slab.c 111.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
232
	parent->colour_next = 0;
233 234 235 236 237
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
238 239 240
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
241
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
242 243
	} while (0)

A
Andrew Morton 已提交
244 245
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
246 247 248 249
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
250

251
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
252
#define CFLGS_OFF_SLAB		(0x80000000UL)
253
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
254 255 256
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
257 258 259
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
260
 *
A
Adrian Bunk 已提交
261
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
262 263
 * which could lock up otherwise freeable slabs.
 */
264 265
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
266 267 268 269 270 271

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
272
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
273 274 275 276 277
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
278 279
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
280
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
281
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
282 283 284 285 286
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
287 288 289 290 291 292 293 294 295
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
296
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
297 298 299
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
300
#define	STATS_INC_NODEFREES(x)	do { } while (0)
301
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
302
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
311 312
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
313
 * 0		: objp
314
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
315 316
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
317
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
318
 * 		redzone word.
319
 * cachep->obj_offset: The real object.
320 321
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
322
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
323
 */
324
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
325
{
326
	return cachep->obj_offset;
L
Linus Torvalds 已提交
327 328
}

329
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
330 331
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 333
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
334 335
}

336
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
337 338 339
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
340
		return (unsigned long long *)(objp + cachep->size -
341
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
342
					      REDZONE_ALIGN);
343
	return (unsigned long long *) (objp + cachep->size -
344
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
345 346
}

347
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
348 349
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
351 352 353 354
}

#else

355
#define obj_offset(x)			0
356 357
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
358 359 360 361
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

362 363
#ifdef CONFIG_DEBUG_SLAB_LEAK

364
static inline bool is_store_user_clean(struct kmem_cache *cachep)
365
{
366 367
	return atomic_read(&cachep->store_user_clean) == 1;
}
368

369 370 371 372
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
373

374 375 376 377
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
378 379 380
}

#else
381
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382 383 384

#endif

L
Linus Torvalds 已提交
385
/*
386 387
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
388
 */
389 390 391
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
392
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
393

394 395
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
396
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
397
	return page->slab_cache;
398 399
}

400
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 402
				 unsigned int idx)
{
403
	return page->s_mem + cache->size * idx;
404 405
}

406
/*
407 408 409
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
410 411 412
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413
					const struct page *page, void *obj)
414
{
415
	u32 offset = (obj - page->s_mem);
416
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 418
}

419
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
420
/* internal cache of cache description objs */
421
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
422 423 424
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
425
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
426
	.name = "kmem_cache",
L
Linus Torvalds 已提交
427 428
};

429
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
430

431
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
432
{
433
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
434 435
}

A
Andrew Morton 已提交
436 437 438
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
439 440
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
441
{
442
	unsigned int num;
443
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
444

445 446 447 448 449 450
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
451 452 453 454 455
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
456 457 458 459 460 461
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
462
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463
		num = slab_size / buffer_size;
464
		*left_over = slab_size % buffer_size;
465
	} else {
466
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 468
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
469
	}
470 471

	return num;
L
Linus Torvalds 已提交
472 473
}

474
#if DEBUG
475
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
476

A
Andrew Morton 已提交
477 478
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
479
{
480
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
481
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
482
	dump_stack();
483
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
484
}
485
#endif
L
Linus Torvalds 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

503 504 505 506 507 508 509 510 511 512 513
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

514 515 516 517 518 519 520
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
521
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522 523 524

static void init_reap_node(int cpu)
{
525 526
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
527 528 529 530
}

static void next_reap_node(void)
{
531
	int node = __this_cpu_read(slab_reap_node);
532

533
	node = next_node_in(node, node_online_map);
534
	__this_cpu_write(slab_reap_node, node);
535 536 537 538 539 540 541
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
542 543 544 545 546 547 548
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
549
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
550
{
551
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
552 553 554 555 556 557

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
558
	if (keventd_up() && reap_work->work.func == NULL) {
559
		init_reap_node(cpu);
560
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 562
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
563 564 565
	}
}

566
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
567
{
568 569
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
570
	 * However, when such objects are allocated or transferred to another
571 572 573 574
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
575 576 577 578 579 580
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
581
	}
582 583 584 585 586
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
587
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 589 590 591 592
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
593 594
}

595 596
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
597
{
598 599 600
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
601

602 603
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
604

605 606 607
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
608

609
	slabs_destroy(cachep, &list);
610 611
}

612 613 614 615 616 617 618 619 620 621
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
622
	int nr = min3(from->avail, max, to->limit - to->avail);
623 624 625 626 627 628 629 630 631 632 633 634

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

635 636 637
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
638
#define reap_alien(cachep, n) do { } while (0)
639

J
Joonsoo Kim 已提交
640 641
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
642
{
643
	return NULL;
644 645
}

J
Joonsoo Kim 已提交
646
static inline void free_alien_cache(struct alien_cache **ac_ptr)
647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

661
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 663 664 665 666
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
667 668
static inline gfp_t gfp_exact_node(gfp_t flags)
{
669
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
670 671
}

672 673
#else	/* CONFIG_NUMA */

674
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676

J
Joonsoo Kim 已提交
677 678 679
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
680
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
681 682 683 684
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
685
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
686 687 688 689
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690
{
J
Joonsoo Kim 已提交
691
	struct alien_cache **alc_ptr;
692
	size_t memsize = sizeof(void *) * nr_node_ids;
693 694 695 696
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
710 711
		}
	}
J
Joonsoo Kim 已提交
712
	return alc_ptr;
713 714
}

J
Joonsoo Kim 已提交
715
static void free_alien_cache(struct alien_cache **alc_ptr)
716 717 718
{
	int i;

J
Joonsoo Kim 已提交
719
	if (!alc_ptr)
720 721
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
722 723
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
724 725
}

726
static void __drain_alien_cache(struct kmem_cache *cachep,
727 728
				struct array_cache *ac, int node,
				struct list_head *list)
729
{
730
	struct kmem_cache_node *n = get_node(cachep, node);
731 732

	if (ac->avail) {
733
		spin_lock(&n->list_lock);
734 735 736 737 738
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
739 740
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
741

742
		free_block(cachep, ac->entry, ac->avail, node, list);
743
		ac->avail = 0;
744
		spin_unlock(&n->list_lock);
745 746 747
	}
}

748 749 750
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
751
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752
{
753
	int node = __this_cpu_read(slab_reap_node);
754

755
	if (n->alien) {
J
Joonsoo Kim 已提交
756 757 758 759 760
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
761
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 763 764
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
765
				spin_unlock_irq(&alc->lock);
766
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
767
			}
768 769 770 771
		}
	}
}

A
Andrew Morton 已提交
772
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
773
				struct alien_cache **alien)
774
{
P
Pekka Enberg 已提交
775
	int i = 0;
J
Joonsoo Kim 已提交
776
	struct alien_cache *alc;
777 778 779 780
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
781 782
		alc = alien[i];
		if (alc) {
783 784
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
785
			ac = &alc->ac;
786
			spin_lock_irqsave(&alc->lock, flags);
787
			__drain_alien_cache(cachep, ac, i, &list);
788
			spin_unlock_irqrestore(&alc->lock, flags);
789
			slabs_destroy(cachep, &list);
790 791 792
		}
	}
}
793

794 795
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
796
{
797
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
798 799
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
800
	LIST_HEAD(list);
P
Pekka Enberg 已提交
801

