sec_crypto.c 63.2 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
5
#include <crypto/aead.h>
6
#include <crypto/algapi.h>
7
#include <crypto/authenc.h>
8
#include <crypto/des.h>
9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
11
#include <crypto/internal/des.h>
12 13
#include <crypto/sha1.h>
#include <crypto/sha2.h>
14 15 16 17 18 19 20 21 22 23 24
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25
#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 27 28 29 30 31 32 33 34 35 36 37
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
38 39 40 41
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

42 43 44 45 46 47 48 49 50 51 52
#define SEC_DE_OFFSET_V3		9
#define SEC_SCENE_OFFSET_V3	5
#define SEC_CKEY_OFFSET_V3	13
#define SEC_SRC_SGL_OFFSET_V3	11
#define SEC_DST_SGL_OFFSET_V3	14
#define SEC_CALG_OFFSET_V3	4
#define SEC_AKEY_OFFSET_V3	9
#define SEC_MAC_OFFSET_V3	4
#define SEC_AUTH_ALG_OFFSET_V3	15
#define SEC_CIPHER_AUTH_V3	0xbf
#define SEC_AUTH_CIPHER_V3	0x40
53 54 55 56
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001
57
#define SEC_ICV_MASK		0x000E
58
#define SEC_SQE_LEN_RATE_MASK	0x3
59 60 61

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
62 63 64
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
65
#define SEC_MAX_AAD_LEN		65535
66
#define SEC_MAX_CCM_AAD_LEN	65279
67
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
68 69 70 71 72 73 74 75 76 77 78 79 80

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

81
#define SEC_SQE_LEN_RATE	4
82
#define SEC_SQE_CFLAG		2
83
#define SEC_SQE_AEAD_FLAG	3
84
#define SEC_SQE_DONE		0x1
85
#define SEC_ICV_ERR		0x2
86 87
#define MIN_MAC_LEN		4
#define MAC_LEN_MASK		0x1U
88 89 90
#define MAX_INPUT_DATA_LEN	0xFFFE00
#define BITS_MASK		0xFF
#define BYTE_BITS		0x8
91
#define SEC_XTS_NAME_SZ		0x3
92 93 94 95 96 97 98 99 100 101 102 103
#define IV_CM_CAL_NUM		2
#define IV_CL_MASK		0x7
#define IV_CL_MIN		2
#define IV_CL_MID		4
#define IV_CL_MAX		8
#define IV_FLAGS_OFFSET	0x6
#define IV_CM_OFFSET		0x3
#define IV_LAST_BYTE1		1
#define IV_LAST_BYTE2		2
#define IV_LAST_BYTE_MASK	0xFF
#define IV_CTR_INIT		0x1
#define IV_BYTE_OFFSET		0x8
104 105

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
106
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
107 108 109 110 111 112 113 114 115
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

116
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
133
	if (unlikely(req_id < 0)) {
134
		dev_err(req->ctx->dev, "alloc req id fail!\n");
135 136 137 138 139
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
140

141 142 143 144 145 146 147 148
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

149
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
150
		dev_err(req->ctx->dev, "free request id invalid!\n");
151 152 153 154 155 156 157 158 159 160 161
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

162 163 164 165 166
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
	struct sec_sqe *bd = resp;

	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
167
	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
168 169 170 171 172 173 174 175 176 177 178 179 180
	status->flag = (le16_to_cpu(bd->type2.done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le16_to_cpu(bd->type2.tag);
	status->err_type = bd->type2.error_type;

	return bd->type_cipher_auth & SEC_TYPE_MASK;
}

static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
	struct sec_sqe3 *bd3 = resp;

	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
181
	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	status->flag = (le16_to_cpu(bd3->done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le64_to_cpu(bd3->tag);
	status->err_type = bd3->error_type;

	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}

static int sec_cb_status_check(struct sec_req *req,
			       struct bd_status *status)
{
	struct sec_ctx *ctx = req->ctx;

	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
				    req->err_type, status->done);
		return -EIO;
	}

	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
					    status->flag);
			return -EIO;
		}
207 208 209 210 211 212 213 214
	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
			     status->icv == SEC_ICV_ERR)) {
			dev_err_ratelimited(ctx->dev,
					    "flag[%u], icv[%u]\n",
					    status->flag, status->icv);
			return -EBADMSG;
		}
215 216 217 218 219
	}

	return 0;
}

220 221 222
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
223
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
224 225
	u8 type_supported = qp_ctx->ctx->type_supported;
	struct bd_status status;
226 227
	struct sec_ctx *ctx;
	struct sec_req *req;
228
	int err;
229 230
	u8 type;

