sec_crypto.c 63.6 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
5
#include <crypto/aead.h>
6
#include <crypto/algapi.h>
7
#include <crypto/authenc.h>
8
#include <crypto/des.h>
9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
11
#include <crypto/internal/des.h>
12 13
#include <crypto/sha1.h>
#include <crypto/sha2.h>
14 15 16 17 18 19 20 21 22 23 24
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25
#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 27 28 29 30 31 32 33 34 35 36 37
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
38 39 40 41
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

42 43 44
#define SEC_DE_OFFSET_V3		9
#define SEC_SCENE_OFFSET_V3	5
#define SEC_CKEY_OFFSET_V3	13
45 46
#define SEC_CTR_CNT_OFFSET	25
#define SEC_CTR_CNT_ROLLOVER	2
47 48 49 50 51 52 53 54
#define SEC_SRC_SGL_OFFSET_V3	11
#define SEC_DST_SGL_OFFSET_V3	14
#define SEC_CALG_OFFSET_V3	4
#define SEC_AKEY_OFFSET_V3	9
#define SEC_MAC_OFFSET_V3	4
#define SEC_AUTH_ALG_OFFSET_V3	15
#define SEC_CIPHER_AUTH_V3	0xbf
#define SEC_AUTH_CIPHER_V3	0x40
55 56 57 58
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001
59
#define SEC_ICV_MASK		0x000E
60
#define SEC_SQE_LEN_RATE_MASK	0x3
61 62 63

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
64 65 66
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
67
#define SEC_MAX_AAD_LEN		65535
68
#define SEC_MAX_CCM_AAD_LEN	65279
69
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
70 71 72 73 74 75 76 77 78 79 80 81 82

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

83
#define SEC_SQE_LEN_RATE	4
84
#define SEC_SQE_CFLAG		2
85
#define SEC_SQE_AEAD_FLAG	3
86
#define SEC_SQE_DONE		0x1
87
#define SEC_ICV_ERR		0x2
88 89
#define MIN_MAC_LEN		4
#define MAC_LEN_MASK		0x1U
90 91 92
#define MAX_INPUT_DATA_LEN	0xFFFE00
#define BITS_MASK		0xFF
#define BYTE_BITS		0x8
93
#define SEC_XTS_NAME_SZ		0x3
94 95 96 97 98 99 100 101 102 103 104 105
#define IV_CM_CAL_NUM		2
#define IV_CL_MASK		0x7
#define IV_CL_MIN		2
#define IV_CL_MID		4
#define IV_CL_MAX		8
#define IV_FLAGS_OFFSET	0x6
#define IV_CM_OFFSET		0x3
#define IV_LAST_BYTE1		1
#define IV_LAST_BYTE2		2
#define IV_LAST_BYTE_MASK	0xFF
#define IV_CTR_INIT		0x1
#define IV_BYTE_OFFSET		0x8
106 107

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
108
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
109 110 111 112 113 114 115 116 117
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

118
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
135
	if (unlikely(req_id < 0)) {
136
		dev_err(req->ctx->dev, "alloc req id fail!\n");
137 138 139 140 141
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
142

143 144 145 146 147 148 149 150
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

151
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
152
		dev_err(req->ctx->dev, "free request id invalid!\n");
153 154 155 156 157 158 159 160 161 162 163
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

164 165 166 167 168
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
	struct sec_sqe *bd = resp;

	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
169
	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
170 171 172 173 174 175 176 177 178 179 180 181 182
	status->flag = (le16_to_cpu(bd->type2.done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le16_to_cpu(bd->type2.tag);
	status->err_type = bd->type2.error_type;

	return bd->type_cipher_auth & SEC_TYPE_MASK;
}

static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
	struct sec_sqe3 *bd3 = resp;

	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
183
	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	status->flag = (le16_to_cpu(bd3->done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le64_to_cpu(bd3->tag);
	status->err_type = bd3->error_type;

	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}

static int sec_cb_status_check(struct sec_req *req,
			       struct bd_status *status)
{
	struct sec_ctx *ctx = req->ctx;

	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
				    req->err_type, status->done);
		return -EIO;
	}