802
	n = get_node(cachep, node);
803
	STATS_INC_NODEFREES(cachep);
804 805
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
806
		ac = &alien->ac;
807
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
808
		if (unlikely(ac->avail == ac->limit)) {
809
			STATS_INC_ACOVERFLOW(cachep);
810
			__drain_alien_cache(cachep, ac, page_node, &list);
811
		}
812
		ac->entry[ac->avail++] = objp;
813
		spin_unlock(&alien->lock);
814
		slabs_destroy(cachep, &list);
815
	} else {
816
		n = get_node(cachep, page_node);
817
		spin_lock(&n->list_lock);
818
		free_block(cachep, &objp, 1, page_node, &list);
819
		spin_unlock(&n->list_lock);
820
		slabs_destroy(cachep, &list);
821 822 823
	}
	return 1;
}
824 825 826 827 828 829 830 831 832 833 834 835 836 837

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
838 839

/*
840 841
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
842 843 844
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
845
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
846
}
847 848
#endif

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

889
/*
890
 * Allocates and initializes node for a node on each slab cache, used for
891
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
892
 * will be allocated off-node since memory is not yet online for the new node.
893
 * When hotplugging memory or a cpu, existing node are not replaced if
894 895
 * already in use.
 *
896
 * Must hold slab_mutex.
897
 */
898
static int init_cache_node_node(int node)
899
{
900
	int ret;
901 902
	struct kmem_cache *cachep;

903
	list_for_each_entry(cachep, &slab_caches, list) {
904 905 906
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
907
	}
908

909 910 911
	return 0;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966 967 968 969
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
	if (force_change)
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978
static void cpuup_canceled(long cpu)
979 980
{
	struct kmem_cache *cachep;
981
	struct kmem_cache_node *n = NULL;
982
	int node = cpu_to_mem(cpu);
983
	const struct cpumask *mask = cpumask_of_node(node);
984

985
	list_for_each_entry(cachep, &slab_caches, list) {
986 987
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
988
		struct alien_cache **alien;
989
		LIST_HEAD(list);
990

991
		n = get_node(cachep, node);
992
		if (!n)
993
			continue;
994

995
		spin_lock_irq(&n->list_lock);
996

997 998
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
999 1000 1001 1002

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1003
			free_block(cachep, nc->entry, nc->avail, node, &list);
1004 1005
			nc->avail = 0;
		}
1006

1007
		if (!cpumask_empty(mask)) {
1008
			spin_unlock_irq(&n->list_lock);
1009
			goto free_slab;
1010 1011
		}

1012
		shared = n->shared;
1013 1014
		if (shared) {
			free_block(cachep, shared->entry,
1015
				   shared->avail, node, &list);
1016
			n->shared = NULL;
1017 1018
		}

1019 1020
		alien = n->alien;
		n->alien = NULL;
1021

1022
		spin_unlock_irq(&n->list_lock);
1023 1024 1025 1026 1027 1028

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1029 1030

free_slab:
1031
		slabs_destroy(cachep, &list);
1032 1033 1034 1035 1036 1037
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1038
	list_for_each_entry(cachep, &slab_caches, list) {
1039
		n = get_node(cachep, node);
1040
		if (!n)
1041
			continue;
1042
		drain_freelist(cachep, n, INT_MAX);
1043 1044 1045
	}
}

1046
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1047
{
1048
	struct kmem_cache *cachep;
1049
	int node = cpu_to_mem(cpu);
1050
	int err;
L
Linus Torvalds 已提交
1051

1052 1053 1054 1055
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1056
	 * kmem_cache_node and not this cpu's kmem_cache_node
1057
	 */
1058
	err = init_cache_node_node(node);
1059 1060
	if (err < 0)
		goto bad;
1061 1062 1063 1064 1065

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1066
	list_for_each_entry(cachep, &slab_caches, list) {
1067 1068 1069
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1070
	}
1071

1072 1073
	return 0;
bad:
1074
	cpuup_canceled(cpu);
1075 1076 1077
	return -ENOMEM;
}

1078
static int cpuup_callback(struct notifier_block *nfb,
1079 1080 1081 1082 1083 1084 1085 1086
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1087
		mutex_lock(&slab_mutex);
1088
		err = cpuup_prepare(cpu);
1089
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1090 1091
		break;
	case CPU_ONLINE:
1092
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1093 1094 1095
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1096
  	case CPU_DOWN_PREPARE:
1097
  	case CPU_DOWN_PREPARE_FROZEN:
1098
		/*
1099
		 * Shutdown cache reaper. Note that the slab_mutex is
1100 1101 1102 1103
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1104
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105
		/* Now the cache_reaper is guaranteed to be not running. */
1106
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1107 1108
  		break;
  	case CPU_DOWN_FAILED:
1109
  	case CPU_DOWN_FAILED_FROZEN:
1110 1111
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1112
	case CPU_DEAD:
1113
	case CPU_DEAD_FROZEN:
1114 1115
		/*
		 * Even if all the cpus of a node are down, we don't free the
1116
		 * kmem_cache_node of any cache. This to avoid a race between
1117
		 * cpu_down, and a kmalloc allocation from another cpu for
1118
		 * memory from the node of the cpu going down.  The node
1119 1120 1121
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1122
		/* fall through */
1123
#endif
L
Linus Torvalds 已提交
1124
	case CPU_UP_CANCELED:
1125
	case CPU_UP_CANCELED_FROZEN:
1126
		mutex_lock(&slab_mutex);
1127
		cpuup_canceled(cpu);
1128
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1129 1130
		break;
	}
1131
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1132 1133
}

1134
static struct notifier_block cpucache_notifier = {
1135 1136
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1137

1138 1139 1140 1141 1142 1143
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1144
 * Must hold slab_mutex.
1145
 */
1146
static int __meminit drain_cache_node_node(int node)
1147 1148 1149 1150
{
	struct kmem_cache *cachep;
	int ret = 0;

1151
	list_for_each_entry(cachep, &slab_caches, list) {
1152
		struct kmem_cache_node *n;
1153

1154
		n = get_node(cachep, node);
1155
		if (!n)
1156 1157
			continue;

1158
		drain_freelist(cachep, n, INT_MAX);
1159

1160 1161
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1182
		mutex_lock(&slab_mutex);
1183
		ret = init_cache_node_node(nid);
1184
		mutex_unlock(&slab_mutex);
1185 1186
		break;
	case MEM_GOING_OFFLINE:
1187
		mutex_lock(&slab_mutex);
1188
		ret = drain_cache_node_node(nid);
1189
		mutex_unlock(&slab_mutex);
1190 1191 1192 1193 1194 1195 1196 1197
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1198
	return notifier_from_errno(ret);
1199 1200 1201
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1202
/*
1203
 * swap the static kmem_cache_node with kmalloced memory
1204
 */
1205
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206
				int nodeid)
1207
{
1208
	struct kmem_cache_node *ptr;
1209

1210
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211 1212
	BUG_ON(!ptr);

1213
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214 1215 1216 1217 1218
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1219
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220
	cachep->node[nodeid] = ptr;
1221 1222
}

1223
/*
1224 1225
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1226
 */
1227
static void __init set_up_node(struct kmem_cache *cachep, int index)
1228 1229 1230 1231
{
	int node;

	for_each_online_node(node) {
1232
		cachep->node[node] = &init_kmem_cache_node[index + node];
1233
		cachep->node[node]->next_reap = jiffies +
1234 1235
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236 1237 1238
	}
}

T
Thomas Garnier 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
#ifdef CONFIG_SLAB_FREELIST_RANDOM
static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
			size_t count)
{
	size_t i;
	unsigned int rand;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
{
	unsigned int seed, count = cachep->num;
	struct rnd_state state;

	if (count < 2)
		return 0;

