sec_crypto.c 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
#define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)
38 39
#define SEC_SQE_CFLAG		2
#define SEC_SQE_DONE		0x1
40 41 42 43 44

static DEFINE_MUTEX(sec_algs_lock);
static unsigned int sec_active_devs;

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
45
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
46 47 48 49 50 51 52 53 54
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

55
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
72
	if (unlikely(req_id < 0)) {
73 74 75 76 77 78 79 80 81 82 83 84 85 86
		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

87
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
	struct sec_sqe *bd = resp;
104 105
	struct sec_ctx *ctx;
	struct sec_req *req;
106
	u16 done, flag;
107
	int err = 0;
108 109 110
	u8 type;

	type = bd->type_cipher_auth & SEC_TYPE_MASK;
111
	if (unlikely(type != SEC_BD_TYPE2)) {
112 113 114 115
		pr_err("err bd type [%d]\n", type);
		return;
	}

116 117 118 119 120 121 122
	req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
	req->err_type = bd->type2.error_type;
	ctx = req->ctx;
	done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
	flag = (le16_to_cpu(bd->type2.done_flag) &
		SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	if (req->err_type || done != SEC_SQE_DONE ||
123
	    flag != SEC_SQE_CFLAG) {
124 125 126
		dev_err(SEC_CTX_DEV(ctx),
			"err_type[%d],done[%d],flag[%d]\n",
			req->err_type, done, flag);
127 128
		err = -EIO;
	}
129

130
	atomic64_inc(&ctx->sec->debug.dfx.recv_cnt);
131

132 133
	ctx->req_op->buf_unmap(ctx, req);

134
	ctx->req_op->callback(ctx, req, err);
135 136 137 138 139 140 141 142 143 144
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
	mutex_unlock(&qp_ctx->req_lock);
145
	atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
146

147
	if (unlikely(ret == -EBUSY))
148 149 150
		return -ENOBUFS;

	if (!ret) {
151
		if (req->fake_busy)
152 153 154 155 156 157 158 159
			ret = -EBUSY;
		else
			ret = -EINPROGRESS;
	}

	return ret;
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	return sec_alloc_civ_resource(dev, qp_ctx->res);
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	sec_free_civ_resource(dev, qp_ctx->res);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp = hisi_qm_create_qp(qm, alg_type);
	if (IS_ERR(qp))
		return PTR_ERR(qp);

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp->req_cb = sec_req_cb;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

	mutex_init(&qp_ctx->req_lock);
	atomic_set(&qp_ctx->pending_reqs, 0);
	idr_init(&qp_ctx->req_idr);

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
226
	if (IS_ERR(qp_ctx->c_in_pool)) {
227
		dev_err(dev, "fail to create sgl pool for input!\n");
228
		goto err_destroy_idr;
229 230 231 232
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
233
	if (IS_ERR(qp_ctx->c_out_pool)) {
234 235 236 237
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

238
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
239 240 241 242 243 244 245 246 247 248
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
249
	sec_alg_resource_free(ctx, qp_ctx);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp);

	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	hisi_qm_stop_qp(qp_ctx->qp);
267
	sec_alg_resource_free(ctx, qp_ctx);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp_ctx->qp);
}

static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx;
	struct sec_dev *sec;
	struct device *dev;
	struct hisi_qm *qm;
	int i, ret;

	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));

	sec = sec_find_device(cpu_to_node(smp_processor_id()));
	if (!sec) {
289
		pr_err("Can not find proper Hisilicon SEC device!\n");
290 291 292 293 294
		return -ENODEV;
	}
	ctx->sec = sec;
	qm = &sec->qm;
	dev = &qm->pdev->dev;
295
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
296 297

	/* Half of queue depth is taken as fake requests limit in the queue. */
298
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
	if (!ctx->qp_ctx)
		return -ENOMEM;

	for (i = 0; i < sec->ctx_q_num; i++) {
		ret = sec_create_qp_ctx(qm, ctx, i, 0);
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	c_ctx = &ctx->c_ctx;
	c_ctx->ivsize = crypto_skcipher_ivsize(tfm);
	if (c_ctx->ivsize > SEC_IV_SIZE) {
		dev_err(dev, "get error iv size!\n");
		ret = -EINVAL;
		goto err_sec_release_qp_ctx;
	}
	c_ctx->c_key = dma_alloc_coherent(dev, SEC_MAX_KEY_SIZE,
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key) {
		ret = -ENOMEM;
		goto err_sec_release_qp_ctx;
	}

	return 0;

err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
	return ret;
}

334
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int i = 0;

	if (c_ctx->c_key) {
		dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
				  c_ctx->c_key, c_ctx->c_key_dma);
		c_ctx->c_key = NULL;
	}

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
}

static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
		switch (keylen) {
		case AES_KEYSIZE_128:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case AES_KEYSIZE_192:
			c_ctx->c_key_len = SEC_CKEY_192BIT;
			break;
		case AES_KEYSIZE_256:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: aes key error!\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);

	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)

GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)

GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)

464 465
static int sec_cipher_map(struct device *dev, struct sec_req *req,
			  struct scatterlist *src, struct scatterlist *dst)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
{
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