231 232 233 234 235 236 237 238 239
	if (type_supported == SEC_BD_TYPE2) {
		type = pre_parse_finished_bd(&status, resp);
		req = qp_ctx->req_list[status.tag];
	} else {
		type = pre_parse_finished_bd3(&status, resp);
		req = (void *)(uintptr_t)status.tag;
	}

	if (unlikely(type != type_supported)) {
240
		atomic64_inc(&dfx->err_bd_cnt);
241 242 243 244
		pr_err("err bd type [%d]\n", type);
		return;
	}

245 246
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
247
		atomic_inc(&qp->qp_status.used);
248 249
		return;
	}
250 251

	req->err_type = status.err_type;
252
	ctx = req->ctx;
253 254
	err = sec_cb_status_check(req, &status);
	if (err)
255
		atomic64_inc(&dfx->done_flag_cnt);
256

257
	atomic64_inc(&dfx->recv_cnt);
258

259 260
	ctx->req_op->buf_unmap(ctx, req);

261
	ctx->req_op->callback(ctx, req, err);
262 263 264 265 266 267 268
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

269 270 271 272 273
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

274 275
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
276 277 278 279 280 281 282 283 284

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
285 286
	mutex_unlock(&qp_ctx->req_lock);

287
	if (unlikely(ret == -EBUSY))
288 289
		return -ENOBUFS;

290 291 292
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
293 294 295 296 297
	}

	return ret;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->a_ivin_dma, GFP_KERNEL);
	if (!res->a_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->a_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->a_ivin, res->a_ivin_dma);
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
413

414 415 416
	return 0;
}

417 418 419
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
420
	struct sec_alg_res *res = qp_ctx->res;
421
	struct device *dev = ctx->dev;
422 423 424 425 426
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
427

428
	if (ctx->alg_type == SEC_AEAD) {
429 430 431 432
		ret = sec_alloc_aiv_resource(dev, res);
		if (ret)
			goto alloc_aiv_fail;

433 434
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
435
			goto alloc_mac_fail;
436
	}
437 438 439 440
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
441
			goto alloc_pbuf_fail;
442 443
		}
	}
444 445

	return 0;
446

447 448 449
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
450 451 452 453
alloc_mac_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
454 455
	sec_free_civ_resource(dev, res);
	return ret;
456 457 458 459 460
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
461
	struct device *dev = ctx->dev;
462 463

	sec_free_civ_resource(dev, qp_ctx->res);
464

465 466
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
467 468
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
469 470
}

471 472 473
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
474
	struct device *dev = ctx->dev;
475 476 477 478 479
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
480
	qp = ctx->qps[qp_ctx_id];
481 482 483 484 485
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

486 487
	qp->req_cb = sec_req_cb;

488 489
	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
490
	INIT_LIST_HEAD(&qp_ctx->backlog);
491 492 493

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
494
	if (IS_ERR(qp_ctx->c_in_pool)) {
495
		dev_err(dev, "fail to create sgl pool for input!\n");
496
		goto err_destroy_idr;
497 498 499 500
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
501
	if (IS_ERR(qp_ctx->c_out_pool)) {
502 503 504 505
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

506
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
507 508 509 510 511 512 513 514 515 516
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
517
	sec_alg_resource_free(ctx, qp_ctx);
518 519 520 521 522 523 524 525 526 527 528 529
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
530
	struct device *dev = ctx->dev;
531 532

	hisi_qm_stop_qp(qp_ctx->qp);
533
	sec_alg_resource_free(ctx, qp_ctx);
534 535 536 537 538 539 540

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

541
static int sec_ctx_base_init(struct sec_ctx *ctx)
542 543 544 545
{
	struct sec_dev *sec;
	int i, ret;

546 547 548
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
549 550
		return -ENODEV;
	}
551 552

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
553
	ctx->sec = sec;
554
	ctx->dev = &sec->qm.pdev->dev;
555
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
556

557 558
	ctx->pbuf_supported = ctx->sec->iommu_used;