	/* If it fails, we will just use the global lists */
	cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage */
	get_random_bytes_arch(&seed, sizeof(seed));
	prandom_seed_state(&state, seed);

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
static void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */


A
Andrew Morton 已提交
1294 1295 1296
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1297 1298 1299
 */
void __init kmem_cache_init(void)
{
1300 1301
	int i;

1302 1303
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1304 1305
	kmem_cache = &kmem_cache_boot;

1306
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1307 1308
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1309
	for (i = 0; i < NUM_INIT_LISTS; i++)
1310
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1311

L
Linus Torvalds 已提交
1312 1313
	/*
	 * Fragmentation resistance on low memory - only use bigger
1314 1315
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1316
	 */
1317
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1318
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1319 1320 1321

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1322 1323 1324
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1325
	 *    Initially an __init data area is used for the head array and the
1326
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1327
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1328
	 * 2) Create the first kmalloc cache.
1329
	 *    The struct kmem_cache for the new cache is allocated normally.
1330 1331 1332
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1333
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1334
	 *    kmalloc cache with kmalloc allocated arrays.
1335
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1336 1337
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1338 1339
	 */

1340
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1341

E
Eric Dumazet 已提交
1342
	/*
1343
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1344
	 */
1345
	create_boot_cache(kmem_cache, "kmem_cache",
1346
		offsetof(struct kmem_cache, node) +
1347
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1348 1349
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1350
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1351

A
Andrew Morton 已提交
1352
	/*
1353 1354
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1355
	 */
1356
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1357
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1358
	slab_state = PARTIAL_NODE;
1359
	setup_kmalloc_cache_index_table();
1360

1361 1362
	slab_early_init = 0;

1363
	/* 5) Replace the bootstrap kmem_cache_node */
1364
	{
P
Pekka Enberg 已提交
1365 1366
		int nid;

1367
		for_each_online_node(nid) {
1368
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1369

1370
			init_list(kmalloc_caches[INDEX_NODE],
1371
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1372 1373
		}
	}
L
Linus Torvalds 已提交
1374

1375
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1376 1377 1378 1379 1380 1381
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1382
	slab_state = UP;
P
Peter Zijlstra 已提交
1383

1384
	/* 6) resize the head arrays to their final sizes */
1385 1386
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1387 1388
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1389
	mutex_unlock(&slab_mutex);
1390

1391 1392 1393
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1394 1395 1396
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1397 1398 1399
	 */
	register_cpu_notifier(&cpucache_notifier);

1400 1401 1402
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1403
	 * node.
1404 1405 1406 1407
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1408 1409 1410
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1418 1419
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1420
	 */
1421
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1422
		start_cpu_timer(cpu);
1423 1424

	/* Done! */
1425
	slab_state = FULL;
L
Linus Torvalds 已提交
1426 1427 1428 1429
	return 0;
}
__initcall(cpucache_init);

1430 1431 1432
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1433
#if DEBUG
1434
	struct kmem_cache_node *n;
1435
	struct page *page;
1436 1437
	unsigned long flags;
	int node;
1438 1439 1440 1441 1442
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1443

1444 1445 1446
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1447
		cachep->name, cachep->size, cachep->gfporder);
1448

1449
	for_each_kmem_cache_node(cachep, node, n) {
1450 1451 1452
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1453
		spin_lock_irqsave(&n->list_lock, flags);
1454
		list_for_each_entry(page, &n->slabs_full, lru) {
1455 1456 1457
			active_objs += cachep->num;
			active_slabs++;
		}
1458 1459
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1460 1461
			active_slabs++;
		}
1462
		list_for_each_entry(page, &n->slabs_free, lru)
1463 1464
			num_slabs++;

1465 1466
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1467 1468 1469

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1470
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1471 1472 1473
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1474
#endif
1475 1476
}

L
Linus Torvalds 已提交
1477
/*
W
Wang Sheng-Hui 已提交
1478 1479
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1485 1486
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1487 1488
{
	struct page *page;
1489
	int nr_pages;
1490

1491
	flags |= cachep->allocflags;
1492 1493
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1494

1495
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1496
	if (!page) {
1497
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1498
		return NULL;
1499
	}
L
Linus Torvalds 已提交
1500

1501 1502 1503 1504 1505
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1506
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1507
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1508 1509 1510 1511 1512
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1513

1514
	__SetPageSlab(page);
1515 1516
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1517
		SetPageSlabPfmemalloc(page);
1518

1519 1520 1521 1522 1523 1524 1525 1526
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1527

1528
	return page;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533
}

/*
 * Interface to system's page release.
 */
1534
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1535
{
1536 1537
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1538

1539
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1540

1541 1542 1543 1544 1545 1546
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1547

1548
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1549
	__ClearPageSlabPfmemalloc(page);
1550
	__ClearPageSlab(page);
1551 1552
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1553

L
Linus Torvalds 已提交
1554 1555
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1556 1557
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1558 1559 1560 1561
}

static void kmem_rcu_free(struct rcu_head *head)
{
1562 1563
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1564

1565 1566 1567 1568
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1569 1570 1571
}

#if DEBUG
1572 1573 1574 1575 1576 1577 1578 1579
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1580 1581

#ifdef CONFIG_DEBUG_PAGEALLOC
1582
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1583
			    unsigned long caller)
L
Linus Torvalds 已提交
1584
{
1585
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1586

1587
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1588

P
Pekka Enberg 已提交
1589
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1590 1591
		return;

P
Pekka Enberg 已提交
1592 1593 1594 1595
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1603
				*addr++ = svalue;
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1611
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1612
}
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1630 1631
#endif

1632
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1633
{
1634
	int size = cachep->object_size;
1635
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1636 1637

	memset(addr, val, size);
P
Pekka Enberg 已提交
1638
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1644 1645 1646
	unsigned char error = 0;
	int bad_count = 0;

1647
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1648 1649 1650 1651 1652 1653
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1654 1655
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1656 1657 1658 1659

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1660
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1661
#ifdef CONFIG_X86
1662
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1663
#else
1664
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1665 1666 1667
#endif
		}
	}
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672
}
#endif

#if DEBUG

1673
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1679 1680 1681
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1682 1683 1684
	}

	if (cachep->flags & SLAB_STORE_USER) {
1685
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1686 1687
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1688
	}
1689
	realobj = (char *)objp + obj_offset(cachep);
1690
	size = cachep->object_size;
P
Pekka Enberg 已提交
1691
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1692 1693
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1694 1695
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1696 1697 1698 1699
		dump_line(realobj, i, limit);
	}
}

1700
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705
{
	char *realobj;
	int size, i;
	int lines = 0;

1706 1707 1708
	if (is_debug_pagealloc_cache(cachep))
		return;

1709
	realobj = (char *)objp + obj_offset(cachep);
1710
	size = cachep->object_size;
L
Linus Torvalds 已提交
1711

P
Pekka Enberg 已提交
1712
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1713
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1714
		if (i == size - 1)
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1721 1722 1723
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1724 1725 1726
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1727
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1728
			limit = 16;
P
Pekka Enberg 已提交
1729 1730
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1743
		struct page *page = virt_to_head_page(objp);
1744
		unsigned int objnr;
L
Linus Torvalds 已提交
1745

