sec_crypto.c 63.6 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
5
#include <crypto/aead.h>
6
#include <crypto/algapi.h>
7
#include <crypto/authenc.h>
8
#include <crypto/des.h>
9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
11
#include <crypto/internal/des.h>
12 13
#include <crypto/sha1.h>
#include <crypto/sha2.h>
14 15 16 17 18 19 20 21 22 23 24
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25
#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 27 28 29 30 31 32 33 34 35 36 37
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
38 39 40 41
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

42 43 44
#define SEC_DE_OFFSET_V3		9
#define SEC_SCENE_OFFSET_V3	5
#define SEC_CKEY_OFFSET_V3	13
45 46
#define SEC_CTR_CNT_OFFSET	25
#define SEC_CTR_CNT_ROLLOVER	2
47 48 49 50 51 52 53 54
#define SEC_SRC_SGL_OFFSET_V3	11
#define SEC_DST_SGL_OFFSET_V3	14
#define SEC_CALG_OFFSET_V3	4
#define SEC_AKEY_OFFSET_V3	9
#define SEC_MAC_OFFSET_V3	4
#define SEC_AUTH_ALG_OFFSET_V3	15
#define SEC_CIPHER_AUTH_V3	0xbf
#define SEC_AUTH_CIPHER_V3	0x40
55 56 57 58
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001
59
#define SEC_ICV_MASK		0x000E
60
#define SEC_SQE_LEN_RATE_MASK	0x3
61 62 63

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
64 65 66
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
67
#define SEC_MAX_AAD_LEN		65535
68
#define SEC_MAX_CCM_AAD_LEN	65279
69
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
70 71 72 73 74 75 76 77 78 79 80 81 82

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

83
#define SEC_SQE_LEN_RATE	4
84
#define SEC_SQE_CFLAG		2
85
#define SEC_SQE_AEAD_FLAG	3
86
#define SEC_SQE_DONE		0x1
87
#define SEC_ICV_ERR		0x2
88 89
#define MIN_MAC_LEN		4
#define MAC_LEN_MASK		0x1U
90 91 92
#define MAX_INPUT_DATA_LEN	0xFFFE00
#define BITS_MASK		0xFF
#define BYTE_BITS		0x8
93
#define SEC_XTS_NAME_SZ		0x3
94 95 96 97 98 99 100 101 102 103 104 105
#define IV_CM_CAL_NUM		2
#define IV_CL_MASK		0x7
#define IV_CL_MIN		2
#define IV_CL_MID		4
#define IV_CL_MAX		8
#define IV_FLAGS_OFFSET	0x6
#define IV_CM_OFFSET		0x3
#define IV_LAST_BYTE1		1
#define IV_LAST_BYTE2		2
#define IV_LAST_BYTE_MASK	0xFF
#define IV_CTR_INIT		0x1
#define IV_BYTE_OFFSET		0x8
106 107

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
108
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
109 110 111 112 113 114 115 116 117
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

118
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
135
	if (unlikely(req_id < 0)) {
136
		dev_err(req->ctx->dev, "alloc req id fail!\n");
137 138 139 140 141
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
142

143 144 145 146 147 148 149 150
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

151
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
152
		dev_err(req->ctx->dev, "free request id invalid!\n");
153 154 155 156 157 158 159 160 161 162 163
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

164 165 166 167 168
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
	struct sec_sqe *bd = resp;

	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
169
	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
170 171 172 173 174 175 176 177 178 179 180 181 182
	status->flag = (le16_to_cpu(bd->type2.done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le16_to_cpu(bd->type2.tag);
	status->err_type = bd->type2.error_type;

	return bd->type_cipher_auth & SEC_TYPE_MASK;
}

static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
	struct sec_sqe3 *bd3 = resp;

	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
183
	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	status->flag = (le16_to_cpu(bd3->done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le64_to_cpu(bd3->tag);
	status->err_type = bd3->error_type;

	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}

static int sec_cb_status_check(struct sec_req *req,
			       struct bd_status *status)
{
	struct sec_ctx *ctx = req->ctx;

	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
				    req->err_type, status->done);
		return -EIO;
	}