	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
					    status->flag);
			return -EIO;
		}
209 210 211 212 213 214 215 216
	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
			     status->icv == SEC_ICV_ERR)) {
			dev_err_ratelimited(ctx->dev,
					    "flag[%u], icv[%u]\n",
					    status->flag, status->icv);
			return -EBADMSG;
		}
217 218 219 220 221
	}

	return 0;
}

222 223 224
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
225
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
226 227
	u8 type_supported = qp_ctx->ctx->type_supported;
	struct bd_status status;
228 229
	struct sec_ctx *ctx;
	struct sec_req *req;
230
	int err;
231 232
	u8 type;

233 234 235 236 237 238 239 240 241
	if (type_supported == SEC_BD_TYPE2) {
		type = pre_parse_finished_bd(&status, resp);
		req = qp_ctx->req_list[status.tag];
	} else {
		type = pre_parse_finished_bd3(&status, resp);
		req = (void *)(uintptr_t)status.tag;
	}

	if (unlikely(type != type_supported)) {
242
		atomic64_inc(&dfx->err_bd_cnt);
243 244 245 246
		pr_err("err bd type [%d]\n", type);
		return;
	}

247 248
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
249
		atomic_inc(&qp->qp_status.used);
250 251
		return;
	}
252 253

	req->err_type = status.err_type;
254
	ctx = req->ctx;
255 256
	err = sec_cb_status_check(req, &status);
	if (err)
257
		atomic64_inc(&dfx->done_flag_cnt);
258

259
	atomic64_inc(&dfx->recv_cnt);
260

261 262
	ctx->req_op->buf_unmap(ctx, req);

263
	ctx->req_op->callback(ctx, req, err);
264 265 266 267 268 269 270
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

271 272 273 274 275
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

276 277
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
278 279 280 281 282 283 284 285 286

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
287 288
	mutex_unlock(&qp_ctx->req_lock);

289
	if (unlikely(ret == -EBUSY))
290 291
		return -ENOBUFS;

292 293 294
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
295 296 297 298 299
	}

	return ret;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->a_ivin_dma, GFP_KERNEL);
	if (!res->a_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->a_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->a_ivin, res->a_ivin_dma);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
415

416 417 418
	return 0;
}

419 420 421
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
422
	struct sec_alg_res *res = qp_ctx->res;
423
	struct device *dev = ctx->dev;
424 425 426 427 428
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
429

430
	if (ctx->alg_type == SEC_AEAD) {
431 432 433 434
		ret = sec_alloc_aiv_resource(dev, res);
		if (ret)
			goto alloc_aiv_fail;

435 436
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
437
			goto alloc_mac_fail;
438
	}
439 440 441 442
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
443
			goto alloc_pbuf_fail;
444 445
		}
	}
446 447

	return 0;
448

449 450 451
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
452 453 454 455
alloc_mac_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
456 457
	sec_free_civ_resource(dev, res);
	return ret;
458 459 460 461 462
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
463
	struct device *dev = ctx->dev;
464 465

	sec_free_civ_resource(dev, qp_ctx->res);
466

467 468
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
469 470
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
471 472
}

473 474 475
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
476
	struct device *dev = ctx->dev;
477 478 479 480 481
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
482
	qp = ctx->qps[qp_ctx_id];
483 484 485 486 487
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

488 489
	qp->req_cb = sec_req_cb;

490 491
	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
492
	INIT_LIST_HEAD(&qp_ctx->backlog);
493 494 495

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
496
	if (IS_ERR(qp_ctx->c_in_pool)) {
497
		dev_err(dev, "fail to create sgl pool for input!\n");
498
		goto err_destroy_idr;
499 500 501 502
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
503
	if (IS_ERR(qp_ctx->c_out_pool)) {
504 505 506 507
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

508
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
509 510 511 512 513 514 515 516 517 518
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
519
	sec_alg_resource_free(ctx, qp_ctx);
520 521 522 523 524 525 526 527 528 529 530 531
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
532
	struct device *dev = ctx->dev;
533 534

	hisi_qm_stop_qp(qp_ctx->qp);
535
	sec_alg_resource_free(ctx, qp_ctx);
536 537 538 539 540 541 542

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

543
static int sec_ctx_base_init(struct sec_ctx *ctx)
544 545 546 547
{
	struct sec_dev *sec;
	int i, ret;

548 549 550
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
551 552
		return -ENODEV;
	}
553 554

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
555
	ctx->sec = sec;
556
	ctx->dev = &sec->qm.pdev->dev;
557
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
558

559 560
	ctx->pbuf_supported = ctx->sec->iommu_used;