559
	/* Half of queue depth is taken as fake requests limit in the queue. */
560
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
561 562
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
563 564 565 566
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
567 568

	for (i = 0; i < sec->ctx_q_num; i++) {
569
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
570 571 572 573 574
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
575

576 577 578 579
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
	kfree(ctx->qp_ctx);
580 581
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
582 583 584
	return ret;
}

585
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
586
{
587
	int i;
588 589 590 591

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

592
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
593 594 595
	kfree(ctx->qp_ctx);
}

596 597 598 599
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

600
	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
601 602 603 604 605 606 607 608 609 610 611 612
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
613
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
614 615 616
			  c_ctx->c_key, c_ctx->c_key_dma);
}

617 618 619 620
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

621
	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
622 623 624 625 626 627 628 629 630 631 632 633
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
634
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
635 636 637
			  a_ctx->a_key, a_ctx->a_key_dma);
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
	const char *alg = crypto_tfm_alg_name(&tfm->base);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->fallback = false;
	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
		return 0;

	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
						  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(c_ctx->fbtfm)) {
		pr_err("failed to alloc fallback tfm!\n");
		return PTR_ERR(c_ctx->fbtfm);
	}

	return 0;
}

658 659 660 661 662
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

663
	ctx->alg_type = SEC_SKCIPHER;
664 665 666
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
667
		pr_err("get error skcipher iv size!\n");
668 669 670 671 672 673 674 675 676 677 678
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

679 680 681 682
	ret = sec_skcipher_fbtfm_init(tfm);
	if (ret)
		goto err_fbtfm_init;

683
	return 0;
684

685 686
err_fbtfm_init:
	sec_cipher_uninit(ctx);
687 688 689 690 691 692 693 694 695
err_cipher_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

696 697 698
	if (ctx->c_ctx.fbtfm)
		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);

699 700 701 702
	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

703
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
704 705 706
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
707 708 709 710 711 712 713 714
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	ret = verify_skcipher_des3_key(tfm, key);
	if (ret)
		return ret;

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
738 739 740
		case SEC_XTS_MID_KEY_SIZE:
			c_ctx->fallback = true;
			break;
741 742 743 744 745 746 747 748
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
749 750 751
		if (c_ctx->c_alg == SEC_CALG_SM4 &&
		    keylen != AES_KEYSIZE_128) {
			pr_err("hisi_sec2: sm4 key error!\n");
752
			return -EINVAL;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		} else {
			switch (keylen) {
			case AES_KEYSIZE_128:
				c_ctx->c_key_len = SEC_CKEY_128BIT;
				break;
			case AES_KEYSIZE_192:
				c_ctx->c_key_len = SEC_CKEY_192BIT;
				break;
			case AES_KEYSIZE_256:
				c_ctx->c_key_len = SEC_CKEY_256BIT;
				break;
			default:
				pr_err("hisi_sec2: aes key error!\n");
				return -EINVAL;
			}
768 769 770 771 772 773 774 775 776 777 778 779
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
780
	struct device *dev = ctx->dev;
781 782 783 784 785
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
786
			dev_err(dev, "xts mode key err!\n");
787 788 789 790 791 792 793 794 795
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
796
		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
797 798 799 800 801 802 803 804 805 806
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
807
		dev_err(dev, "set sec key err!\n");
808 809 810 811
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);
812 813 814 815 816 817 818
	if (c_ctx->fallback) {
		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
		if (ret) {
			dev_err(dev, "failed to set fallback skcipher key!\n");
			return ret;
		}
	}
819 820 821 822 823 824 825 826 827 828 829 830 831
	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
832 833 834
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
835 836 837 838
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
839 840 841
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
842

843 844 845
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
846 847
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aead_req = a_req->aead_req;
848 849
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
850
	struct device *dev = ctx->dev;
851 852
	int copy_size, pbuf_length;
	int req_id = req->req_id;
853 854 855
	struct crypto_aead *tfm;
	size_t authsize;
	u8 *mac_offset;
856 857 858 859 860 861 862

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
863
			qp_ctx->res[req_id].pbuf, copy_size);
864 865 866 867
	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}
868 869 870 871 872 873
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		tfm = crypto_aead_reqtfm(aead_req);
		authsize = crypto_aead_authsize(tfm);
		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
		memcpy(a_req->out_mac, mac_offset, authsize);
	}
874

