sec_crypto.c 41.2 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
6
#include <crypto/authenc.h>
7
#include <crypto/des.h>
8 9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/sha.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
34 35 36 37
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

38 39 40 41 42 43 44 45
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
#define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)
46 47 48
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
49
#define SEC_MAX_AAD_LEN		65535
50
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
51 52 53 54 55 56 57 58 59 60 61 62 63

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

64
#define SEC_SQE_LEN_RATE	4
65
#define SEC_SQE_CFLAG		2
66
#define SEC_SQE_AEAD_FLAG	3
67
#define SEC_SQE_DONE		0x1
68 69

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
70
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
71 72 73 74 75 76 77 78 79
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

80
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
97
	if (unlikely(req_id < 0)) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111
		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

112
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
113 114 115 116 117 118 119 120 121 122 123 124
		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

125
static int sec_aead_verify(struct sec_req *req)
126 127 128 129
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
130
	u8 *mac_out = req->aead_req.out_mac;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
	struct scatterlist *sgl = aead_req->src;
	size_t sz;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
				aead_req->cryptlen + aead_req->assoclen -
				authsize);
	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
		dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
		return -EBADMSG;
	}

	return 0;
}

146 147 148
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
149
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
150
	struct sec_sqe *bd = resp;
151 152
	struct sec_ctx *ctx;
	struct sec_req *req;
153
	u16 done, flag;
154
	int err = 0;
155 156 157
	u8 type;

	type = bd->type_cipher_auth & SEC_TYPE_MASK;
158
	if (unlikely(type != SEC_BD_TYPE2)) {
159
		atomic64_inc(&dfx->err_bd_cnt);
160 161 162 163
		pr_err("err bd type [%d]\n", type);
		return;
	}

164
	req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
165 166
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
167
		atomic_inc(&qp->qp_status.used);
168 169
		return;
	}
170 171 172 173 174
	req->err_type = bd->type2.error_type;
	ctx = req->ctx;
	done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
	flag = (le16_to_cpu(bd->type2.done_flag) &
		SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
175 176 177
	if (unlikely(req->err_type || done != SEC_SQE_DONE ||
	    (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
	    (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
178 179 180
		dev_err(SEC_CTX_DEV(ctx),
			"err_type[%d],done[%d],flag[%d]\n",
			req->err_type, done, flag);
181
		err = -EIO;
182
		atomic64_inc(&dfx->done_flag_cnt);
183
	}
184

185
	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
186
		err = sec_aead_verify(req);
187

188
	atomic64_inc(&dfx->recv_cnt);
189

190 191
	ctx->req_op->buf_unmap(ctx, req);

192
	ctx->req_op->callback(ctx, req, err);
193 194 195 196 197 198 199
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

200 201 202 203 204
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

205 206
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
207 208 209 210 211 212 213 214 215

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
216 217
	mutex_unlock(&qp_ctx->req_lock);

218
	if (unlikely(ret == -EBUSY))
219 220
		return -ENOBUFS;

221 222 223
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
224 225 226 227 228
	}

	return ret;
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
	return 0;
}

323 324 325 326
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);
327 328 329 330 331 332
	struct sec_alg_res *res = qp_ctx->res;
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
333

334 335 336
	if (ctx->alg_type == SEC_AEAD) {
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
337
			goto alloc_fail;
338
	}
339 340 341 342
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
343
			goto alloc_pbuf_fail;
344 345
		}
	}
346 347

	return 0;
348 349 350
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
351
alloc_fail:
352 353 354
	sec_free_civ_resource(dev, res);

	return ret;
355 356 357 358 359 360 361 362
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	sec_free_civ_resource(dev, qp_ctx->res);
363

364 365
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
366 367
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
368 369
}

370 371 372 373 374 375 376 377 378
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
379
	qp = ctx->qps[qp_ctx_id];
380 381 382 383 384 385 386 387
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp->req_cb = sec_req_cb;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
388
	INIT_LIST_HEAD(&qp_ctx->backlog);
389 390 391

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
392
	if (IS_ERR(qp_ctx->c_in_pool)) {
393
		dev_err(dev, "fail to create sgl pool for input!\n");
394
		goto err_destroy_idr;
395 396 397 398
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
399
	if (IS_ERR(qp_ctx->c_out_pool)) {
400 401 402 403
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

404
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
405 406 407 408 409 410 411 412 413 414
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
415
	sec_alg_resource_free(ctx, qp_ctx);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);

	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	hisi_qm_stop_qp(qp_ctx->qp);
432
	sec_alg_resource_free(ctx, qp_ctx);
433 434 435 436 437 438 439

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

440
static int sec_ctx_base_init(struct sec_ctx *ctx)
441 442 443 444
{
	struct sec_dev *sec;
	int i, ret;