561
	/* Half of queue depth is taken as fake requests limit in the queue. */
562
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
563 564
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
565 566 567 568
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
569 570

	for (i = 0; i < sec->ctx_q_num; i++) {
571
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
572 573 574 575 576
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
577

578 579 580 581
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
	kfree(ctx->qp_ctx);
582 583
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
584 585 586
	return ret;
}

587
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
588
{
589
	int i;
590 591 592 593

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

594
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
595 596 597
	kfree(ctx->qp_ctx);
}

598 599 600 601
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

602
	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
603 604 605 606 607 608 609 610 611 612 613 614
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
615
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
616 617 618
			  c_ctx->c_key, c_ctx->c_key_dma);
}

619 620 621 622
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

623
	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
624 625 626 627 628 629 630 631 632 633 634 635
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
636
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
637 638 639
			  a_ctx->a_key, a_ctx->a_key_dma);
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
	const char *alg = crypto_tfm_alg_name(&tfm->base);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->fallback = false;
	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
		return 0;

	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
						  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(c_ctx->fbtfm)) {
		pr_err("failed to alloc fallback tfm!\n");
		return PTR_ERR(c_ctx->fbtfm);
	}

	return 0;
}

660 661 662 663 664
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

665
	ctx->alg_type = SEC_SKCIPHER;
666 667 668
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
669
		pr_err("get error skcipher iv size!\n");
670 671 672 673 674 675 676 677 678 679 680
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

681 682 683 684
	ret = sec_skcipher_fbtfm_init(tfm);
	if (ret)
		goto err_fbtfm_init;

685
	return 0;
686

687 688
err_fbtfm_init:
	sec_cipher_uninit(ctx);
689 690 691 692 693 694 695 696 697
err_cipher_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

698 699 700
	if (ctx->c_ctx.fbtfm)
		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);

701 702 703 704
	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

705
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
706 707 708
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
709 710 711 712 713 714 715 716
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	ret = verify_skcipher_des3_key(tfm, key);
	if (ret)
		return ret;

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
740 741 742
		case SEC_XTS_MID_KEY_SIZE:
			c_ctx->fallback = true;
			break;
743 744 745 746 747 748 749 750
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
751 752 753
		if (c_ctx->c_alg == SEC_CALG_SM4 &&
		    keylen != AES_KEYSIZE_128) {
			pr_err("hisi_sec2: sm4 key error!\n");
754
			return -EINVAL;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		} else {
			switch (keylen) {
			case AES_KEYSIZE_128:
				c_ctx->c_key_len = SEC_CKEY_128BIT;
				break;
			case AES_KEYSIZE_192:
				c_ctx->c_key_len = SEC_CKEY_192BIT;
				break;
			case AES_KEYSIZE_256:
				c_ctx->c_key_len = SEC_CKEY_256BIT;
				break;
			default:
				pr_err("hisi_sec2: aes key error!\n");
				return -EINVAL;
			}
770 771 772 773 774 775 776 777 778 779 780 781
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
782
	struct device *dev = ctx->dev;
783 784 785 786 787
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
788
			dev_err(dev, "xts mode key err!\n");
789 790 791 792 793 794 795 796 797
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
798
		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
799 800 801 802 803 804 805 806 807 808
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
809
		dev_err(dev, "set sec key err!\n");
810 811 812 813
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);
814 815 816 817 818 819 820
	if (c_ctx->fallback) {
		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
		if (ret) {
			dev_err(dev, "failed to set fallback skcipher key!\n");
			return ret;
		}
	}
821 822 823 824 825 826 827 828 829 830 831 832 833
	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
834 835 836
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
837 838 839 840
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
841 842 843
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
844

845 846 847
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
848 849
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aead_req = a_req->aead_req;
850 851
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
852
	struct device *dev = ctx->dev;
853 854
	int copy_size, pbuf_length;
	int req_id = req->req_id;
855 856 857
	struct crypto_aead *tfm;
	size_t authsize;
	u8 *mac_offset;
858 859 860 861 862 863 864

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
865
			qp_ctx->res[req_id].pbuf, copy_size);
866 867 868 869
	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}
870 871 872 873 874 875
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		tfm = crypto_aead_reqtfm(aead_req);
		authsize = crypto_aead_authsize(tfm);
		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
		memcpy(a_req->out_mac, mac_offset, authsize);
	}
876