875 876
	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
	c_req->c_out_dma = req->in_dma;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
896
			qp_ctx->res[req_id].pbuf, copy_size);
897
	if (unlikely(pbuf_length != copy_size))
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
}

static int sec_aead_mac_init(struct sec_aead_req *req)
{
	struct aead_request *aead_req = req->aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	u8 *mac_out = req->out_mac;
	struct scatterlist *sgl = aead_req->src;
	size_t copy_size;
	off_t skip_size;

	/* Copy input mac */
	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
				       authsize, skip_size);
	if (unlikely(copy_size != authsize))
		return -EINVAL;

	return 0;
919 920
}

921
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
922
			  struct scatterlist *src, struct scatterlist *dst)
923 924
{
	struct sec_cipher_req *c_req = &req->c_req;
925
	struct sec_aead_req *a_req = &req->aead_req;
926
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
927
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
928
	struct device *dev = ctx->dev;
929 930 931 932 933 934
	int ret;

	if (req->use_pbuf) {
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
935 936
			a_req->a_ivin = res->a_ivin;
			a_req->a_ivin_dma = res->a_ivin_dma;
937 938 939 940
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
941
		ret = sec_cipher_pbuf_map(ctx, req, src);
942

943 944
		return ret;
	}
945 946 947
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
948 949
		a_req->a_ivin = res->a_ivin;
		a_req->a_ivin_dma = res->a_ivin_dma;
950 951 952
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
953

954 955 956 957 958
	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						qp_ctx->c_in_pool,
						req->req_id,
						&req->in_dma);
	if (IS_ERR(req->in)) {
959
		dev_err(dev, "fail to dma map input sgl buffers!\n");
960
		return PTR_ERR(req->in);
961 962
	}

963 964 965 966 967 968 969
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		ret = sec_aead_mac_init(a_req);
		if (unlikely(ret)) {
			dev_err(dev, "fail to init mac data for ICV!\n");
			return ret;
		}
	}
970

971
	if (dst == src) {
972 973
		c_req->c_out = req->in;
		c_req->c_out_dma = req->in_dma;
974 975 976 977 978 979 980 981
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
982
			hisi_acc_sg_buf_unmap(dev, src, req->in);
983 984 985 986 987 988 989
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

990
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
991 992
			     struct scatterlist *src, struct scatterlist *dst)
{
993
	struct sec_cipher_req *c_req = &req->c_req;
994
	struct device *dev = ctx->dev;
995

996 997 998 999
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
1000
			hisi_acc_sg_buf_unmap(dev, src, req->in);
1001

1002 1003
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
1004 1005
}

1006 1007
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
1008
	struct skcipher_request *sq = req->c_req.sk_req;
1009

1010
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1011 1012 1013 1014
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
1015
	struct skcipher_request *sq = req->c_req.sk_req;
1016

1017
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1046
	int blocksize, digestsize, ret;
1047 1048 1049 1050 1051 1052 1053

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
1054
	digestsize = crypto_shash_digestsize(hash_tfm);
1055
	if (keys->authkeylen > blocksize) {
1056 1057
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
1058
		if (ret) {
1059
			pr_err("hisi_sec2: aead auth digest error!\n");
1060 1061
			return -EINVAL;
		}
1062
		ctx->a_key_len = digestsize;
1063 1064 1065 1066 1067 1068 1069 1070
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	if (unlikely(a_ctx->fallback_aead_tfm))
		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);

	return 0;
}

static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
				    struct crypto_aead *tfm, const u8 *key,
				    unsigned int keylen)
{
	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}

1093 1094 1095 1096 1097 1098 1099 1100
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1101
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1102
	struct device *dev = ctx->dev;
1103 1104 1105 1106 1107 1108 1109 1110
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

1111 1112 1113 1114 1115 1116 1117 1118
	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		if (ret) {
			dev_err(dev, "set sec aes ccm cipher key err!\n");
			return ret;
		}
		memcpy(c_ctx->c_key, key, keylen);

1119 1120 1121 1122 1123 1124
		if (unlikely(a_ctx->fallback_aead_tfm)) {
			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
			if (ret)
				return ret;
		}

1125 1126 1127
		return 0;
	}

1128 1129 1130 1131 1132
	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
1133
		dev_err(dev, "set sec cipher key err!\n");
1134 1135 1136 1137 1138
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
1139
		dev_err(dev, "set sec auth key err!\n");
1140 1141 1142
		goto bad_key;
	}