	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
					    status->flag);
			return -EIO;
		}
209 210 211 212 213 214 215 216
	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
			     status->icv == SEC_ICV_ERR)) {
			dev_err_ratelimited(ctx->dev,
					    "flag[%u], icv[%u]\n",
					    status->flag, status->icv);
			return -EBADMSG;
		}
217 218 219 220 221
	}

	return 0;
}

222 223 224
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
225
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
226 227
	u8 type_supported = qp_ctx->ctx->type_supported;
	struct bd_status status;
228 229
	struct sec_ctx *ctx;
	struct sec_req *req;
230
	int err;
231 232
	u8 type;

233 234 235 236 237 238 239 240 241
	if (type_supported == SEC_BD_TYPE2) {
		type = pre_parse_finished_bd(&status, resp);
		req = qp_ctx->req_list[status.tag];
	} else {
		type = pre_parse_finished_bd3(&status, resp);
		req = (void *)(uintptr_t)status.tag;
	}

	if (unlikely(type != type_supported)) {
242
		atomic64_inc(&dfx->err_bd_cnt);
243 244 245 246
		pr_err("err bd type [%d]\n", type);
		return;
	}

247 248
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
249
		atomic_inc(&qp->qp_status.used);
250 251
		return;
	}
252 253

	req->err_type = status.err_type;
254
	ctx = req->ctx;
255 256
	err = sec_cb_status_check(req, &status);
	if (err)
257
		atomic64_inc(&dfx->done_flag_cnt);
258

259
	atomic64_inc(&dfx->recv_cnt);
260

261 262
	ctx->req_op->buf_unmap(ctx, req);

263
	ctx->req_op->callback(ctx, req, err);
264 265 266 267 268 269 270
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

271 272 273 274 275
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

276 277
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
278 279 280 281 282 283 284 285 286

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
287 288
	mutex_unlock(&qp_ctx->req_lock);

289
	if (unlikely(ret == -EBUSY))
290 291
		return -ENOBUFS;

292 293 294
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
295 296 297 298 299
	}

	return ret;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->a_ivin_dma, GFP_KERNEL);
	if (!res->a_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->a_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->a_ivin, res->a_ivin_dma);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
415

416 417 418
	return 0;
}

419 420 421
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
422
	struct sec_alg_res *res = qp_ctx->res;
423
	struct device *dev = ctx->dev;
424 425 426 427 428
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
429

430
	if (ctx->alg_type == SEC_AEAD) {
431 432 433 434
		ret = sec_alloc_aiv_resource(dev, res);
		if (ret)
			goto alloc_aiv_fail;

435 436
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
437
			goto alloc_mac_fail;
438
	}
439 440 441 442
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
443
			goto alloc_pbuf_fail;
444 445
		}
	}
446 447

	return 0;
448

449 450 451
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
452 453 454 455
alloc_mac_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
456 457
	sec_free_civ_resource(dev, res);
	return ret;
458 459 460 461 462
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
463
	struct device *dev = ctx->dev;
464 465

	sec_free_civ_resource(dev, qp_ctx->res);
466

467 468
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
469 470
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
471 472
}

473 474 475
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
476
	struct device *dev = ctx->dev;
477 478 479 480 481
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
482
	qp = ctx->qps[qp_ctx_id];
483 484 485 486 487
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

488 489
	qp->req_cb = sec_req_cb;

490 491
	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
492
	INIT_LIST_HEAD(&qp_ctx->backlog);
493 494 495

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
496
	if (IS_ERR(qp_ctx->c_in_pool)) {
497
		dev_err(dev, "fail to create sgl pool for input!\n");
498
		goto err_destroy_idr;
499 500 501 502
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
503
	if (IS_ERR(qp_ctx->c_out_pool)) {
504 505 506 507
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

508
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
509 510 511 512 513 514 515 516 517 518
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
519
	sec_alg_resource_free(ctx, qp_ctx);
520 521 522 523 524 525 526 527 528 529 530 531
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
532
	struct device *dev = ctx->dev;
533 534

	hisi_qm_stop_qp(qp_ctx->qp);
535
	sec_alg_resource_free(ctx, qp_ctx);
536 537 538 539 540 541 542

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

543
static int sec_ctx_base_init(struct sec_ctx *ctx)
544 545 546 547
{
	struct sec_dev *sec;
	int i, ret;

548 549 550
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
551 552
		return -ENODEV;
	}
553 554

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
555
	ctx->sec = sec;
556
	ctx->dev = &sec->qm.pdev->dev;
557
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
558

559 560
	ctx->pbuf_supported = ctx->sec->iommu_used;