877 878
	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
	c_req->c_out_dma = req->in_dma;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
898
			qp_ctx->res[req_id].pbuf, copy_size);
899
	if (unlikely(pbuf_length != copy_size))
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
}

static int sec_aead_mac_init(struct sec_aead_req *req)
{
	struct aead_request *aead_req = req->aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	u8 *mac_out = req->out_mac;
	struct scatterlist *sgl = aead_req->src;
	size_t copy_size;
	off_t skip_size;

	/* Copy input mac */
	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
				       authsize, skip_size);
	if (unlikely(copy_size != authsize))
		return -EINVAL;

	return 0;
921 922
}

923
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
924
			  struct scatterlist *src, struct scatterlist *dst)
925 926
{
	struct sec_cipher_req *c_req = &req->c_req;
927
	struct sec_aead_req *a_req = &req->aead_req;
928
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
929
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
930
	struct device *dev = ctx->dev;
931 932 933 934 935 936
	int ret;

	if (req->use_pbuf) {
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
937 938
			a_req->a_ivin = res->a_ivin;
			a_req->a_ivin_dma = res->a_ivin_dma;
939 940 941 942
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
943
		ret = sec_cipher_pbuf_map(ctx, req, src);
944

945 946
		return ret;
	}
947 948 949
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
950 951
		a_req->a_ivin = res->a_ivin;
		a_req->a_ivin_dma = res->a_ivin_dma;
952 953 954
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
955

956 957 958 959 960
	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						qp_ctx->c_in_pool,
						req->req_id,
						&req->in_dma);
	if (IS_ERR(req->in)) {
961
		dev_err(dev, "fail to dma map input sgl buffers!\n");
962
		return PTR_ERR(req->in);
963 964
	}

965 966 967 968 969 970 971
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		ret = sec_aead_mac_init(a_req);
		if (unlikely(ret)) {
			dev_err(dev, "fail to init mac data for ICV!\n");
			return ret;
		}
	}
972

973
	if (dst == src) {
974 975
		c_req->c_out = req->in;
		c_req->c_out_dma = req->in_dma;
976 977 978 979 980 981 982 983
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
984
			hisi_acc_sg_buf_unmap(dev, src, req->in);
985 986 987 988 989 990 991
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

992
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
993 994
			     struct scatterlist *src, struct scatterlist *dst)
{
995
	struct sec_cipher_req *c_req = &req->c_req;
996
	struct device *dev = ctx->dev;
997

998 999 1000 1001
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
1002
			hisi_acc_sg_buf_unmap(dev, src, req->in);
1003

1004 1005
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
1006 1007
}

1008 1009
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
1010
	struct skcipher_request *sq = req->c_req.sk_req;
1011

1012
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1013 1014 1015 1016
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
1017
	struct skcipher_request *sq = req->c_req.sk_req;
1018

1019
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1020 1021
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1048
	int blocksize, digestsize, ret;
1049 1050 1051 1052 1053 1054 1055

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
1056
	digestsize = crypto_shash_digestsize(hash_tfm);
1057
	if (keys->authkeylen > blocksize) {
1058 1059
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
1060
		if (ret) {
1061
			pr_err("hisi_sec2: aead auth digest error!\n");
1062 1063
			return -EINVAL;
		}
1064
		ctx->a_key_len = digestsize;
1065 1066 1067 1068 1069 1070 1071 1072
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	if (unlikely(a_ctx->fallback_aead_tfm))
		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);

	return 0;
}

static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
				    struct crypto_aead *tfm, const u8 *key,
				    unsigned int keylen)
{
	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}

1095 1096 1097 1098 1099 1100 1101 1102
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1103
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1104
	struct device *dev = ctx->dev;
1105 1106 1107 1108 1109 1110 1111 1112
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

1113 1114 1115 1116 1117 1118 1119 1120
	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		if (ret) {
			dev_err(dev, "set sec aes ccm cipher key err!\n");
			return ret;
		}
		memcpy(c_ctx->c_key, key, keylen);

1121 1122 1123 1124 1125 1126
		if (unlikely(a_ctx->fallback_aead_tfm)) {
			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
			if (ret)
				return ret;
		}

1127 1128 1129
		return 0;
	}

1130 1131 1132 1133 1134
	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
1135
		dev_err(dev, "set sec cipher key err!\n");
1136 1137 1138 1139 1140
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
1141
		dev_err(dev, "set sec auth key err!\n");
1142 1143 1144
		goto bad_key;
	}