1143 1144 1145 1146 1147 1148
	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
		dev_err(dev, "MAC or AUTH key length error!\n");
		goto bad_key;
	}

1149
	return 0;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1170 1171 1172 1173 1174 1175 1176 1177
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1178 1179 1180 1181 1182

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1183
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1184 1185 1186 1187 1188 1189
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1190
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1191 1192
}

1193 1194 1195 1196 1197
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
1198
	if (unlikely(ret))
1199 1200 1201 1202 1203
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
1204
	if (unlikely(ret))
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);
	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
1222
	struct sec_cipher_req *c_req = &req->c_req;
1223

1224
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1225 1226 1227 1228 1229 1230 1231 1232 1233
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
1234
	u8 de = 0;
1235 1236 1237 1238

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1239
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1240
	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1256 1257
	/* Set destination and source address type */
	if (req->use_pbuf) {
1258
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1259 1260
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	} else {
1261
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1262 1263 1264 1265
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	}

	sec_sqe->sdm_addr_type |= da_type;
1266
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1267
	if (req->in_dma != c_req->c_out_dma)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	u32 bd_param = 0;
	u16 cipher;

	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));

	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1290
	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
						c_ctx->c_mode;
	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET_V3);

	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC;
	else
		cipher = SEC_CIPHER_DEC;
	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);

	if (req->use_pbuf) {
		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
	} else {
		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
	}

	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1313
	if (req->in_dma != c_req->c_out_dma)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		bd_param |= 0x1 << SEC_DE_OFFSET_V3;

	bd_param |= SEC_BD_TYPE3;
	sec_sqe3->bd_param = cpu_to_le32(bd_param);

	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
	sec_sqe3->tag = cpu_to_le64(req);

	return 0;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
	do {
		--bits;
		nums += counter[bits];
		counter[bits] = nums & BITS_MASK;
		nums >>= BYTE_BITS;
	} while (bits && nums);
}

1336
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1337
{
1338
	struct aead_request *aead_req = req->aead_req.aead_req;
1339 1340 1341
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1342
	unsigned int cryptlen;
1343
	size_t sz;
1344
	u8 *iv;
1345 1346

	if (req->c_req.encrypt)
1347
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1348
	else
1349 1350 1351 1352 1353 1354 1355 1356 1357
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
					cryptlen - iv_size);
		if (unlikely(sz != iv_size))
			dev_err(req->ctx->dev, "copy output iv error!\n");
	} else {
		sz = cryptlen / iv_size;
		if (cryptlen % iv_size)
			sz += 1;
		ctr_iv_inc(iv, iv_size, sz);
	}
1370 1371
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1390 1391
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1392 1393 1394
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1395 1396
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1397 1398 1399

	sec_free_req_id(req);

1400 1401 1402
	/* IV output at encrypto of CBC/CTR mode */
	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1403
		sec_update_iv(req, SEC_SKCIPHER);
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1416
	sk_req->base.complete(&sk_req->base, err);
1417 1418
}

1419
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1420 1421
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1422
	struct sec_cipher_req *c_req = &req->c_req;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	struct sec_aead_req *a_req = &req->aead_req;
	size_t authsize = ctx->a_ctx.mac_len;
	u32 data_size = aead_req->cryptlen;
	u8 flage = 0;
	u8 cm, cl;

	/* the specification has been checked in aead_iv_demension_check() */
	cl = c_req->c_ivin[0] + 1;
	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;

	/* the last 3bit is L' */
	flage |= c_req->c_ivin[0] & IV_CL_MASK;

	/* the M' is bit3~bit5, the Flags is bit6 */
	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
	flage |= cm << IV_CM_OFFSET;
	if (aead_req->assoclen)
		flage |= 0x01 << IV_FLAGS_OFFSET;

	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
	a_req->a_ivin[0] = flage;

	/*
	 * the last 32bit is counter's initial number,
	 * but the nonce uses the first 16bit
	 * the tail 16bit fill with the cipher length
	 */
	if (!c_req->encrypt)
		data_size = aead_req->cryptlen - authsize;

	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
			data_size & IV_LAST_BYTE_MASK;
	data_size >>= IV_BYTE_OFFSET;
	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
			data_size & IV_LAST_BYTE_MASK;
}

static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_aead_req *a_req = &req->aead_req;
1469