1746
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1747
		if (objnr) {
1748
			objp = index_to_obj(cachep, page, objnr - 1);
1749
			realobj = (char *)objp + obj_offset(cachep);
1750
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1751 1752
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1753
		if (objnr + 1 < cachep->num) {
1754
			objp = index_to_obj(cachep, page, objnr + 1);
1755
			realobj = (char *)objp + obj_offset(cachep);
1756
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1763
#if DEBUG
1764 1765
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1766 1767
{
	int i;
1768 1769 1770 1771 1772 1773

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1774
	for (i = 0; i < cachep->num; i++) {
1775
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1776 1777 1778

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1779
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1780 1781 1782
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1783
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1784
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1785
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1786 1787
		}
	}
1788
}
L
Linus Torvalds 已提交
1789
#else
1790 1791
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1792 1793
{
}
L
Linus Torvalds 已提交
1794 1795
#endif

1796 1797 1798
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1799
 * @page: page pointer being destroyed
1800
 *
W
Wang Sheng-Hui 已提交
1801 1802 1803
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1804
 */
1805
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1806
{
1807
	void *freelist;
1808

1809 1810
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1811 1812 1813
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1814
		kmem_freepages(cachep, page);
1815 1816

	/*
1817
	 * From now on, we don't use freelist
1818 1819 1820
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1821
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1834
/**
1835 1836 1837 1838 1839 1840
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1841 1842 1843 1844 1845
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1846
static size_t calculate_slab_order(struct kmem_cache *cachep,
1847
				size_t size, unsigned long flags)
1848 1849
{
	size_t left_over = 0;
1850
	int gfporder;
1851

1852
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1853 1854 1855
		unsigned int num;
		size_t remainder;

1856
		num = cache_estimate(gfporder, size, flags, &remainder);
1857 1858
		if (!num)
			continue;
1859

1860 1861 1862 1863
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1864
		if (flags & CFLGS_OFF_SLAB) {
1865 1866 1867 1868 1869 1870 1871 1872
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1873
			/*
1874
			 * Needed to avoid possible looping condition
1875
			 * in cache_grow_begin()
1876
			 */
1877 1878
			if (OFF_SLAB(freelist_cache))
				continue;
1879

1880 1881 1882
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1883
		}
1884

1885
		/* Found something acceptable - save it away */
1886
		cachep->num = num;
1887
		cachep->gfporder = gfporder;
1888 1889
		left_over = remainder;

1890 1891 1892 1893 1894 1895 1896 1897
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1898 1899 1900 1901
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1902
		if (gfporder >= slab_max_order)
1903 1904
			break;

1905 1906 1907
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1908
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1909 1910 1911 1912 1913
			break;
	}
	return left_over;
}

1914 1915 1916 1917 1918 1919 1920 1921
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1922
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1935
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1936
{
1937
	if (slab_state >= FULL)
1938
		return enable_cpucache(cachep, gfp);
1939

1940 1941 1942 1943
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1944
	if (slab_state == DOWN) {
1945 1946
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1947
	} else if (slab_state == PARTIAL) {
1948 1949
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1950
	} else {
1951
		int node;
1952

1953 1954 1955 1956 1957
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1958 1959
		}
	}
1960

1961
	cachep->node[numa_mem_id()]->next_reap =
1962 1963
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1964 1965 1966 1967 1968 1969 1970

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1971
	return 0;
1972 1973
}

J
Joonsoo Kim 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

2023 2024 2025 2026 2027 2028 2029 2030
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
2031 2032
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2073
/**
2074
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2075
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2076 2077 2078 2079
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2080
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2094
int
2095
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2096
{
2097
	size_t ralign = BYTES_PER_WORD;
2098
	gfp_t gfp;
2099
	int err;
2100
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2110 2111
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2112
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2118 2119
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2120 2121 2122
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2123 2124 2125
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2126 2127
	}

D
David Woodhouse 已提交
2128 2129 2130 2131 2132 2133 2134
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2135

2136
	/* 3) caller mandated alignment */
2137 2138
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2139
	}
2140 2141
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2142
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2143
	/*
2144
	 * 4) Store it.
L
Linus Torvalds 已提交
2145
	 */
2146
	cachep->align = ralign;
2147 2148 2149 2150
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2151

2152 2153 2154 2155 2156
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2157 2158
#if DEBUG

2159 2160 2161 2162
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2163 2164
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2165 2166
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2167 2168
	}
	if (flags & SLAB_STORE_USER) {
2169
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2170 2171
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2172
		 */
D
David Woodhouse 已提交
2173 2174 2175 2176
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2177
	}
2178 2179
#endif

A
Alexander Potapenko 已提交
2180 2181
	kasan_cache_create(cachep, &size, &flags);

2182 2183 2184 2185 2186 2187 2188 2189 2190
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2191 2192 2193 2194 2195 2196 2197
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2198
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2210 2211 2212
	}
#endif

2213 2214 2215 2216 2217
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2218
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2219
		flags |= CFLGS_OFF_SLAB;
2220
		goto done;
2221
	}
L
Linus Torvalds 已提交
2222

2223 2224
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2225

2226
	return -E2BIG;
L
Linus Torvalds 已提交
2227

2228 2229
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2230
	cachep->flags = flags;
2231
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2232
	if (flags & SLAB_CACHE_DMA)
2233
		cachep->allocflags |= GFP_DMA;
2234
	cachep->size = size;
2235
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2250 2251
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2252
	}
L
Linus Torvalds 已提交
2253

2254 2255
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2256
		__kmem_cache_release(cachep);
2257
		return err;
2258
	}
L
Linus Torvalds 已提交
2259

2260
	return 0;
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2274 2275 2276 2277 2278
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2279
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2280 2281 2282
{
#ifdef CONFIG_SMP
	check_irq_off();
2283
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2284 2285
#endif
}
2286

2287
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2288 2289 2290
{
#ifdef CONFIG_SMP
	check_irq_off();
2291
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2292 2293 2294
#endif
}

L
Linus Torvalds 已提交
2295 2296 2297
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2298
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2299
#define check_spinlock_acquired(x) do { } while(0)
2300
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2301 2302
#endif

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2319

L
Linus Torvalds 已提交
2320 2321
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2322
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2323
	struct array_cache *ac;
2324
	int node = numa_mem_id();
2325
	struct kmem_cache_node *n;
2326
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2327 2328

	check_irq_off();
2329
	ac = cpu_cache_get(cachep);
2330 2331
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2332
	free_block(cachep, ac->entry, ac->avail, node, &list);
2333
	spin_unlock(&n->list_lock);
2334
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2335 2336 2337
	ac->avail = 0;
}

2338
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2339
{
2340
	struct kmem_cache_node *n;
2341
	int node;
2342
	LIST_HEAD(list);
2343

2344
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2345
	check_irq_on();
2346 2347
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2348
			drain_alien_cache(cachep, n->alien);
2349

2350 2351 2352 2353 2354 2355 2356
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2357 2358
}

2359 2360 2361 2362 2363 2364 2365
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2366
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2367
{
2368 2369
	struct list_head *p;
	int nr_freed;
2370
	struct page *page;
L
Linus Torvalds 已提交
2371

2372
	nr_freed = 0;
2373
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2374

2375 2376 2377 2378
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2379 2380
			goto out;
		}
L
Linus Torvalds 已提交
2381

2382 2383
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2384 2385 2386 2387
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2388 2389
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2390
		slab_destroy(cache, page);
2391
		nr_freed++;
L
Linus Torvalds 已提交
2392
	}
2393 2394
out:
	return nr_freed;
L
Linus Torvalds 已提交
2395 2396
}