561
	/* Half of queue depth is taken as fake requests limit in the queue. */
562
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
563 564
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
565 566 567 568
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
569 570

	for (i = 0; i < sec->ctx_q_num; i++) {
571
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
572 573 574 575 576
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
577

578 579 580 581
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
	kfree(ctx->qp_ctx);
582 583
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
584 585 586
	return ret;
}

587
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
588
{
589
	int i;
590 591 592 593

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

594
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
595 596 597
	kfree(ctx->qp_ctx);
}

598 599 600 601
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

602
	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
603 604 605 606 607 608 609 610 611 612 613 614
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
615
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
616 617 618
			  c_ctx->c_key, c_ctx->c_key_dma);
}

619 620 621 622
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

623
	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
624 625 626 627 628 629 630 631 632 633 634 635
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
636
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
637 638 639
			  a_ctx->a_key, a_ctx->a_key_dma);
}

640 641 642 643 644 645 646
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
	const char *alg = crypto_tfm_alg_name(&tfm->base);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->fallback = false;
647 648

	/* Currently, only XTS mode need fallback tfm when using 192bit key */
649 650 651 652 653 654
	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
		return 0;

	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
						  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(c_ctx->fbtfm)) {
655
		pr_err("failed to alloc xts mode fallback tfm!\n");
656 657 658 659 660 661
		return PTR_ERR(c_ctx->fbtfm);
	}

	return 0;
}

662 663 664 665 666
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

667
	ctx->alg_type = SEC_SKCIPHER;
668 669 670
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
671
		pr_err("get error skcipher iv size!\n");
672 673 674 675 676 677 678 679 680 681 682
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

683 684 685 686
	ret = sec_skcipher_fbtfm_init(tfm);
	if (ret)
		goto err_fbtfm_init;

687
	return 0;
688

689 690
err_fbtfm_init:
	sec_cipher_uninit(ctx);
691 692 693 694 695 696 697 698 699
err_cipher_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

700 701 702
	if (ctx->c_ctx.fbtfm)
		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);

703 704 705 706
	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

707
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
708 709 710
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
711 712 713 714 715 716 717 718
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	ret = verify_skcipher_des3_key(tfm, key);
	if (ret)
		return ret;

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
742 743 744
		case SEC_XTS_MID_KEY_SIZE:
			c_ctx->fallback = true;
			break;
745 746 747 748 749 750 751 752
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
753 754 755
		if (c_ctx->c_alg == SEC_CALG_SM4 &&
		    keylen != AES_KEYSIZE_128) {
			pr_err("hisi_sec2: sm4 key error!\n");
756
			return -EINVAL;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		} else {
			switch (keylen) {
			case AES_KEYSIZE_128:
				c_ctx->c_key_len = SEC_CKEY_128BIT;
				break;
			case AES_KEYSIZE_192:
				c_ctx->c_key_len = SEC_CKEY_192BIT;
				break;
			case AES_KEYSIZE_256:
				c_ctx->c_key_len = SEC_CKEY_256BIT;
				break;
			default:
				pr_err("hisi_sec2: aes key error!\n");
				return -EINVAL;
			}
772 773 774 775 776 777 778 779 780 781 782 783
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
784
	struct device *dev = ctx->dev;
785 786 787 788 789
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
790
			dev_err(dev, "xts mode key err!\n");
791 792 793 794 795 796 797 798 799
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
800
		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
801 802 803 804 805 806 807 808 809 810
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
811
		dev_err(dev, "set sec key err!\n");
812 813 814 815
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);
816
	if (c_ctx->fallback && c_ctx->fbtfm) {
817 818 819 820 821 822
		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
		if (ret) {
			dev_err(dev, "failed to set fallback skcipher key!\n");
			return ret;
		}
	}
823 824 825 826 827 828 829 830 831 832 833 834 835
	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
836 837 838
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
839 840 841 842
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
843 844 845
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
846

847 848 849
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
850 851
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aead_req = a_req->aead_req;
852 853
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
854
	struct device *dev = ctx->dev;
855 856
	int copy_size, pbuf_length;
	int req_id = req->req_id;
857 858 859
	struct crypto_aead *tfm;
	size_t authsize;
	u8 *mac_offset;
860 861 862 863 864 865 866

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
867
			qp_ctx->res[req_id].pbuf, copy_size);
868 869 870 871
	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}
872 873 874 875 876 877
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		tfm = crypto_aead_reqtfm(aead_req);
		authsize = crypto_aead_authsize(tfm);
		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
		memcpy(a_req->out_mac, mac_offset, authsize);
	}
878