1470
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
		/*
		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
		 * the  counter must set to 0x01
		 */
		ctx->a_ctx.mac_len = authsize;
		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
		set_aead_auth_iv(ctx, req);
	}

	/* GCM 12Byte Cipher_IV == Auth_IV */
	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
		ctx->a_ctx.mac_len = authsize;
		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
	}
}

static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
				 struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
				    struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sqe3->a_key_addr = sqe3->c_key_addr;
	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sqe3->auth_mac_key |= SEC_NO_AUTH;

	if (dir)
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	else
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;

	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
	sqe3->auth_src_offset = cpu_to_le16(0x0);
	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

1559 1560
	if (dir) {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1561
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1562 1563
	} else {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1564
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1565
	}
1566 1567 1568 1569
	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1570
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
1581
		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1582 1583 1584
		return ret;
	}

1585 1586 1587 1588 1589
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
	else
		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1590 1591 1592 1593

	return 0;
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
				   struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->mac_len /
			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_key_len /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);

	if (dir) {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	} else {
1618
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
	}
	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);

	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	int ret;

	ret = sec_skcipher_bd_fill_v3(ctx, req);
	if (unlikely(ret)) {
		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
		return ret;
	}

1640 1641 1642 1643 1644 1645 1646
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
					req, sec_sqe3);
	else
		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
				       req, sec_sqe3);
1647 1648 1649 1650

	return 0;
}

1651 1652 1653 1654
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1655
	struct sec_aead_req *aead_req = &req->aead_req;
1656 1657 1658
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1659 1660
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1671
					  aead_req->out_mac,
1672 1673 1674 1675
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
1676
			dev_err(c->dev, "copy out mac err!\n");
1677 1678 1679 1680 1681 1682
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1693 1694 1695 1696

	a_req->base.complete(&a_req->base, err);
}

1697 1698 1699
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1700
	sec_free_queue_id(ctx, req);
1701 1702 1703 1704 1705
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1706
	int queue_id;
1707 1708

	/* To load balance */
1709 1710
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1711 1712

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1713
	if (unlikely(req->req_id < 0)) {
1714
		sec_free_queue_id(ctx, req);
1715 1716 1717
		return req->req_id;
	}

1718
	return 0;
1719 1720 1721 1722
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1723
	struct sec_cipher_req *c_req = &req->c_req;
1724 1725 1726
	int ret;

	ret = sec_request_init(ctx, req);
1727
	if (unlikely(ret))
1728 1729 1730
		return ret;

	ret = sec_request_transfer(ctx, req);
1731
	if (unlikely(ret))
1732 1733 1734
		goto err_uninit_req;

	/* Output IV as decrypto */
1735 1736
	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1737
		sec_update_iv(req, ctx->alg_type);
1738 1739

	ret = ctx->req_op->bd_send(ctx, req);
1740 1741
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1742
		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1743 1744 1745 1746 1747 1748 1749
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1750 1751
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1752
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1753 1754
			       ctx->c_ctx.ivsize);
		else
1755
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1756 1757
			       ctx->c_ctx.ivsize);
	}
1758 1759 1760 1761 1762 1763 1764

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);
	return ret;
}

1765
static const struct sec_req_op sec_skcipher_req_ops = {
1766 1767 1768 1769 1770 1771 1772 1773 1774
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1775 1776 1777
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1778
	.do_transfer	= sec_aead_set_iv,
1779 1780 1781 1782 1783 1784
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static const struct sec_req_op sec_aead_req_ops_v3 = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1798
	.do_transfer	= sec_aead_set_iv,
1799 1800 1801 1802 1803 1804
	.bd_fill	= sec_aead_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1805 1806 1807
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1808
	int ret;
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	ret = sec_skcipher_init(tfm);
	if (ret)
		return ret;

	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_skcipher_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_skcipher_req_ops_v3;
	}
1821

1822
	return ret;
1823 1824 1825 1826
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1827
	sec_skcipher_uninit(tfm);
1828 1829
}

1830 1831 1832 1833 1834 1835 1836 1837
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1838 1839 1840
	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		pr_err("get error aead iv size!\n");
1841 1842 1843 1844 1845 1846
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;
1847 1848 1849 1850 1851 1852 1853
	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_aead_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_aead_req_ops_v3;
	}
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
1895
		dev_err(ctx->dev, "aead alloc shash error!\n");
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

