				continue;

			page = rbio_stripe_page(rbio, stripe, pagenr);
			/*
			 * the bio cache may have handed us an uptodate
			 * page.  If so, be happy and use it
			 */
			if (PageUptodate(page))
				continue;

			ret = rbio_add_io_page(rbio, &bio_list, page,
				       stripe, pagenr, rbio->stripe_len);
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
	 * the bbio may be freed once we submit the last bio.  Make sure
	 * not to touch it after that
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
	while (1) {
		bio = bio_list_pop(&bio_list);
		if (!bio)
			break;

		bio->bi_private = rbio;
		bio->bi_end_io = raid56_parity_scrub_end_io;
M
Mike Christie 已提交
2610
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2611

2612
		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2613

2614
		submit_bio(bio);
2615 2616 2617 2618 2619
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2620
	rbio_orig_end_io(rbio, -EIO);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

static void scrub_parity_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

static void async_scrub_parity(struct btrfs_raid_bio *rbio)
{
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			scrub_parity_work, NULL, NULL);

2640
	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2641 2642 2643 2644 2645 2646 2647
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
		async_scrub_parity(rbio);
}
2648 2649 2650 2651

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2652
raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2653 2654 2655 2656
			  struct btrfs_bio *bbio, u64 length)
{
	struct btrfs_raid_bio *rbio;

2657
	rbio = alloc_rbio(fs_info, bbio, length);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
		BUG();
		kfree(rbio);
		return NULL;
	}

	return rbio;
}

static void missing_raid56_work(struct btrfs_work *work)
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}

static void async_missing_raid56(struct btrfs_raid_bio *rbio)
{
	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
			missing_raid56_work, NULL, NULL);

	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
		async_missing_raid56(rbio);
}