879 880
	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
	c_req->c_out_dma = req->in_dma;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
900
			qp_ctx->res[req_id].pbuf, copy_size);
901
	if (unlikely(pbuf_length != copy_size))
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
}

static int sec_aead_mac_init(struct sec_aead_req *req)
{
	struct aead_request *aead_req = req->aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	u8 *mac_out = req->out_mac;
	struct scatterlist *sgl = aead_req->src;
	size_t copy_size;
	off_t skip_size;

	/* Copy input mac */
	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
				       authsize, skip_size);
	if (unlikely(copy_size != authsize))
		return -EINVAL;

	return 0;
923 924
}

925
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
926
			  struct scatterlist *src, struct scatterlist *dst)
927 928
{
	struct sec_cipher_req *c_req = &req->c_req;
929
	struct sec_aead_req *a_req = &req->aead_req;
930
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
931
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
932
	struct device *dev = ctx->dev;
933 934 935 936 937 938
	int ret;

	if (req->use_pbuf) {
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
939 940
			a_req->a_ivin = res->a_ivin;
			a_req->a_ivin_dma = res->a_ivin_dma;
941 942 943 944
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
945
		ret = sec_cipher_pbuf_map(ctx, req, src);
946

947 948
		return ret;
	}
949 950 951
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
952 953
		a_req->a_ivin = res->a_ivin;
		a_req->a_ivin_dma = res->a_ivin_dma;
954 955 956
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
957

958 959 960 961 962
	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						qp_ctx->c_in_pool,
						req->req_id,
						&req->in_dma);
	if (IS_ERR(req->in)) {
963
		dev_err(dev, "fail to dma map input sgl buffers!\n");
964
		return PTR_ERR(req->in);
965 966
	}

967 968 969 970 971 972 973
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		ret = sec_aead_mac_init(a_req);
		if (unlikely(ret)) {
			dev_err(dev, "fail to init mac data for ICV!\n");
			return ret;
		}
	}
974

975
	if (dst == src) {
976 977
		c_req->c_out = req->in;
		c_req->c_out_dma = req->in_dma;
978 979 980 981 982 983 984 985
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
986
			hisi_acc_sg_buf_unmap(dev, src, req->in);
987 988 989 990 991 992 993
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

994
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
995 996
			     struct scatterlist *src, struct scatterlist *dst)
{
997
	struct sec_cipher_req *c_req = &req->c_req;
998
	struct device *dev = ctx->dev;
999

1000 1001 1002 1003
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
1004
			hisi_acc_sg_buf_unmap(dev, src, req->in);
1005

1006 1007
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
1008 1009
}

1010 1011
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
1012
	struct skcipher_request *sq = req->c_req.sk_req;
1013

1014
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1015 1016 1017 1018
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
1019
	struct skcipher_request *sq = req->c_req.sk_req;
1020

1021
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1050
	int blocksize, digestsize, ret;
1051 1052 1053 1054 1055 1056 1057

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
1058
	digestsize = crypto_shash_digestsize(hash_tfm);
1059
	if (keys->authkeylen > blocksize) {
1060 1061
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
1062
		if (ret) {
1063
			pr_err("hisi_sec2: aead auth digest error!\n");
1064 1065
			return -EINVAL;
		}
1066
		ctx->a_key_len = digestsize;
1067 1068 1069 1070 1071 1072 1073 1074
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	if (unlikely(a_ctx->fallback_aead_tfm))
		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);

	return 0;
}

static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
				    struct crypto_aead *tfm, const u8 *key,
				    unsigned int keylen)
{
	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}

1097 1098 1099 1100 1101 1102 1103 1104
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1105
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1106
	struct device *dev = ctx->dev;
1107 1108 1109 1110 1111 1112 1113 1114
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

1115 1116 1117 1118 1119 1120 1121 1122
	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		if (ret) {
			dev_err(dev, "set sec aes ccm cipher key err!\n");
			return ret;
		}
		memcpy(c_ctx->c_key, key, keylen);

1123 1124 1125 1126 1127 1128
		if (unlikely(a_ctx->fallback_aead_tfm)) {
			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
			if (ret)
				return ret;
		}

1129 1130 1131
		return 0;
	}

1132 1133 1134 1135 1136
	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
1137
		dev_err(dev, "set sec cipher key err!\n");
1138 1139 1140 1141 1142
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
1143
		dev_err(dev, "set sec auth key err!\n");
1144 1145 1146
		goto bad_key;
	}