1911 1912
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
1913
	struct aead_alg *alg = crypto_aead_alg(tfm);
1914
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1915 1916
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	const char *aead_name = alg->base.cra_name;
1917 1918 1919 1920 1921 1922 1923 1924
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
		return ret;
	}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
						     CRYPTO_ALG_NEED_FALLBACK |
						     CRYPTO_ALG_ASYNC);
	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(a_ctx->fallback_aead_tfm);
	}
	a_ctx->fallback = false;

1935 1936 1937 1938 1939
	return 0;
}

static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
1940 1941 1942
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1943 1944 1945
	sec_aead_exit(tfm);
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
	struct sec_req *sreq)
{
	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
	struct device *dev = ctx->dev;
	u8 c_mode = ctx->c_ctx.c_mode;
	int ret = 0;

	switch (c_mode) {
	case SEC_CMODE_XTS:
		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
			dev_err(dev, "skcipher XTS mode input length error!\n");
			ret = -EINVAL;
		}
		break;
	case SEC_CMODE_ECB:
	case SEC_CMODE_CBC:
		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "skcipher AES input length error!\n");
			ret = -EINVAL;
		}
		break;
1984 1985 1986 1987 1988 1989 1990 1991
	case SEC_CMODE_CFB:
	case SEC_CMODE_OFB:
	case SEC_CMODE_CTR:
		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
			dev_err(dev, "skcipher HW version error!\n");
			ret = -EINVAL;
		}
		break;
1992 1993 1994 1995 1996 1997 1998
	default:
		ret = -EINVAL;
	}

	return ret;
}

1999
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2000
{
2001
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2002
	struct device *dev = ctx->dev;
2003
	u8 c_alg = ctx->c_ctx.c_alg;
2004

2005 2006
	if (unlikely(!sk_req->src || !sk_req->dst ||
		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2007 2008 2009
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
2010
	sreq->c_req.c_len = sk_req->cryptlen;
2011 2012 2013 2014 2015 2016

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2017
	if (c_alg == SEC_CALG_3DES) {
2018
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2019 2020 2021 2022 2023
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2024
		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2025
	}
2026

2027
	dev_err(dev, "skcipher algorithm error!\n");
2028

2029 2030 2031
	return -EINVAL;
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
				    struct skcipher_request *sreq, bool encrypt)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct device *dev = ctx->dev;
	int ret;

	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);

	if (!c_ctx->fbtfm) {
		dev_err(dev, "failed to check fallback tfm\n");
		return -EINVAL;
	}

	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);

	/* software need sync mode to do crypto */
	skcipher_request_set_callback(subreq, sreq->base.flags,
				      NULL, NULL);
	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
				   sreq->cryptlen, sreq->iv);
	if (encrypt)
		ret = crypto_skcipher_encrypt(subreq);
	else
		ret = crypto_skcipher_decrypt(subreq);

	skcipher_request_zero(subreq);

	return ret;
}

2063 2064 2065 2066 2067 2068 2069
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

2070 2071 2072
	if (!sk_req->cryptlen) {
		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
			return -EINVAL;
2073
		return 0;
2074
	}
2075

2076
	req->flag = sk_req->base.flags;
2077 2078 2079 2080
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

2081 2082 2083 2084
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

2085 2086 2087
	if (unlikely(ctx->c_ctx.fallback))
		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2108 2109 2110
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

2130
static struct skcipher_alg sec_skciphers[] = {
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2144
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2145 2146 2147
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2148
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static struct skcipher_alg sec_skciphers_v3[] = {
	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
};

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static int aead_iv_demension_check(struct aead_request *aead_req)
{
	u8 cl;

	cl = aead_req->iv[0] + 1;
	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
		return -EINVAL;

	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
		return -EOVERFLOW;

	return 0;
}

static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2201 2202 2203 2204
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
2205
	u8 c_mode = ctx->c_ctx.c_mode;
2206
	struct device *dev = ctx->dev;
2207
	int ret;
2208

2209 2210 2211
	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
	    req->assoclen > SEC_MAX_AAD_LEN)) {
		dev_err(dev, "aead input spec error!\n");
2212 2213 2214
		return -EINVAL;
	}