445 446 447
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
448 449
		return -ENODEV;
	}
450 451

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
452
	ctx->sec = sec;
453
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
454

455 456
	ctx->pbuf_supported = ctx->sec->iommu_used;

457
	/* Half of queue depth is taken as fake requests limit in the queue. */
458
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
459 460
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
461 462 463 464
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
465 466

	for (i = 0; i < sec->ctx_q_num; i++) {
467
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
468 469 470 471 472
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
473

474 475 476 477 478
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
479 480 481
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);

482 483 484
	return ret;
}

485
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
486
{
487
	int i;
488 489 490 491

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

492
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
493 494 495
	kfree(ctx->qp_ctx);
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
			  c_ctx->c_key, c_ctx->c_key_dma);
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
			  a_ctx->a_key, a_ctx->a_key_dma);
}

538 539 540 541 542
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

543
	ctx->alg_type = SEC_SKCIPHER;
544 545 546
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
547
		pr_err("get error skcipher iv size!\n");
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return 0;
err_cipher_init:
	sec_ctx_base_uninit(ctx);

	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
		switch (keylen) {
		case AES_KEYSIZE_128:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case AES_KEYSIZE_192:
			c_ctx->c_key_len = SEC_CKEY_192BIT;
			break;
		case AES_KEYSIZE_256:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: aes key error!\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);

	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)

GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)

GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	struct device *dev = SEC_CTX_DEV(ctx);
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
				qp_ctx->res[req_id].pbuf,
				copy_size);

	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}

	c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;

	if (!c_req->c_in_dma) {
		dev_err(dev, "fail to set pbuffer address!\n");
		return -ENOMEM;
	}

	c_req->c_out_dma = c_req->c_in_dma;

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	struct device *dev = SEC_CTX_DEV(ctx);
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
				qp_ctx->res[req_id].pbuf,
				copy_size);

	if (unlikely(pbuf_length != copy_size))
		dev_err(dev, "copy pbuf data to dst error!\n");

}

746
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
747
			  struct scatterlist *src, struct scatterlist *dst)
748 749
{
	struct sec_cipher_req *c_req = &req->c_req;
750
	struct sec_aead_req *a_req = &req->aead_req;
751
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
752 753
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
	struct device *dev = SEC_CTX_DEV(ctx);
754 755 756 757 758 759 760 761 762 763 764
	int ret;

	if (req->use_pbuf) {
		ret = sec_cipher_pbuf_map(ctx, req, src);
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
765

766 767
		return ret;
	}
768 769 770 771 772 773
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

804
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
805 806
			     struct scatterlist *src, struct scatterlist *dst)
{
807 808 809
	struct sec_cipher_req *c_req = &req->c_req;
	struct device *dev = SEC_CTX_DEV(ctx);

810 811 812 813 814
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
815

816 817
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
818 819
}

820 821
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
822
	struct skcipher_request *sq = req->c_req.sk_req;
823

824
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
825 826 827 828
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
829
	struct skcipher_request *sq = req->c_req.sk_req;
830

831
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
	int blocksize, ret;

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
	if (keys->authkeylen > blocksize) {
869 870
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
871
		if (ret) {
872
			pr_err("hisi_sec2: aead auth digest error!\n");
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
			return -EINVAL;
		}
		ctx->a_key_len = blocksize;
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
		goto bad_key;
	}

	return 0;
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));

	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

941
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
942 943 944 945 946 947
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

948
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
949 950
}

951 952 953 954 955
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
956
	if (unlikely(ret))
957 958 959 960 961
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
962
	if (unlikely(ret))
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);

	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
981
	struct sec_cipher_req *c_req = &req->c_req;
982

983
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
984 985 986 987 988 989 990 991 992
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
993
	u8 de = 0;
994 995 996 997

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
998
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1015 1016 1017 1018
	if (req->use_pbuf)
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
	else
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1019 1020 1021 1022 1023 1024 1025
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	/* Just set DST address type */
1026 1027 1028 1029
	if (req->use_pbuf)
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	else
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1030 1031 1032 1033 1034 1035 1036 1037
	sec_sqe->sdm_addr_type |= da_type;

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1038
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1039
{
1040
	struct aead_request *aead_req = req->aead_req.aead_req;
1041 1042 1043
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1044
	unsigned int cryptlen;
1045
	size_t sz;
1046
	u8 *iv;
1047 1048

	if (req->c_req.encrypt)
1049
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1050
	else
1051 1052 1053 1054 1055 1056 1057 1058 1059
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1060

1061 1062
	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
				cryptlen - iv_size);
1063
	if (unlikely(sz != iv_size))
1064 1065 1066
		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1085 1086
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1087 1088 1089
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1090 1091
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1092 1093 1094 1095

	sec_free_req_id(req);