1145 1146 1147 1148 1149 1150
	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
		dev_err(dev, "MAC or AUTH key length error!\n");
		goto bad_key;
	}

1151
	return 0;
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1172 1173 1174 1175 1176 1177 1178 1179
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1180 1181 1182 1183 1184

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1185
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1186 1187 1188 1189 1190 1191
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1192
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1193 1194
}

1195 1196 1197 1198 1199
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
1200
	if (unlikely(ret))
1201 1202 1203 1204 1205
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
1206
	if (unlikely(ret))
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);
	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
1224
	struct sec_cipher_req *c_req = &req->c_req;
1225

1226
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1227 1228 1229 1230 1231 1232 1233 1234 1235
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
1236
	u8 de = 0;
1237 1238 1239 1240

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1241
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1242
	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1258 1259
	/* Set destination and source address type */
	if (req->use_pbuf) {
1260
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1261 1262
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	} else {
1263
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1264 1265 1266 1267
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	}

	sec_sqe->sdm_addr_type |= da_type;
1268
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1269
	if (req->in_dma != c_req->c_out_dma)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	u32 bd_param = 0;
	u16 cipher;

	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));

	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1292
	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
						c_ctx->c_mode;
	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET_V3);

	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC;
	else
		cipher = SEC_CIPHER_DEC;
	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);

1306 1307 1308 1309
	/* Set the CTR counter mode is 128bit rollover */
	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
					SEC_CTR_CNT_OFFSET);

1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (req->use_pbuf) {
		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
	} else {
		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
	}

	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1319
	if (req->in_dma != c_req->c_out_dma)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		bd_param |= 0x1 << SEC_DE_OFFSET_V3;

	bd_param |= SEC_BD_TYPE3;
	sec_sqe3->bd_param = cpu_to_le32(bd_param);

	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
	sec_sqe3->tag = cpu_to_le64(req);

	return 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
	do {
		--bits;
		nums += counter[bits];
		counter[bits] = nums & BITS_MASK;
		nums >>= BYTE_BITS;
	} while (bits && nums);
}

1342
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1343
{
1344
	struct aead_request *aead_req = req->aead_req.aead_req;
1345 1346 1347
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1348
	unsigned int cryptlen;
1349
	size_t sz;
1350
	u8 *iv;
1351 1352

	if (req->c_req.encrypt)
1353
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1354
	else
1355 1356 1357 1358 1359 1360 1361 1362 1363
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
					cryptlen - iv_size);
		if (unlikely(sz != iv_size))
			dev_err(req->ctx->dev, "copy output iv error!\n");
	} else {
		sz = cryptlen / iv_size;
		if (cryptlen % iv_size)
			sz += 1;
		ctr_iv_inc(iv, iv_size, sz);
	}
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1396 1397
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1398 1399 1400
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1401 1402
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1403 1404 1405

	sec_free_req_id(req);

1406 1407 1408
	/* IV output at encrypto of CBC/CTR mode */
	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1409
		sec_update_iv(req, SEC_SKCIPHER);
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1422
	sk_req->base.complete(&sk_req->base, err);
1423 1424
}

1425
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1426 1427
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1428
	struct sec_cipher_req *c_req = &req->c_req;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	struct sec_aead_req *a_req = &req->aead_req;
	size_t authsize = ctx->a_ctx.mac_len;
	u32 data_size = aead_req->cryptlen;
	u8 flage = 0;
	u8 cm, cl;

	/* the specification has been checked in aead_iv_demension_check() */
	cl = c_req->c_ivin[0] + 1;
	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;

	/* the last 3bit is L' */
	flage |= c_req->c_ivin[0] & IV_CL_MASK;

	/* the M' is bit3~bit5, the Flags is bit6 */
	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
	flage |= cm << IV_CM_OFFSET;
	if (aead_req->assoclen)
		flage |= 0x01 << IV_FLAGS_OFFSET;

	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
	a_req->a_ivin[0] = flage;

	/*
	 * the last 32bit is counter's initial number,
	 * but the nonce uses the first 16bit
	 * the tail 16bit fill with the cipher length
	 */
	if (!c_req->encrypt)
		data_size = aead_req->cryptlen - authsize;

	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
			data_size & IV_LAST_BYTE_MASK;
	data_size >>= IV_BYTE_OFFSET;
	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
			data_size & IV_LAST_BYTE_MASK;
}

static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_aead_req *a_req = &req->aead_req;
1475