2215 2216 2217 2218
	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
		authsize & MAC_LEN_MASK)))) {
		dev_err(dev, "aead input mac length error!\n");
2219 2220
		return -EINVAL;
	}
2221 2222

	if (c_mode == SEC_CMODE_CCM) {
2223 2224 2225 2226
		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
			return -EINVAL;
		}
2227 2228 2229 2230 2231 2232 2233
		ret = aead_iv_demension_check(req);
		if (ret) {
			dev_err(dev, "aead input iv param error!\n");
			return ret;
		}
	}

2234 2235 2236 2237
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;
2238 2239 2240 2241 2242 2243 2244 2245 2246
	if (c_mode == SEC_CMODE_CBC) {
		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "aead crypto length error!\n");
			return -EINVAL;
		}
	}

	return 0;
}
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct device *dev = ctx->dev;
	u8 c_alg = ctx->c_ctx.c_alg;

	if (unlikely(!req->src || !req->dst)) {
		dev_err(dev, "aead input param error!\n");
2258 2259 2260
		return -EINVAL;
	}

2261 2262 2263 2264
	if (ctx->sec->qm.ver == QM_HW_V2) {
		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
		    req->cryptlen <= authsize))) {
			dev_err(dev, "Kunpeng920 not support 0 length!\n");
2265
			ctx->a_ctx.fallback = true;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
			return -EINVAL;
		}
	}

	/* Support AES or SM4 */
	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
		dev_err(dev, "aead crypto alg error!\n");
		return -EINVAL;
	}

	if (unlikely(sec_aead_spec_check(ctx, sreq)))
		return -EINVAL;

	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2285 2286 2287
	return 0;
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
				struct aead_request *aead_req,
				bool encrypt)
{
	struct aead_request *subreq = aead_request_ctx(aead_req);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	struct device *dev = ctx->dev;

	/* Kunpeng920 aead mode not support input 0 size */
	if (!a_ctx->fallback_aead_tfm) {
2298
		dev_err(dev, "aead fallback tfm is NULL!\n");
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		return -EINVAL;
	}

	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
	aead_request_set_callback(subreq, aead_req->base.flags,
				  aead_req->base.complete, aead_req->base.data);
	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
			       aead_req->cryptlen, aead_req->iv);
	aead_request_set_ad(subreq, aead_req->assoclen);

	return encrypt ? crypto_aead_encrypt(subreq) :
		   crypto_aead_decrypt(subreq);
}

2313 2314 2315 2316 2317 2318 2319
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

2320
	req->flag = a_req->base.flags;
2321 2322 2323 2324 2325
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
2326 2327 2328
	if (unlikely(ret)) {
		if (ctx->a_ctx.fallback)
			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2329
		return -EINVAL;
2330
	}
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

2345
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2346 2347 2348 2349 2350 2351
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2352 2353 2354
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2355 2356 2357 2358 2359 2360 2361
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
2362
	.setauthsize = sec_aead_setauthsize,\
2363 2364 2365 2366 2367 2368 2369 2370 2371
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2372 2373
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2374 2375 2376

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2377 2378
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2379 2380 2381

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),

	SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
};

static struct aead_alg sec_aeads_v3[] = {
	SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2402 2403
};

2404
int sec_register_to_crypto(struct hisi_qm *qm)
2405
{
2406
	int ret;
2407 2408

	/* To avoid repeat register */
2409 2410 2411 2412
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
2413

2414 2415 2416 2417 2418 2419
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_skciphers(sec_skciphers_v3,
						ARRAY_SIZE(sec_skciphers_v3));
		if (ret)
			goto reg_skcipher_fail;
	}
2420

2421 2422
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
2423
		goto reg_aead_fail;
2424 2425 2426 2427 2428
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
		if (ret)
			goto reg_aead_v3_fail;
	}
2429 2430
	return ret;

2431 2432
reg_aead_v3_fail:
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2433 2434 2435 2436 2437 2438 2439
reg_aead_fail:
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
reg_skcipher_fail:
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2440 2441 2442
	return ret;
}

2443
void sec_unregister_from_crypto(struct hisi_qm *qm)
2444
{
2445 2446 2447 2448 2449
	if (qm->ver > QM_HW_V2)
		crypto_unregister_aeads(sec_aeads_v3,
					ARRAY_SIZE(sec_aeads_v3));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));

2450 2451 2452
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
2453 2454
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2455
}