499 500 501 502 503 504 505 506 507
static void sec_cipher_unmap(struct device *dev, struct sec_cipher_req *req,
			     struct scatterlist *src, struct scatterlist *dst)
{
	if (dst != src)
		hisi_acc_sg_buf_unmap(dev, src, req->c_in);

	hisi_acc_sg_buf_unmap(dev, dst, req->c_out);
}

508 509
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
510
	struct skcipher_request *sq = req->c_req.sk_req;
511

512
	return sec_cipher_map(SEC_CTX_DEV(ctx), req, sq->src, sq->dst);
513 514 515 516 517 518 519 520
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_req *c_req = &req->c_req;
	struct skcipher_request *sk_req = c_req->sk_req;

521
	sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst);
522 523 524 525 526 527 528
}

static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
529
	if (unlikely(ret))
530 531 532 533 534
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
535
	if (unlikely(ret))
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);

	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
554
	u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
555

556
	memcpy(c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
557 558 559 560 561 562 563 564 565
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
566
	u8 de = 0;
567 568 569 570

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
571 572
	sec_sqe->type2.c_ivin_addr =
		cpu_to_le64(req->qp_ctx->res[req->req_id].c_ivin_dma);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

	sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	/* Just set DST address type */
	da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	sec_sqe->sdm_addr_type |= da_type;

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

static void sec_update_iv(struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
	size_t sz;

	if (req->c_req.encrypt)
		sgl = sk_req->dst;
	else
		sgl = sk_req->src;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv,
				iv_size, sk_req->cryptlen - iv_size);
620
	if (unlikely(sz != iv_size))
621 622 623
		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}

624 625
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
626 627 628 629 630 631 632 633
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);

	/* IV output at encrypto of CBC mode */
634
	if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
635 636
		sec_update_iv(req);

637
	if (req->fake_busy)
638 639
		sk_req->base.complete(&sk_req->base, -EINPROGRESS);

640
	sk_req->base.complete(&sk_req->base, err);
641 642 643 644 645 646 647 648
}

static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);
649
	sec_free_queue_id(ctx, req);
650 651 652 653 654
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
655
	int queue_id;
656 657

	/* To load balance */
658 659
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
660 661

	req->req_id = sec_alloc_req_id(req, qp_ctx);
662
	if (unlikely(req->req_id < 0)) {
663
		sec_free_queue_id(ctx, req);
664 665 666 667
		return req->req_id;
	}

	if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
668
		req->fake_busy = true;
669
	else
670
		req->fake_busy = false;
671

672
	return 0;
673 674 675 676 677 678 679
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = sec_request_init(ctx, req);
680
	if (unlikely(ret))
681 682 683
		return ret;

	ret = sec_request_transfer(ctx, req);
684
	if (unlikely(ret))
685 686 687 688 689 690 691
		goto err_uninit_req;

	/* Output IV as decrypto */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
		sec_update_iv(req);

	ret = ctx->req_op->bd_send(ctx, req);
692
	if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
693
		dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
694 695 696 697 698 699 700 701
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
702 703
		memcpy(req->c_req.sk_req->iv,
		       req->qp_ctx->res[req->req_id].c_ivin,
704 705 706 707 708 709 710 711 712
		       ctx->c_ctx.ivsize);

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);

	return ret;
}

713
static const struct sec_req_op sec_skcipher_req_ops = {
714 715 716 717 718 719 720 721 722 723 724 725 726
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

727
	ctx->req_op = &sec_skcipher_req_ops;
728 729 730 731 732 733

	return sec_skcipher_init(tfm);
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
734
	sec_skcipher_uninit(tfm);
735 736
}

737
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
738
{
739
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
740
	struct device *dev = SEC_CTX_DEV(ctx);
741
	u8 c_alg = ctx->c_ctx.c_alg;
742

743
	if (unlikely(!sk_req->src || !sk_req->dst)) {
744 745 746
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
747
	sreq->c_req.c_len = sk_req->cryptlen;
748
	if (c_alg == SEC_CALG_3DES) {
749
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
750 751 752 753 754
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
755
		if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
			dev_err(dev, "skcipher aes input length error!\n");
			return -EINVAL;
		}
		return 0;
	}

	dev_err(dev, "skcipher algorithm error!\n");
	return -EINVAL;
}

static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	if (!sk_req->cryptlen)
		return 0;

	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

780 781 782 783
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
		.cra_flags = CRYPTO_ALG_ASYNC,\
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

824
static struct skcipher_alg sec_skciphers[] = {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

int sec_register_to_crypto(void)
{
	int ret = 0;

	/* To avoid repeat register */
	mutex_lock(&sec_algs_lock);
	if (++sec_active_devs == 1)
861 862
		ret = crypto_register_skciphers(sec_skciphers,
						ARRAY_SIZE(sec_skciphers));
863 864 865 866 867 868 869 870 871
	mutex_unlock(&sec_algs_lock);

	return ret;
}

void sec_unregister_from_crypto(void)
{
	mutex_lock(&sec_algs_lock);
	if (--sec_active_devs == 0)
872 873
		crypto_unregister_skciphers(sec_skciphers,
					    ARRAY_SIZE(sec_skciphers));
874 875
	mutex_unlock(&sec_algs_lock);
}