2397
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398
{
2399 2400
	int ret = 0;
	int node;
2401
	struct kmem_cache_node *n;
2402 2403 2404 2405

	drain_cpu_caches(cachep);

	check_irq_on();
2406
	for_each_kmem_cache_node(cachep, node, n) {
2407
		drain_freelist(cachep, n, INT_MAX);
2408

2409 2410
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2411 2412 2413 2414
	}
	return (ret ? 1 : 0);
}

2415
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416 2417 2418 2419 2420
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2421
{
2422
	int i;
2423
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2424

T
Thomas Garnier 已提交
2425 2426
	cache_random_seq_destroy(cachep);

2427
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2428

2429
	/* NUMA: free the node structures */
2430 2431 2432 2433 2434
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2435
	}
L
Linus Torvalds 已提交
2436 2437
}

2438 2439
/*
 * Get the memory for a slab management obj.
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2451
 */
2452
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2453 2454
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2455
{
2456
	void *freelist;
2457
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2458

2459 2460 2461
	page->s_mem = addr + colour_off;
	page->active = 0;

2462 2463 2464
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2465
		/* Slab management obj is off-slab. */
2466
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2467
					      local_flags, nodeid);
2468
		if (!freelist)
L
Linus Torvalds 已提交
2469 2470
			return NULL;
	} else {
2471 2472 2473
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2474
	}
2475

2476
	return freelist;
L
Linus Torvalds 已提交
2477 2478
}

2479
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2480
{
2481
	return ((freelist_idx_t *)page->freelist)[idx];
2482 2483 2484
}

static inline void set_free_obj(struct page *page,
2485
					unsigned int idx, freelist_idx_t val)
2486
{
2487
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2488 2489
}

2490
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2491
{
2492
#if DEBUG
L
Linus Torvalds 已提交
2493 2494 2495
	int i;

	for (i = 0; i < cachep->num; i++) {
2496
		void *objp = index_to_obj(cachep, page, i);
2497

L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504 2505
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2506 2507 2508
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2509
		 */
A
Alexander Potapenko 已提交
2510 2511 2512
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2513
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2514 2515 2516
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2517 2518 2519

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2520
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2521
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2522
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2523
		}
2524 2525 2526 2527 2528
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2529
	}
L
Linus Torvalds 已提交
2530
#endif
2531 2532
}

T
Thomas Garnier 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
		freelist_idx_t *list;
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
	get_random_bytes_arch(&rand, sizeof(rand));

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
	unsigned int objfreelist = 0, i, count = cachep->num;
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
		freelist_randomize(&state.rnd_state, page->freelist, count);
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2629 2630 2631 2632
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2633
	void *objp;
T
Thomas Garnier 已提交
2634
	bool shuffled;
2635 2636 2637

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2638 2639 2640 2641
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2642 2643 2644 2645
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2646 2647
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2648 2649 2650 2651 2652 2653
		if (DEBUG == 0 && cachep->ctor) {
			objp = index_to_obj(cachep, page, i);
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2654

T
Thomas Garnier 已提交
2655 2656
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2657 2658 2659
	}
}

2660
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2661
{
2662
	void *objp;
2663

2664
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2665
	page->active++;
2666

2667 2668 2669 2670 2671
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2672 2673 2674
	return objp;
}

2675 2676
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2677
{
2678
	unsigned int objnr = obj_to_index(cachep, page, objp);
2679
#if DEBUG
J
Joonsoo Kim 已提交
2680
	unsigned int i;
2681 2682

	/* Verify double free bug */
2683
	for (i = page->active; i < cachep->num; i++) {
2684
		if (get_free_obj(page, i) == objnr) {
2685
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2686
			       cachep->name, objp);
2687 2688
			BUG();
		}
2689 2690
	}
#endif
2691
	page->active--;
2692 2693 2694
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2695
	set_free_obj(page, page->active, objnr);
2696 2697
}

2698 2699 2700
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2701
 * virtual address for kfree, ksize, and slab debugging.
2702
 */
2703
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2704
			   void *freelist)
L
Linus Torvalds 已提交
2705
{
2706
	page->slab_cache = cache;
2707
	page->freelist = freelist;
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2714 2715
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2716
{
2717
	void *freelist;
P
Pekka Enberg 已提交
2718 2719
	size_t offset;
	gfp_t local_flags;
2720
	int page_node;
2721
	struct kmem_cache_node *n;
2722
	struct page *page;
L
Linus Torvalds 已提交
2723

A
Andrew Morton 已提交
2724 2725 2726
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2727
	 */
2728 2729 2730 2731
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2732
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2733 2734

	check_irq_off();
2735
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2736 2737
		local_irq_enable();

A
Andrew Morton 已提交
2738 2739 2740
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2741
	 */
2742
	page = kmem_getpages(cachep, local_flags, nodeid);
2743
	if (!page)
L
Linus Torvalds 已提交
2744 2745
		goto failed;

2746 2747
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2760
	/* Get slab management. */
2761
	freelist = alloc_slabmgmt(cachep, page, offset,
2762
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2763
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2764 2765
		goto opps1;

2766
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2767

A
Alexander Potapenko 已提交
2768
	kasan_poison_slab(page);
2769
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2770

2771
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2772 2773
		local_irq_disable();

2774 2775
	return page;

A
Andrew Morton 已提交
2776
opps1:
2777
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2778
failed:
2779
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2780
		local_irq_disable();
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
	if (!page->active)
		list_add_tail(&page->lru, &(n->slabs_free));
	else
		fixup_slab_list(cachep, n, page, &list);
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2819
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2820 2821
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2822 2823 2824
	}
}

2825 2826
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2827
	unsigned long long redzone1, redzone2;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2843 2844
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2845 2846
}

2847
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2848
				   unsigned long caller)
L
Linus Torvalds 已提交
2849 2850
{
	unsigned int objnr;
2851
	struct page *page;
L
Linus Torvalds 已提交
2852

2853 2854
	BUG_ON(virt_to_cache(objp) != cachep);

2855
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2856
	kfree_debugcheck(objp);
2857
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2858 2859

	if (cachep->flags & SLAB_RED_ZONE) {
2860
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2861 2862 2863
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2864 2865
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2866
		*dbg_userword(cachep, objp) = (void *)caller;
2867
	}
L
Linus Torvalds 已提交
2868

2869
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2870 2871

	BUG_ON(objnr >= cachep->num);
2872
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2873 2874 2875

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2876
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2901
static inline void fixup_slab_list(struct kmem_cache *cachep,
2902 2903
				struct kmem_cache_node *n, struct page *page,
				void **list)
2904 2905 2906
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2907
	if (page->active == cachep->num) {
2908
		list_add(&page->lru, &n->slabs_full);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2922 2923 2924
		list_add(&page->lru, &n->slabs_partial);
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2976 2977 2978
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2979 2980 2981
	return page;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

3034
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3035 3036
{
	int batchcount;
3037
	struct kmem_cache_node *n;
3038
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
3039
	int node;
3040
	void *list = NULL;
3041
	struct page *page;
P
Pekka Enberg 已提交
3042

L
Linus Torvalds 已提交
3043
	check_irq_off();
3044
	node = numa_mem_id();
3045

3046
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3047 3048
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3049 3050 3051 3052
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3053 3054 3055
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3056
	n = get_node(cachep, node);
3057

3058
	BUG_ON(ac->avail > 0 || !n);
3059 3060 3061 3062
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3063
	spin_lock(&n->list_lock);
3064
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3065

3066
	/* See if we can refill from the shared array */
3067 3068
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3069
		goto alloc_done;
3070
	}
3071