1147 1148 1149 1150 1151 1152
	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
		dev_err(dev, "MAC or AUTH key length error!\n");
		goto bad_key;
	}

1153
	return 0;
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1174 1175 1176 1177 1178 1179 1180 1181
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1182 1183 1184 1185 1186

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1187
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1188 1189 1190 1191 1192 1193
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1194
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1195 1196
}

1197 1198 1199 1200 1201
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
1202
	if (unlikely(ret))
1203 1204 1205 1206 1207
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
1208
	if (unlikely(ret))
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);
	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
1226
	struct sec_cipher_req *c_req = &req->c_req;
1227

1228
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1229 1230 1231 1232 1233 1234 1235 1236 1237
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
1238
	u8 de = 0;
1239 1240 1241 1242

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1243
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1244
	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1260 1261
	/* Set destination and source address type */
	if (req->use_pbuf) {
1262
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1263 1264
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	} else {
1265
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1266 1267 1268 1269
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	}

	sec_sqe->sdm_addr_type |= da_type;
1270
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1271
	if (req->in_dma != c_req->c_out_dma)
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	u32 bd_param = 0;
	u16 cipher;

	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));

	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1294
	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
						c_ctx->c_mode;
	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET_V3);

	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC;
	else
		cipher = SEC_CIPHER_DEC;
	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);

1308 1309 1310 1311
	/* Set the CTR counter mode is 128bit rollover */
	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
					SEC_CTR_CNT_OFFSET);

1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (req->use_pbuf) {
		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
	} else {
		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
	}

	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1321
	if (req->in_dma != c_req->c_out_dma)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		bd_param |= 0x1 << SEC_DE_OFFSET_V3;

	bd_param |= SEC_BD_TYPE3;
	sec_sqe3->bd_param = cpu_to_le32(bd_param);

	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
	sec_sqe3->tag = cpu_to_le64(req);

	return 0;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
	do {
		--bits;
		nums += counter[bits];
		counter[bits] = nums & BITS_MASK;
		nums >>= BYTE_BITS;
	} while (bits && nums);
}

1344
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1345
{
1346
	struct aead_request *aead_req = req->aead_req.aead_req;
1347 1348 1349
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1350
	unsigned int cryptlen;
1351
	size_t sz;
1352
	u8 *iv;
1353 1354

	if (req->c_req.encrypt)
1355
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1356
	else
1357 1358 1359 1360 1361 1362 1363 1364 1365
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
					cryptlen - iv_size);
		if (unlikely(sz != iv_size))
			dev_err(req->ctx->dev, "copy output iv error!\n");
	} else {
		sz = cryptlen / iv_size;
		if (cryptlen % iv_size)
			sz += 1;
		ctr_iv_inc(iv, iv_size, sz);
	}
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1398 1399
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1400 1401 1402
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1403 1404
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1405 1406 1407

	sec_free_req_id(req);

1408 1409 1410
	/* IV output at encrypto of CBC/CTR mode */
	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1411
		sec_update_iv(req, SEC_SKCIPHER);
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1424
	sk_req->base.complete(&sk_req->base, err);
1425 1426
}

1427
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1428 1429
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1430
	struct sec_cipher_req *c_req = &req->c_req;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	struct sec_aead_req *a_req = &req->aead_req;
	size_t authsize = ctx->a_ctx.mac_len;
	u32 data_size = aead_req->cryptlen;
	u8 flage = 0;
	u8 cm, cl;

	/* the specification has been checked in aead_iv_demension_check() */
	cl = c_req->c_ivin[0] + 1;
	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;

	/* the last 3bit is L' */
	flage |= c_req->c_ivin[0] & IV_CL_MASK;

	/* the M' is bit3~bit5, the Flags is bit6 */
	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
	flage |= cm << IV_CM_OFFSET;
	if (aead_req->assoclen)
		flage |= 0x01 << IV_FLAGS_OFFSET;

	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
	a_req->a_ivin[0] = flage;

	/*
	 * the last 32bit is counter's initial number,
	 * but the nonce uses the first 16bit
	 * the tail 16bit fill with the cipher length
	 */
	if (!c_req->encrypt)
		data_size = aead_req->cryptlen - authsize;

	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
			data_size & IV_LAST_BYTE_MASK;
	data_size >>= IV_BYTE_OFFSET;
	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
			data_size & IV_LAST_BYTE_MASK;
}

static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_aead_req *a_req = &req->aead_req;
1477