1476
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
		/*
		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
		 * the  counter must set to 0x01
		 */
		ctx->a_ctx.mac_len = authsize;
		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
		set_aead_auth_iv(ctx, req);
	}

	/* GCM 12Byte Cipher_IV == Auth_IV */
	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
		ctx->a_ctx.mac_len = authsize;
		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
	}
}

static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
				 struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
				    struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sqe3->a_key_addr = sqe3->c_key_addr;
	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sqe3->auth_mac_key |= SEC_NO_AUTH;

	if (dir)
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	else
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;

	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
	sqe3->auth_src_offset = cpu_to_le16(0x0);
	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

1565 1566
	if (dir) {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1567
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1568 1569
	} else {
		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1570
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1571
	}
1572 1573 1574 1575
	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1576
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
1587
		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1588 1589 1590
		return ret;
	}

1591 1592 1593 1594 1595
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
	else
		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1596 1597 1598 1599

	return 0;
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
				   struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->mac_len /
			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_key_len /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);

	if (dir) {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	} else {
1624
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
	}
	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);

	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	int ret;

	ret = sec_skcipher_bd_fill_v3(ctx, req);
	if (unlikely(ret)) {
		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
		return ret;
	}

1646 1647 1648 1649 1650 1651 1652
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
					req, sec_sqe3);
	else
		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
				       req, sec_sqe3);
1653 1654 1655 1656

	return 0;
}

1657 1658 1659 1660
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1661
	struct sec_aead_req *aead_req = &req->aead_req;
1662 1663 1664
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1665 1666
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1677
					  aead_req->out_mac,
1678 1679 1680 1681
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
1682
			dev_err(c->dev, "copy out mac err!\n");
1683 1684 1685 1686 1687 1688
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1699 1700 1701 1702

	a_req->base.complete(&a_req->base, err);
}

1703 1704 1705
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1706
	sec_free_queue_id(ctx, req);
1707 1708 1709 1710 1711
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1712
	int queue_id;
1713 1714

	/* To load balance */
1715 1716
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1717 1718

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1719
	if (unlikely(req->req_id < 0)) {
1720
		sec_free_queue_id(ctx, req);
1721 1722 1723
		return req->req_id;
	}

1724
	return 0;
1725 1726 1727 1728
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1729
	struct sec_cipher_req *c_req = &req->c_req;
1730 1731 1732
	int ret;

	ret = sec_request_init(ctx, req);
1733
	if (unlikely(ret))
1734 1735 1736
		return ret;

	ret = sec_request_transfer(ctx, req);
1737
	if (unlikely(ret))
1738 1739 1740
		goto err_uninit_req;

	/* Output IV as decrypto */
1741 1742
	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1743
		sec_update_iv(req, ctx->alg_type);
1744 1745

	ret = ctx->req_op->bd_send(ctx, req);
1746 1747
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1748
		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1749 1750 1751 1752 1753 1754 1755
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1756 1757
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1758
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1759 1760
			       ctx->c_ctx.ivsize);
		else
1761
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1762 1763
			       ctx->c_ctx.ivsize);
	}
1764 1765 1766 1767 1768 1769 1770

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);
	return ret;
}

1771
static const struct sec_req_op sec_skcipher_req_ops = {
1772 1773 1774 1775 1776 1777 1778 1779 1780
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1781 1782 1783
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1784
	.do_transfer	= sec_aead_set_iv,
1785 1786 1787 1788 1789 1790
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static const struct sec_req_op sec_aead_req_ops_v3 = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1804
	.do_transfer	= sec_aead_set_iv,
1805 1806 1807 1808 1809 1810
	.bd_fill	= sec_aead_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1811 1812 1813
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1814
	int ret;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	ret = sec_skcipher_init(tfm);
	if (ret)
		return ret;

	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_skcipher_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_skcipher_req_ops_v3;
	}
1827

1828
	return ret;
1829 1830 1831 1832
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1833
	sec_skcipher_uninit(tfm);
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1844 1845 1846
	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		pr_err("get error aead iv size!\n");
1847 1848 1849 1850 1851 1852
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;
1853 1854 1855 1856 1857 1858 1859
	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_aead_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_aead_req_ops_v3;
	}
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
1901
		dev_err(ctx->dev, "aead alloc shash error!\n");
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