	/* IV output at encrypto of CBC mode */
1096
	if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
1097
		sec_update_iv(req, SEC_SKCIPHER);
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1110

1111
	sk_req->base.complete(&sk_req->base, err);
1112 1113
}

1114 1115 1116
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1117
	struct sec_cipher_req *c_req = &req->c_req;
1118

1119
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1152
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
		dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
		return ret;
	}

	sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);

	return 0;
}

static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1176
	struct sec_aead_req *aead_req = &req->aead_req;
1177 1178 1179
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1180 1181
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1192
					  aead_req->out_mac,
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
			dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1214 1215 1216 1217

	a_req->base.complete(&a_req->base, err);
}

1218 1219 1220
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1221
	sec_free_queue_id(ctx, req);
1222 1223 1224 1225 1226
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1227
	int queue_id;
1228 1229

	/* To load balance */
1230 1231
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1232 1233

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1234
	if (unlikely(req->req_id < 0)) {
1235
		sec_free_queue_id(ctx, req);
1236 1237 1238
		return req->req_id;
	}

1239
	return 0;
1240 1241 1242 1243
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1244
	struct sec_cipher_req *c_req = &req->c_req;
1245 1246 1247
	int ret;

	ret = sec_request_init(ctx, req);
1248
	if (unlikely(ret))
1249 1250 1251
		return ret;

	ret = sec_request_transfer(ctx, req);
1252
	if (unlikely(ret))
1253 1254 1255 1256
		goto err_uninit_req;

	/* Output IV as decrypto */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1257
		sec_update_iv(req, ctx->alg_type);
1258 1259

	ret = ctx->req_op->bd_send(ctx, req);
1260 1261
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1262
		dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
1263 1264 1265 1266 1267 1268 1269
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1270 1271
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1272
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1273 1274
			       ctx->c_ctx.ivsize);
		else
1275
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1276 1277
			       ctx->c_ctx.ivsize);
	}
1278 1279 1280 1281 1282 1283 1284 1285

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);

	return ret;
}

1286
static const struct sec_req_op sec_skcipher_req_ops = {
1287 1288 1289 1290 1291 1292 1293 1294 1295
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
	.do_transfer	= sec_aead_copy_iv,
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1306 1307 1308 1309
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

1310
	ctx->req_op = &sec_skcipher_req_ops;
1311 1312 1313 1314 1315 1316

	return sec_skcipher_init(tfm);
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1317
	sec_skcipher_uninit(tfm);
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
		return -EINVAL;
	}

	ctx->req_op = &sec_aead_req_ops;
	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);

	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
		dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1410
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1411
{
1412
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1413
	struct device *dev = SEC_CTX_DEV(ctx);
1414
	u8 c_alg = ctx->c_ctx.c_alg;
1415

1416
	if (unlikely(!sk_req->src || !sk_req->dst)) {
1417 1418 1419
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
1420
	sreq->c_req.c_len = sk_req->cryptlen;
1421 1422 1423 1424 1425 1426

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

1427
	if (c_alg == SEC_CALG_3DES) {
1428
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1429 1430 1431 1432 1433
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1434
		if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
			dev_err(dev, "skcipher aes input length error!\n");
			return -EINVAL;
		}
		return 0;
	}

	dev_err(dev, "skcipher algorithm error!\n");
	return -EINVAL;
}

static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	if (!sk_req->cryptlen)
		return 0;

1455
	req->flag = sk_req->base.flags;
1456 1457 1458 1459
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

1460 1461 1462 1463
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
1484
		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

1504
static struct skcipher_alg sec_skciphers[] = {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

1534 1535 1536 1537 1538 1539 1540
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	u8 c_alg = ctx->c_ctx.c_alg;
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);

1541 1542
	if (unlikely(!req->src || !req->dst || !req->cryptlen ||
		req->assoclen > SEC_MAX_AAD_LEN)) {
1543 1544 1545 1546
		dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
		return -EINVAL;
	}

1547 1548 1549 1550 1551 1552
	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/* Support AES only */
	if (unlikely(c_alg != SEC_CALG_AES)) {
		dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
		return -EINVAL;

	}
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;

	if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
		dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
		return -EINVAL;
	}

	return 0;
}

static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

1579
	req->flag = a_req->base.flags;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
1608
		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
	SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
			sec_aead_ctx_exit, blksize, ivsize, authsize)

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
};

1640 1641
int sec_register_to_crypto(void)
{
1642
	int ret;
1643 1644

	/* To avoid repeat register */
1645 1646 1647 1648
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
1649

1650 1651 1652 1653
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
		crypto_unregister_skciphers(sec_skciphers,
					    ARRAY_SIZE(sec_skciphers));
1654 1655 1656 1657 1658
	return ret;
}

void sec_unregister_from_crypto(void)
{
1659 1660 1661
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1662
}