1478
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
		/*
		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
		 * the  counter must set to 0x01
		 */
		ctx->a_ctx.mac_len = authsize;
		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
		set_aead_auth_iv(ctx, req);
	}

	/* GCM 12Byte Cipher_IV == Auth_IV */
	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
		ctx->a_ctx.mac_len = authsize;
		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
	}
}

static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
				 struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
				    struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sqe3->a_key_addr = sqe3->c_key_addr;
	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sqe3->auth_mac_key |= SEC_NO_AUTH;

	if (dir)
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	else
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;

	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
	sqe3->auth_src_offset = cpu_to_le16(0x0);
	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

1567 1568
	if (dir) {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1569
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1570 1571
	} else {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1572
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1573
	}
1574 1575 1576 1577
	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1578
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
1589
		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1590 1591 1592
		return ret;
	}

1593 1594 1595 1596 1597
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
	else
		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1598 1599 1600 1601

	return 0;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
				   struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->mac_len /
			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_key_len /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);

	if (dir) {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	} else {
1626
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
	}
	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);

	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	int ret;

	ret = sec_skcipher_bd_fill_v3(ctx, req);
	if (unlikely(ret)) {
		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
		return ret;
	}

1648 1649 1650 1651 1652 1653 1654
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
					req, sec_sqe3);
	else
		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
				       req, sec_sqe3);
1655 1656 1657 1658

	return 0;
}

1659 1660 1661 1662
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1663
	struct sec_aead_req *aead_req = &req->aead_req;
1664 1665 1666
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1667 1668
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1679
					  aead_req->out_mac,
1680 1681 1682 1683
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
1684
			dev_err(c->dev, "copy out mac err!\n");
1685 1686 1687 1688 1689 1690
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1701 1702 1703 1704

	a_req->base.complete(&a_req->base, err);
}

1705 1706 1707
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1708
	sec_free_queue_id(ctx, req);
1709 1710 1711 1712 1713
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1714
	int queue_id;
1715 1716

	/* To load balance */
1717 1718
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1719 1720

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1721
	if (unlikely(req->req_id < 0)) {
1722
		sec_free_queue_id(ctx, req);
1723 1724 1725
		return req->req_id;
	}

1726
	return 0;
1727 1728 1729 1730
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1731
	struct sec_cipher_req *c_req = &req->c_req;
1732 1733 1734
	int ret;

	ret = sec_request_init(ctx, req);
1735
	if (unlikely(ret))
1736 1737 1738
		return ret;

	ret = sec_request_transfer(ctx, req);
1739
	if (unlikely(ret))
1740 1741 1742
		goto err_uninit_req;

	/* Output IV as decrypto */
1743 1744
	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1745
		sec_update_iv(req, ctx->alg_type);
1746 1747

	ret = ctx->req_op->bd_send(ctx, req);
1748 1749
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1750
		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1751 1752 1753 1754 1755 1756 1757
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1758 1759
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1760
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1761 1762
			       ctx->c_ctx.ivsize);
		else
1763
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1764 1765
			       ctx->c_ctx.ivsize);
	}
1766 1767 1768 1769 1770 1771 1772

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);
	return ret;
}

1773
static const struct sec_req_op sec_skcipher_req_ops = {
1774 1775 1776 1777 1778 1779 1780 1781 1782
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1783 1784 1785
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1786
	.do_transfer	= sec_aead_set_iv,
1787 1788 1789 1790 1791 1792
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static const struct sec_req_op sec_aead_req_ops_v3 = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1806
	.do_transfer	= sec_aead_set_iv,
1807 1808 1809 1810 1811 1812
	.bd_fill	= sec_aead_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1813 1814 1815
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1816
	int ret;
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	ret = sec_skcipher_init(tfm);
	if (ret)
		return ret;

	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_skcipher_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_skcipher_req_ops_v3;
	}
1829

1830
	return ret;
1831 1832 1833 1834
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1835
	sec_skcipher_uninit(tfm);
1836 1837
}

1838 1839 1840 1841 1842 1843 1844 1845
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1846 1847 1848
	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		pr_err("get error aead iv size!\n");
1849 1850 1851 1852 1853 1854
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;
1855 1856 1857 1858 1859 1860 1861
	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_aead_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_aead_req_ops_v3;
	}
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
1903
		dev_err(ctx->dev, "aead alloc shash error!\n");
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