1917 1918
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
1919
	struct aead_alg *alg = crypto_aead_alg(tfm);
1920
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1921 1922
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	const char *aead_name = alg->base.cra_name;
1923 1924 1925 1926 1927 1928 1929 1930
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
		return ret;
	}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
						     CRYPTO_ALG_NEED_FALLBACK |
						     CRYPTO_ALG_ASYNC);
	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(a_ctx->fallback_aead_tfm);
	}
	a_ctx->fallback = false;

1941 1942 1943 1944 1945
	return 0;
}

static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
1946 1947 1948
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1949 1950 1951
	sec_aead_exit(tfm);
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
	struct sec_req *sreq)
{
	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
	struct device *dev = ctx->dev;
	u8 c_mode = ctx->c_ctx.c_mode;
	int ret = 0;

	switch (c_mode) {
	case SEC_CMODE_XTS:
		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
			dev_err(dev, "skcipher XTS mode input length error!\n");
			ret = -EINVAL;
		}
		break;
	case SEC_CMODE_ECB:
	case SEC_CMODE_CBC:
		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "skcipher AES input length error!\n");
			ret = -EINVAL;
		}
		break;
1990 1991 1992 1993 1994 1995 1996 1997
	case SEC_CMODE_CFB:
	case SEC_CMODE_OFB:
	case SEC_CMODE_CTR:
		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
			dev_err(dev, "skcipher HW version error!\n");
			ret = -EINVAL;
		}
		break;
1998 1999 2000 2001 2002 2003 2004
	default:
		ret = -EINVAL;
	}

	return ret;
}

2005
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2006
{
2007
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2008
	struct device *dev = ctx->dev;
2009
	u8 c_alg = ctx->c_ctx.c_alg;
2010

2011 2012
	if (unlikely(!sk_req->src || !sk_req->dst ||
		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2013 2014 2015
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
2016
	sreq->c_req.c_len = sk_req->cryptlen;
2017 2018 2019 2020 2021 2022

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2023
	if (c_alg == SEC_CALG_3DES) {
2024
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2025 2026 2027 2028 2029
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2030
		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2031
	}
2032

2033
	dev_err(dev, "skcipher algorithm error!\n");
2034

2035 2036 2037
	return -EINVAL;
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
				    struct skcipher_request *sreq, bool encrypt)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct device *dev = ctx->dev;
	int ret;

	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);

	if (!c_ctx->fbtfm) {
		dev_err(dev, "failed to check fallback tfm\n");
		return -EINVAL;
	}

	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);

	/* software need sync mode to do crypto */
	skcipher_request_set_callback(subreq, sreq->base.flags,
				      NULL, NULL);
	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
				   sreq->cryptlen, sreq->iv);
	if (encrypt)
		ret = crypto_skcipher_encrypt(subreq);
	else
		ret = crypto_skcipher_decrypt(subreq);

	skcipher_request_zero(subreq);

	return ret;
}

2069 2070 2071 2072 2073 2074 2075
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

2076 2077 2078
	if (!sk_req->cryptlen) {
		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
			return -EINVAL;
2079
		return 0;
2080
	}
2081

2082
	req->flag = sk_req->base.flags;
2083 2084 2085 2086
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

2087 2088 2089 2090
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

2091 2092 2093
	if (unlikely(ctx->c_ctx.fallback))
		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2114 2115 2116
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

2136
static struct skcipher_alg sec_skciphers[] = {
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2150
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2151 2152 2153
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2154
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static struct skcipher_alg sec_skciphers_v3[] = {
	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
};

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static int aead_iv_demension_check(struct aead_request *aead_req)
{
	u8 cl;

	cl = aead_req->iv[0] + 1;
	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
		return -EINVAL;

	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
		return -EOVERFLOW;

	return 0;
}

static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2207 2208 2209 2210
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
2211
	u8 c_mode = ctx->c_ctx.c_mode;
2212
	struct device *dev = ctx->dev;
2213
	int ret;
2214

2215 2216 2217
	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
	    req->assoclen > SEC_MAX_AAD_LEN)) {
		dev_err(dev, "aead input spec error!\n");
2218 2219 2220
		return -EINVAL;
	}

2221 2222 2223 2224
	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
		authsize & MAC_LEN_MASK)))) {
		dev_err(dev, "aead input mac length error!\n");
2225 2226
		return -EINVAL;
	}
2227 2228

	if (c_mode == SEC_CMODE_CCM) {
2229 2230 2231 2232
		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
			return -EINVAL;
		}
2233 2234 2235 2236 2237 2238 2239
		ret = aead_iv_demension_check(req);
		if (ret) {
			dev_err(dev, "aead input iv param error!\n");
			return ret;
		}
	}