L
Linus Torvalds 已提交
3072 3073
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3074
		page = get_first_slab(n, false);
3075 3076
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3077 3078

		check_spinlock_acquired(cachep);
3079

3080
		batchcount = alloc_block(cachep, ac, page, batchcount);
3081
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3082 3083
	}

A
Andrew Morton 已提交
3084
must_grow:
3085
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3086
alloc_done:
3087
	spin_unlock(&n->list_lock);
3088
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3089

3090
direct_grow:
L
Linus Torvalds 已提交
3091
	if (unlikely(!ac->avail)) {
3092 3093 3094 3095 3096 3097 3098 3099
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3100
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3101

3102 3103 3104 3105
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3106
		ac = cpu_cache_get(cachep);
3107 3108 3109
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3110

3111
		if (!ac->avail)
L
Linus Torvalds 已提交
3112 3113 3114
			return NULL;
	}
	ac->touched = 1;
3115

3116
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3117 3118
}

A
Andrew Morton 已提交
3119 3120
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3121
{
3122
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3123 3124 3125
}

#if DEBUG
A
Andrew Morton 已提交
3126
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3127
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3128
{
P
Pekka Enberg 已提交
3129
	if (!objp)
L
Linus Torvalds 已提交
3130
		return objp;
P
Pekka Enberg 已提交
3131
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3132
		check_poison_obj(cachep, objp);
3133
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3134 3135 3136
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3137
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3138 3139

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3140 3141
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3142
			slab_error(cachep, "double free, or memory outside object was overwritten");
3143 3144 3145
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3146 3147 3148 3149
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3150

3151
	objp += obj_offset(cachep);
3152
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3153
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3154 3155
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3156
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3157
		       objp, (int)ARCH_SLAB_MINALIGN);
3158
	}
L
Linus Torvalds 已提交
3159 3160 3161 3162 3163 3164
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3165
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3166
{
P
Pekka Enberg 已提交
3167
	void *objp;
L
Linus Torvalds 已提交
3168 3169
	struct array_cache *ac;

3170
	check_irq_off();
3171

3172
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3173 3174
	if (likely(ac->avail)) {
		ac->touched = 1;
3175
		objp = ac->entry[--ac->avail];
3176

3177 3178
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3179
	}
3180 3181

	STATS_INC_ALLOCMISS(cachep);
3182
	objp = cache_alloc_refill(cachep, flags);
3183 3184 3185 3186 3187 3188 3189
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3190 3191 3192 3193 3194
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3195 3196
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3197 3198 3199
	return objp;
}

3200
#ifdef CONFIG_NUMA
3201
/*
3202
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3203 3204 3205 3206 3207 3208 3209 3210
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3211
	if (in_interrupt() || (flags & __GFP_THISNODE))
3212
		return NULL;
3213
	nid_alloc = nid_here = numa_mem_id();
3214
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3215
		nid_alloc = cpuset_slab_spread_node();
3216
	else if (current->mempolicy)
3217
		nid_alloc = mempolicy_slab_node();
3218
	if (nid_alloc != nid_here)
3219
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3220 3221 3222
	return NULL;
}

3223 3224
/*
 * Fallback function if there was no memory available and no objects on a
3225
 * certain node and fall back is permitted. First we scan all the
3226
 * available node for available objects. If that fails then we
3227 3228 3229
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3230
 */
3231
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3232
{
3233
	struct zonelist *zonelist;
3234
	struct zoneref *z;
3235 3236
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3237
	void *obj = NULL;
3238
	struct page *page;
3239
	int nid;
3240
	unsigned int cpuset_mems_cookie;
3241 3242 3243 3244

	if (flags & __GFP_THISNODE)
		return NULL;

3245
retry_cpuset:
3246
	cpuset_mems_cookie = read_mems_allowed_begin();
3247
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3248

3249 3250 3251 3252 3253
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3254 3255
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3256

3257
		if (cpuset_zone_allowed(zone, flags) &&
3258 3259
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3260
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3261
					gfp_exact_node(flags), nid);
3262 3263 3264
				if (obj)
					break;
		}
3265 3266
	}

3267
	if (!obj) {
3268 3269 3270 3271 3272 3273
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3274 3275 3276 3277
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3278 3279
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3280

3281
			/*
3282 3283
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3284
			 */
3285 3286
			if (!obj)
				goto retry;
3287
		}
3288
	}
3289

3290
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3291
		goto retry_cpuset;
3292 3293 3294
	return obj;
}

3295 3296
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3297
 */
3298
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3299
				int nodeid)
3300
{
3301
	struct page *page;
3302
	struct kmem_cache_node *n;
3303
	void *obj = NULL;
3304
	void *list = NULL;
P
Pekka Enberg 已提交
3305

3306
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3307
	n = get_node(cachep, nodeid);
3308
	BUG_ON(!n);
P
Pekka Enberg 已提交
3309

3310
	check_irq_off();
3311
	spin_lock(&n->list_lock);
3312
	page = get_first_slab(n, false);
3313 3314
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3315 3316 3317 3318 3319 3320 3321

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3322
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3323

3324
	obj = slab_get_obj(cachep, page);
3325
	n->free_objects--;
P
Pekka Enberg 已提交
3326

3327
	fixup_slab_list(cachep, n, page, &list);
3328

3329
	spin_unlock(&n->list_lock);
3330
	fixup_objfreelist_debug(cachep, &list);
3331
	return obj;
3332

A
Andrew Morton 已提交
3333
must_grow:
3334
	spin_unlock(&n->list_lock);
3335
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3336 3337 3338 3339
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3340
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3341

3342
	return obj ? obj : fallback_alloc(cachep, flags);
3343
}
3344 3345

static __always_inline void *
3346
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3347
		   unsigned long caller)
3348 3349 3350
{
	unsigned long save_flags;
	void *ptr;
3351
	int slab_node = numa_mem_id();
3352

3353
	flags &= gfp_allowed_mask;
3354 3355
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3356 3357
		return NULL;

3358 3359 3360
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3361
	if (nodeid == NUMA_NO_NODE)
3362
		nodeid = slab_node;
3363

3364
	if (unlikely(!get_node(cachep, nodeid))) {
3365 3366 3367 3368 3369
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3370
	if (nodeid == slab_node) {
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3387 3388
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3389

3390
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3391 3392 3393 3394 3395 3396 3397 3398
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3399
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3410 3411
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3427
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3428 3429 3430 3431
{
	unsigned long save_flags;
	void *objp;

3432
	flags &= gfp_allowed_mask;
3433 3434
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3435 3436
		return NULL;

3437 3438 3439 3440 3441 3442 3443
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3444 3445
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3446

3447
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3448 3449
	return objp;
}
3450 3451

/*
3452
 * Caller needs to acquire correct kmem_cache_node's list_lock
3453
 * @list: List of detached free slabs should be freed by caller
3454
 */
3455 3456
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3457 3458
{
	int i;
3459
	struct kmem_cache_node *n = get_node(cachep, node);
3460 3461 3462
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3463 3464

	for (i = 0; i < nr_objects; i++) {
3465
		void *objp;
3466
		struct page *page;
L
Linus Torvalds 已提交
3467

3468 3469
		objp = objpp[i];

3470 3471
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3472
		check_spinlock_acquired_node(cachep, node);
3473
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3474 3475 3476
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3477 3478 3479
		if (page->active == 0)
			list_add(&page->lru, &n->slabs_free);
		else {
L
Linus Torvalds 已提交
3480 3481 3482 3483
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3484
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3485 3486
		}
	}
3487 3488 3489 3490 3491 3492 3493 3494