1919 1920
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
1921
	struct aead_alg *alg = crypto_aead_alg(tfm);
1922
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923 1924
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	const char *aead_name = alg->base.cra_name;
1925 1926 1927 1928 1929 1930 1931 1932
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
		return ret;
	}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
						     CRYPTO_ALG_NEED_FALLBACK |
						     CRYPTO_ALG_ASYNC);
	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(a_ctx->fallback_aead_tfm);
	}
	a_ctx->fallback = false;

1943 1944 1945 1946 1947
	return 0;
}

static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
1948 1949 1950
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1951 1952 1953
	sec_aead_exit(tfm);
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
	struct sec_req *sreq)
{
	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
	struct device *dev = ctx->dev;
	u8 c_mode = ctx->c_ctx.c_mode;
	int ret = 0;

	switch (c_mode) {
	case SEC_CMODE_XTS:
		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
			dev_err(dev, "skcipher XTS mode input length error!\n");
			ret = -EINVAL;
		}
		break;
	case SEC_CMODE_ECB:
	case SEC_CMODE_CBC:
		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "skcipher AES input length error!\n");
			ret = -EINVAL;
		}
		break;
1992 1993 1994 1995 1996 1997 1998 1999
	case SEC_CMODE_CFB:
	case SEC_CMODE_OFB:
	case SEC_CMODE_CTR:
		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
			dev_err(dev, "skcipher HW version error!\n");
			ret = -EINVAL;
		}
		break;
2000 2001 2002 2003 2004 2005 2006
	default:
		ret = -EINVAL;
	}

	return ret;
}

2007
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2008
{
2009
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2010
	struct device *dev = ctx->dev;
2011
	u8 c_alg = ctx->c_ctx.c_alg;
2012

2013 2014
	if (unlikely(!sk_req->src || !sk_req->dst ||
		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2015 2016 2017
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
2018
	sreq->c_req.c_len = sk_req->cryptlen;
2019 2020 2021 2022 2023 2024

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2025
	if (c_alg == SEC_CALG_3DES) {
2026
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2027 2028 2029 2030 2031
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2032
		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2033
	}
2034

2035
	dev_err(dev, "skcipher algorithm error!\n");
2036

2037 2038 2039
	return -EINVAL;
}

2040 2041 2042 2043
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
				    struct skcipher_request *sreq, bool encrypt)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2044
	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2045 2046 2047 2048
	struct device *dev = ctx->dev;
	int ret;

	if (!c_ctx->fbtfm) {
2049
		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		return -EINVAL;
	}

	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);

	/* software need sync mode to do crypto */
	skcipher_request_set_callback(subreq, sreq->base.flags,
				      NULL, NULL);
	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
				   sreq->cryptlen, sreq->iv);
	if (encrypt)
		ret = crypto_skcipher_encrypt(subreq);
	else
		ret = crypto_skcipher_decrypt(subreq);

	skcipher_request_zero(subreq);

	return ret;
}

2070 2071 2072 2073 2074 2075 2076
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

2077 2078 2079
	if (!sk_req->cryptlen) {
		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
			return -EINVAL;
2080
		return 0;
2081
	}
2082

2083
	req->flag = sk_req->base.flags;
2084 2085 2086 2087
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

2088 2089 2090 2091
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

2092 2093 2094
	if (unlikely(ctx->c_ctx.fallback))
		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2115 2116 2117
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

2137
static struct skcipher_alg sec_skciphers[] = {
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2151
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2152 2153 2154
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2155
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static struct skcipher_alg sec_skciphers_v3[] = {
	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
};

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
static int aead_iv_demension_check(struct aead_request *aead_req)
{
	u8 cl;

	cl = aead_req->iv[0] + 1;
	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
		return -EINVAL;

	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
		return -EOVERFLOW;

	return 0;
}

static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2208 2209 2210 2211
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
2212
	u8 c_mode = ctx->c_ctx.c_mode;
2213
	struct device *dev = ctx->dev;
2214
	int ret;
2215

2216 2217 2218
	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
	    req->assoclen > SEC_MAX_AAD_LEN)) {
		dev_err(dev, "aead input spec error!\n");
2219 2220 2221
		return -EINVAL;
	}