2240 2241 2242 2243
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;
2244 2245 2246 2247 2248 2249 2250 2251 2252
	if (c_mode == SEC_CMODE_CBC) {
		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "aead crypto length error!\n");
			return -EINVAL;
		}
	}

	return 0;
}
2253

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct device *dev = ctx->dev;
	u8 c_alg = ctx->c_ctx.c_alg;

	if (unlikely(!req->src || !req->dst)) {
		dev_err(dev, "aead input param error!\n");
2264 2265 2266
		return -EINVAL;
	}

2267 2268 2269 2270
	if (ctx->sec->qm.ver == QM_HW_V2) {
		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
		    req->cryptlen <= authsize))) {
			dev_err(dev, "Kunpeng920 not support 0 length!\n");
2271
			ctx->a_ctx.fallback = true;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			return -EINVAL;
		}
	}

	/* Support AES or SM4 */
	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
		dev_err(dev, "aead crypto alg error!\n");
		return -EINVAL;
	}

	if (unlikely(sec_aead_spec_check(ctx, sreq)))
		return -EINVAL;

	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2291 2292 2293
	return 0;
}

2294 2295 2296 2297 2298 2299
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
				struct aead_request *aead_req,
				bool encrypt)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	struct device *dev = ctx->dev;
2300 2301
	struct aead_request *subreq;
	int ret;
2302 2303 2304

	/* Kunpeng920 aead mode not support input 0 size */
	if (!a_ctx->fallback_aead_tfm) {
2305
		dev_err(dev, "aead fallback tfm is NULL!\n");
2306 2307 2308
		return -EINVAL;
	}

2309 2310 2311 2312
	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
	if (!subreq)
		return -ENOMEM;

2313 2314 2315 2316 2317 2318 2319
	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
	aead_request_set_callback(subreq, aead_req->base.flags,
				  aead_req->base.complete, aead_req->base.data);
	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
			       aead_req->cryptlen, aead_req->iv);
	aead_request_set_ad(subreq, aead_req->assoclen);

2320 2321 2322 2323 2324 2325 2326
	if (encrypt)
		ret = crypto_aead_encrypt(subreq);
	else
		ret = crypto_aead_decrypt(subreq);
	aead_request_free(subreq);

	return ret;
2327 2328
}

2329 2330 2331 2332 2333 2334 2335
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

2336
	req->flag = a_req->base.flags;
2337 2338 2339 2340 2341
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
2342 2343 2344
	if (unlikely(ret)) {
		if (ctx->a_ctx.fallback)
			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2345
		return -EINVAL;
2346
	}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

2361
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2362 2363 2364 2365 2366 2367
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2368 2369 2370
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2371 2372 2373 2374 2375 2376 2377
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
2378
	.setauthsize = sec_aead_setauthsize,\
2379 2380 2381 2382 2383 2384 2385 2386 2387
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2388 2389
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2390 2391 2392

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2393 2394
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2395 2396 2397

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),

	SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
};

static struct aead_alg sec_aeads_v3[] = {
	SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2418 2419
};

2420
int sec_register_to_crypto(struct hisi_qm *qm)
2421
{
2422
	int ret;
2423 2424

	/* To avoid repeat register */
2425 2426 2427 2428
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
2429

2430 2431 2432 2433 2434 2435
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_skciphers(sec_skciphers_v3,
						ARRAY_SIZE(sec_skciphers_v3));
		if (ret)
			goto reg_skcipher_fail;
	}
2436

2437 2438
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
2439
		goto reg_aead_fail;
2440 2441 2442 2443 2444
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
		if (ret)
			goto reg_aead_v3_fail;
	}
2445 2446
	return ret;

2447 2448
reg_aead_v3_fail:
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2449 2450 2451 2452 2453 2454 2455
reg_aead_fail:
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
reg_skcipher_fail:
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2456 2457 2458
	return ret;
}

2459
void sec_unregister_from_crypto(struct hisi_qm *qm)
2460
{
2461 2462 2463 2464 2465
	if (qm->ver > QM_HW_V2)
		crypto_unregister_aeads(sec_aeads_v3,
					ARRAY_SIZE(sec_aeads_v3));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));

2466 2467 2468
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
2469 2470
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2471
}