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
		list_del(&page->lru);
		list_add(&page->lru, list);
	}
L
Linus Torvalds 已提交
3495 3496
}

3497
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3498 3499
{
	int batchcount;
3500
	struct kmem_cache_node *n;
3501
	int node = numa_mem_id();
3502
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3503 3504

	batchcount = ac->batchcount;
3505

L
Linus Torvalds 已提交
3506
	check_irq_off();
3507
	n = get_node(cachep, node);
3508 3509 3510
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3511
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3512 3513 3514
		if (max) {
			if (batchcount > max)
				batchcount = max;
3515
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3516
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3522
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3523
free_done:
L
Linus Torvalds 已提交
3524 3525 3526
#if STATS
	{
		int i = 0;
3527
		struct page *page;
L
Linus Torvalds 已提交
3528

3529
		list_for_each_entry(page, &n->slabs_free, lru) {
3530
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3537
	spin_unlock(&n->list_lock);
3538
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3539
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3540
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3541 3542 3543
}

/*
A
Andrew Morton 已提交
3544 3545
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3546
 */
3547
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3548
				unsigned long caller)
L
Linus Torvalds 已提交
3549
{
3550
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3551

A
Alexander Potapenko 已提交
3552 3553
	kasan_slab_free(cachep, objp);

L
Linus Torvalds 已提交
3554
	check_irq_off();
3555
	kmemleak_free_recursive(objp, cachep->flags);
3556
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3557

3558
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3559

3560 3561 3562 3563 3564 3565 3566
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3567
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3568 3569
		return;

3570
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3571 3572 3573 3574 3575
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3597
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3598
{
3599
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3600

3601
	kasan_slab_alloc(cachep, ret, flags);
3602
	trace_kmem_cache_alloc(_RET_IP_, ret,
3603
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3604 3605

	return ret;
L
Linus Torvalds 已提交
3606 3607 3608
}
EXPORT_SYMBOL(kmem_cache_alloc);

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3619
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3620
			  void **p)
3621
{
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3640 3641
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3652
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3653 3654 3655
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3656 3657 3658
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3659
#ifdef CONFIG_TRACING
3660
void *
3661
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3662
{
3663 3664
	void *ret;

3665
	ret = slab_alloc(cachep, flags, _RET_IP_);
3666

3667
	kasan_kmalloc(cachep, ret, size, flags);
3668
	trace_kmalloc(_RET_IP_, ret,
3669
		      size, cachep->size, flags);
3670
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3671
}
3672
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3673 3674
#endif

L
Linus Torvalds 已提交
3675
#ifdef CONFIG_NUMA
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3687 3688
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3689
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3690

3691
	kasan_slab_alloc(cachep, ret, flags);
3692
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3693
				    cachep->object_size, cachep->size,
3694
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3695 3696

	return ret;
3697
}
L
Linus Torvalds 已提交
3698 3699
EXPORT_SYMBOL(kmem_cache_alloc_node);

3700
#ifdef CONFIG_TRACING
3701
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3702
				  gfp_t flags,
3703 3704
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3705
{
3706 3707
	void *ret;

3708
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3709 3710

	kasan_kmalloc(cachep, ret, size, flags);
3711
	trace_kmalloc_node(_RET_IP_, ret,
3712
			   size, cachep->size,
3713 3714
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3715
}
3716
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3717 3718
#endif

3719
static __always_inline void *
3720
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3721
{
3722
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3723
	void *ret;
3724

3725
	cachep = kmalloc_slab(size, flags);
3726 3727
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3728
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3729
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3730 3731

	return ret;
3732
}
3733 3734 3735

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3736
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3737
}
3738
EXPORT_SYMBOL(__kmalloc_node);
3739 3740

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3741
		int node, unsigned long caller)
3742
{
3743
	return __do_kmalloc_node(size, flags, node, caller);
3744 3745 3746
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3747 3748

/**
3749
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3750
 * @size: how many bytes of memory are required.
3751
 * @flags: the type of memory to allocate (see kmalloc).
3752
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3753
 */
3754
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3755
					  unsigned long caller)
L
Linus Torvalds 已提交
3756
{
3757
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3758
	void *ret;
L
Linus Torvalds 已提交
3759

3760
	cachep = kmalloc_slab(size, flags);
3761 3762
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3763
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3764

3765
	kasan_kmalloc(cachep, ret, size, flags);
3766
	trace_kmalloc(caller, ret,
3767
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3768 3769

	return ret;
3770 3771 3772 3773
}

void *__kmalloc(size_t size, gfp_t flags)
{
3774
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3775 3776 3777
}
EXPORT_SYMBOL(__kmalloc);

3778
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3779
{
3780
	return __do_kmalloc(size, flags, caller);
3781 3782
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3783

L
Linus Torvalds 已提交
3784 3785 3786 3787 3788 3789 3790 3791
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3792
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3793 3794
{
	unsigned long flags;
3795 3796 3797
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3798 3799

	local_irq_save(flags);
3800
	debug_check_no_locks_freed(objp, cachep->object_size);
3801
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3802
		debug_check_no_obj_freed(objp, cachep->object_size);
3803
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3804
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3805

3806
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3807 3808 3809
}
EXPORT_SYMBOL(kmem_cache_free);

3810 3811 3812 3813 3814 3815 3816 3817 3818
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3819 3820 3821 3822
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3836 3837 3838 3839
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3840 3841
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3842 3843 3844 3845 3846
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3847
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3848 3849
	unsigned long flags;

3850 3851
	trace_kfree(_RET_IP_, objp);

3852
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3853 3854 3855
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3856
	c = virt_to_cache(objp);
3857 3858 3859
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3860
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3861 3862 3863 3864
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3865
/*
3866
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3867
 */
3868
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3869
{
3870
	int ret;
3871
	int node;
3872
	struct kmem_cache_node *n;
3873

3874
	for_each_online_node(node) {
3875 3876
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3877 3878 3879
			goto fail;

	}
3880

3881
	return 0;
3882

A
Andrew Morton 已提交
3883
fail:
3884
	if (!cachep->list.next) {
3885 3886 3887
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3888 3889
			n = get_node(cachep, node);
			if (n) {
3890 3891 3892
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3893
				cachep->node[node] = NULL;
3894 3895 3896 3897
			}
			node--;
		}
	}
3898
	return -ENOMEM;
3899 3900
}

3901
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3902
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3904
{
3905 3906
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3907

3908 3909
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3910 3911
		return -ENOMEM;

3912 3913 3914
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3915

L
Linus Torvalds 已提交
3916 3917 3918
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3919
	cachep->shared = shared;
L
Linus Torvalds 已提交
3920

3921
	if (!prev)
3922
		goto setup_node;
3923 3924

	for_each_online_cpu(cpu) {
3925
		LIST_HEAD(list);
3926 3927
		int node;
		struct kmem_cache_node *n;
3928
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3929

3930
		node = cpu_to_mem(cpu);
3931 3932
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3933
		free_block(cachep, ac->entry, ac->avail, node, &list);
3934
		spin_unlock_irq(&n->list_lock);
3935
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3936
	}
3937 3938
	free_percpu(prev);

3939 3940
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3941 3942
}

G
Glauber Costa 已提交
3943 3944 3945 3946
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3947
	struct kmem_cache *c;
G
Glauber Costa 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3957 3958 3959 3960
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3961 3962 3963 3964 3965
	}

	return ret;
}

3966
/* Called with slab_mutex held always */
3967
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3968 3969
{
	int err;
G
Glauber Costa 已提交
3970 3971 3972 3973
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