2222 2223 2224 2225
	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
		authsize & MAC_LEN_MASK)))) {
		dev_err(dev, "aead input mac length error!\n");
2226 2227
		return -EINVAL;
	}
2228 2229

	if (c_mode == SEC_CMODE_CCM) {
2230 2231 2232 2233
		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
			return -EINVAL;
		}
2234 2235 2236 2237 2238 2239 2240
		ret = aead_iv_demension_check(req);
		if (ret) {
			dev_err(dev, "aead input iv param error!\n");
			return ret;
		}
	}

2241 2242 2243 2244
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;
2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (c_mode == SEC_CMODE_CBC) {
		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "aead crypto length error!\n");
			return -EINVAL;
		}
	}

	return 0;
}
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct device *dev = ctx->dev;
	u8 c_alg = ctx->c_ctx.c_alg;

	if (unlikely(!req->src || !req->dst)) {
		dev_err(dev, "aead input param error!\n");
2265 2266 2267
		return -EINVAL;
	}

2268 2269 2270
	if (ctx->sec->qm.ver == QM_HW_V2) {
		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
		    req->cryptlen <= authsize))) {
2271
			ctx->a_ctx.fallback = true;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			return -EINVAL;
		}
	}

	/* Support AES or SM4 */
	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
		dev_err(dev, "aead crypto alg error!\n");
		return -EINVAL;
	}

	if (unlikely(sec_aead_spec_check(ctx, sreq)))
		return -EINVAL;

	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2291 2292 2293
	return 0;
}

2294 2295 2296 2297 2298 2299
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
				struct aead_request *aead_req,
				bool encrypt)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	struct device *dev = ctx->dev;
2300 2301
	struct aead_request *subreq;
	int ret;
2302 2303 2304

	/* Kunpeng920 aead mode not support input 0 size */
	if (!a_ctx->fallback_aead_tfm) {
2305
		dev_err(dev, "aead fallback tfm is NULL!\n");
2306 2307 2308
		return -EINVAL;
	}

2309 2310 2311 2312
	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
	if (!subreq)
		return -ENOMEM;

2313 2314 2315 2316 2317 2318 2319
	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
	aead_request_set_callback(subreq, aead_req->base.flags,
				  aead_req->base.complete, aead_req->base.data);
	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
			       aead_req->cryptlen, aead_req->iv);
	aead_request_set_ad(subreq, aead_req->assoclen);

2320 2321 2322 2323 2324 2325 2326
	if (encrypt)
		ret = crypto_aead_encrypt(subreq);
	else
		ret = crypto_aead_decrypt(subreq);
	aead_request_free(subreq);

	return ret;
2327 2328
}

2329 2330 2331 2332 2333 2334 2335
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

2336
	req->flag = a_req->base.flags;
2337 2338 2339 2340 2341
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
2342 2343 2344
	if (unlikely(ret)) {
		if (ctx->a_ctx.fallback)
			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2345
		return -EINVAL;
2346
	}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

2361
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2362 2363 2364 2365 2366 2367
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2368 2369 2370
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2371 2372 2373 2374 2375 2376 2377
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
2378
	.setauthsize = sec_aead_setauthsize,\
2379 2380 2381 2382 2383 2384 2385 2386 2387
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2388 2389
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2390 2391 2392

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2393 2394
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2395 2396 2397

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),

	SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
};

static struct aead_alg sec_aeads_v3[] = {
	SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2418 2419
};

2420
int sec_register_to_crypto(struct hisi_qm *qm)
2421
{
2422
	int ret;
2423 2424

	/* To avoid repeat register */
2425 2426 2427 2428
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
2429

2430 2431 2432 2433 2434 2435
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_skciphers(sec_skciphers_v3,
						ARRAY_SIZE(sec_skciphers_v3));
		if (ret)
			goto reg_skcipher_fail;
	}
2436

2437 2438
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
2439
		goto reg_aead_fail;
2440 2441 2442 2443 2444
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
		if (ret)
			goto reg_aead_v3_fail;
	}
2445 2446
	return ret;

2447 2448
reg_aead_v3_fail:
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2449 2450 2451 2452 2453 2454 2455
reg_aead_fail:
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
reg_skcipher_fail:
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2456 2457 2458
	return ret;
}

2459
void sec_unregister_from_crypto(struct hisi_qm *qm)
2460
{
2461 2462 2463 2464 2465
	if (qm->ver > QM_HW_V2)
		crypto_unregister_aeads(sec_aeads_v3,
					ARRAY_SIZE(sec_aeads_v3));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));

2466 2467 2468
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
2469 2470
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2471
}