T
Thomas Garnier 已提交
3974 3975 3976 3977
	err = cache_random_seq_create(cachep, gfp);
	if (err)
		goto end;

G
Glauber Costa 已提交
3978 3979 3980 3981 3982 3983
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3984

G
Glauber Costa 已提交
3985 3986
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3987 3988
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3989 3990
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3991
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3992 3993 3994 3995
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3996
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3997
		limit = 1;
3998
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3999
		limit = 8;
4000
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4001
		limit = 24;
4002
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4003 4004 4005 4006
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4007 4008
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4009 4010 4011 4012 4013 4014 4015 4016
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4017
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4018 4019 4020
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4021 4022 4023
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4024 4025 4026 4027
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4028 4029 4030
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
4031
end:
L
Linus Torvalds 已提交
4032
	if (err)
4033
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4034
		       cachep->name, -err);
4035
	return err;
L
Linus Torvalds 已提交
4036 4037
}

4038
/*
4039 4040
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4041
 * if drain_array() is used on the shared array.
4042
 */
4043
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4044
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4045
{
4046
	LIST_HEAD(list);
4047 4048 4049

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4050

4051 4052
	if (!ac || !ac->avail)
		return;
4053 4054

	if (ac->touched) {
L
Linus Torvalds 已提交
4055
		ac->touched = 0;
4056
		return;
L
Linus Torvalds 已提交
4057
	}
4058 4059 4060 4061 4062 4063

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4064 4065 4066 4067
}

/**
 * cache_reap - Reclaim memory from caches.
4068
 * @w: work descriptor
L
Linus Torvalds 已提交
4069 4070 4071 4072 4073 4074
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4075 4076
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4077
 */
4078
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4079
{
4080
	struct kmem_cache *searchp;
4081
	struct kmem_cache_node *n;
4082
	int node = numa_mem_id();
4083
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4084

4085
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4086
		/* Give up. Setup the next iteration. */
4087
		goto out;
L
Linus Torvalds 已提交
4088

4089
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4090 4091
		check_irq_on();

4092
		/*
4093
		 * We only take the node lock if absolutely necessary and we
4094 4095 4096
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4097
		n = get_node(searchp, node);
4098

4099
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4100

4101
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4102

4103 4104 4105 4106
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4107
		if (time_after(n->next_reap, jiffies))
4108
			goto next;
L
Linus Torvalds 已提交
4109

4110
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4111

4112
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4113

4114 4115
		if (n->free_touched)
			n->free_touched = 0;
4116 4117
		else {
			int freed;
L
Linus Torvalds 已提交
4118

4119
			freed = drain_freelist(searchp, n, (n->free_limit +
4120 4121 4122
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4123
next:
L
Linus Torvalds 已提交
4124 4125 4126
		cond_resched();
	}
	check_irq_on();
4127
	mutex_unlock(&slab_mutex);
4128
	next_reap_node();
4129
out:
A
Andrew Morton 已提交
4130
	/* Set up the next iteration */
4131
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4132 4133
}

4134
#ifdef CONFIG_SLABINFO
4135
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4136
{
4137
	struct page *page;
P
Pekka Enberg 已提交
4138 4139 4140 4141
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4142
	const char *name;
L
Linus Torvalds 已提交
4143
	char *error = NULL;
4144
	int node;
4145
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4146 4147 4148

	active_objs = 0;
	num_slabs = 0;
4149
	for_each_kmem_cache_node(cachep, node, n) {
4150

4151
		check_irq_on();
4152
		spin_lock_irq(&n->list_lock);
4153

4154 4155
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4156 4157 4158 4159
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4160 4161
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4162
				error = "slabs_partial accounting error";
4163
			if (!page->active && !error)
4164
				error = "slabs_partial accounting error";
4165
			active_objs += page->active;
4166 4167
			active_slabs++;
		}
4168 4169
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4170
				error = "slabs_free accounting error";
4171 4172
			num_slabs++;
		}
4173 4174 4175
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4176

4177
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4178
	}
P
Pekka Enberg 已提交
4179 4180
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4181
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4182 4183
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4184
	name = cachep->name;
L
Linus Torvalds 已提交
4185
	if (error)
4186
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4202
#if STATS
4203
	{			/* node stats */
L
Linus Torvalds 已提交
4204 4205 4206 4207 4208 4209 4210
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4211
		unsigned long node_frees = cachep->node_frees;
4212
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4213

J
Joe Perches 已提交
4214
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4215 4216 4217
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4227
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4240
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4241
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4242
{
P
Pekka Enberg 已提交
4243
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4244
	int limit, batchcount, shared, res;
4245
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4246

L
Linus Torvalds 已提交
4247 4248 4249 4250
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4251
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4262
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4263
	res = -EINVAL;
4264
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4265
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4266 4267
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4268
				res = 0;
L
Linus Torvalds 已提交
4269
			} else {
4270
				res = do_tune_cpucache(cachep, limit,
4271 4272
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4273 4274 4275 4276
			}
			break;
		}
	}
4277
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4278 4279 4280 4281
	if (res >= 0)
		res = count;
	return res;
}
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4315 4316
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4317 4318
{
	void *p;
4319 4320
	int i, j;
	unsigned long v;
4321

4322 4323
	if (n[0] == n[1])
		return;
4324
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4335
			continue;
4336

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4347 4348 4349 4350 4351 4352 4353 4354
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4355
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4356

4357
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4358
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4359
		if (modname[0])
4360 4361 4362 4363 4364 4365 4366 4367 4368
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4369
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4370
	struct page *page;
4371
	struct kmem_cache_node *n;
4372
	const char *name;
4373
	unsigned long *x = m->private;
4374 4375 4376 4377 4378 4379 4380 4381
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4393

4394
		for_each_kmem_cache_node(cachep, node, n) {
4395

4396 4397
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4398

4399 4400 4401 4402 4403 4404 4405
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4406 4407

	name = cachep->name;
4408
	if (x[0] == x[1]) {
4409
		/* Increase the buffer size */
4410
		mutex_unlock(&slab_mutex);
4411
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4412 4413
		if (!m->private) {
			/* Too bad, we are really out */
4414
			m->private = x;
4415
			mutex_lock(&slab_mutex);
4416 4417
			return -ENOMEM;
		}
4418 4419
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4420
		mutex_lock(&slab_mutex);
4421 4422 4423 4424
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4425 4426 4427
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4428 4429
		seq_putc(m, '\n');
	}
4430

4431 4432 4433
	return 0;
}

4434
static const struct seq_operations slabstats_op = {
4435
	.start = slab_start,
4436 4437
	.next = slab_next,
	.stop = slab_stop,
4438 4439
	.show = leaks_show,
};
4440 4441 4442

static int slabstats_open(struct inode *inode, struct file *file)
{
4443 4444 4445 4446 4447 4448 4449 4450 4451
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4466
#endif
4467 4468 4469
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4470 4471
#endif

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4484
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4485
{
A
Alexander Potapenko 已提交
4486 4487
	size_t size;

4488 4489
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4490
		return 0;
L
Linus Torvalds 已提交
4491

A
Alexander Potapenko 已提交
4492 4493 4494 4495
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4496
	kasan_krealloc(objp, size, GFP_NOWAIT);
A
Alexander Potapenko 已提交
4497 4498

	return size;
L
Linus Torvalds 已提交
4499
}
K
Kirill A. Shutemov 已提交
4500
EXPORT_SYMBOL(ksize);