sec_crypto.c 35.5 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
6
#include <crypto/authenc.h>
7
#include <crypto/des.h>
8 9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/sha.h>
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
34 35 36 37
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

38 39 40 41 42 43 44 45
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
#define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)
46 47 48 49 50
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
#define SEC_SQE_LEN_RATE	4
51
#define SEC_SQE_CFLAG		2
52
#define SEC_SQE_AEAD_FLAG	3
53
#define SEC_SQE_DONE		0x1
54

55
static atomic_t sec_active_devs;
56 57

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
58
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
59 60 61 62 63 64 65 66 67
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

68
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
85
	if (unlikely(req_id < 0)) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99
		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

100
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
101 102 103 104 105 106 107 108 109 110 111 112
		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static int sec_aead_verify(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	u8 *mac_out = qp_ctx->res[req->req_id].out_mac;
	size_t authsize = crypto_aead_authsize(tfm);
	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
	struct scatterlist *sgl = aead_req->src;
	size_t sz;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
				aead_req->cryptlen + aead_req->assoclen -
				authsize);
	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
		dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
		return -EBADMSG;
	}

	return 0;
}

134 135 136 137
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
	struct sec_sqe *bd = resp;
138 139
	struct sec_ctx *ctx;
	struct sec_req *req;
140
	u16 done, flag;
141
	int err = 0;
142 143 144
	u8 type;

	type = bd->type_cipher_auth & SEC_TYPE_MASK;
145
	if (unlikely(type != SEC_BD_TYPE2)) {
146 147 148 149
		pr_err("err bd type [%d]\n", type);
		return;
	}

150 151 152 153 154 155
	req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
	req->err_type = bd->type2.error_type;
	ctx = req->ctx;
	done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
	flag = (le16_to_cpu(bd->type2.done_flag) &
		SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
156 157 158
	if (unlikely(req->err_type || done != SEC_SQE_DONE ||
	    (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
	    (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
159 160 161
		dev_err(SEC_CTX_DEV(ctx),
			"err_type[%d],done[%d],flag[%d]\n",
			req->err_type, done, flag);
162 163
		err = -EIO;
	}
164

165 166 167
	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
		err = sec_aead_verify(req, qp_ctx);

168
	atomic64_inc(&ctx->sec->debug.dfx.recv_cnt);
169

170 171
	ctx->req_op->buf_unmap(ctx, req);

172
	ctx->req_op->callback(ctx, req, err);
173 174 175 176 177 178 179 180 181 182
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
	mutex_unlock(&qp_ctx->req_lock);
183
	atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
184

185
	if (unlikely(ret == -EBUSY))
186 187 188
		return -ENOBUFS;

	if (!ret) {
189
		if (req->fake_busy)
190 191 192 193 194 195 196 197
			ret = -EBUSY;
		else
			ret = -EINPROGRESS;
	}

	return ret;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

248 249 250 251
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);
252 253 254 255 256 257
	struct sec_alg_res *res = qp_ctx->res;
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
258

259 260 261 262 263 264 265 266 267 268 269
	if (ctx->alg_type == SEC_AEAD) {
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
			goto get_fail;
	}

	return 0;
get_fail:
	sec_free_civ_resource(dev, res);

	return ret;
270 271 272 273 274 275 276 277
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	sec_free_civ_resource(dev, qp_ctx->res);
278 279 280

	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
281 282
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp = hisi_qm_create_qp(qm, alg_type);
	if (IS_ERR(qp))
		return PTR_ERR(qp);

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp->req_cb = sec_req_cb;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

	mutex_init(&qp_ctx->req_lock);
	atomic_set(&qp_ctx->pending_reqs, 0);
	idr_init(&qp_ctx->req_idr);

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
308
	if (IS_ERR(qp_ctx->c_in_pool)) {
309
		dev_err(dev, "fail to create sgl pool for input!\n");
310
		goto err_destroy_idr;
311 312 313 314
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
315
	if (IS_ERR(qp_ctx->c_out_pool)) {
316 317 318 319
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

320
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
321 322 323 324 325 326 327 328 329 330
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
331
	sec_alg_resource_free(ctx, qp_ctx);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp);

	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
	struct device *dev = SEC_CTX_DEV(ctx);

	hisi_qm_stop_qp(qp_ctx->qp);
349
	sec_alg_resource_free(ctx, qp_ctx);
350 351 352 353 354 355 356 357

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
	hisi_qm_release_qp(qp_ctx->qp);
}

358
static int sec_ctx_base_init(struct sec_ctx *ctx)
359 360 361 362 363 364
{
	struct sec_dev *sec;
	int i, ret;

	sec = sec_find_device(cpu_to_node(smp_processor_id()));
	if (!sec) {
365
		pr_err("Can not find proper Hisilicon SEC device!\n");
366 367 368
		return -ENODEV;
	}
	ctx->sec = sec;
369
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
370 371

	/* Half of queue depth is taken as fake requests limit in the queue. */
372
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
373 374 375 376 377 378
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
	if (!ctx->qp_ctx)
		return -ENOMEM;

	for (i = 0; i < sec->ctx_q_num; i++) {
379
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
380 381 382 383 384 385 386 387 388 389 390 391 392
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
	return ret;
}

393
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
394
{
395
	int i;
396 397 398 399 400 401 402

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

	kfree(ctx->qp_ctx);
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
			  c_ctx->c_key, c_ctx->c_key_dma);
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
			  a_ctx->a_key, a_ctx->a_key_dma);
}

445 446 447 448 449 450
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	ctx = crypto_skcipher_ctx(tfm);
451
	ctx->alg_type = SEC_SKCIPHER;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return 0;
err_cipher_init:
	sec_ctx_base_uninit(ctx);

	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
		switch (keylen) {
		case AES_KEYSIZE_128:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
		case AES_KEYSIZE_192:
			c_ctx->c_key_len = SEC_CKEY_192BIT;
			break;
		case AES_KEYSIZE_256:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: aes key error!\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);

	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)

GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)

GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)

594 595
static int sec_cipher_map(struct device *dev, struct sec_req *req,
			  struct scatterlist *src, struct scatterlist *dst)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
{
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

629 630 631 632 633 634 635 636 637
static void sec_cipher_unmap(struct device *dev, struct sec_cipher_req *req,
			     struct scatterlist *src, struct scatterlist *dst)
{
	if (dst != src)
		hisi_acc_sg_buf_unmap(dev, src, req->c_in);

	hisi_acc_sg_buf_unmap(dev, dst, req->c_out);
}

638 639
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
640
	struct skcipher_request *sq = req->c_req.sk_req;
641

642
	return sec_cipher_map(SEC_CTX_DEV(ctx), req, sq->src, sq->dst);
643 644 645 646 647 648 649 650
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_req *c_req = &req->c_req;
	struct skcipher_request *sk_req = c_req->sk_req;

651
	sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst);
652 653
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
	SHASH_DESC_ON_STACK(shash, hash_tfm);
	int blocksize, ret;

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
	if (keys->authkeylen > blocksize) {
		ret = crypto_shash_digest(shash, keys->authkey,
					  keys->authkeylen, ctx->a_key);
		if (ret) {
			pr_err("hisi_sec2: aead auth disgest error!\n");
			return -EINVAL;
		}
		ctx->a_key_len = blocksize;
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
		dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
		goto bad_key;
	}

	return 0;
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));

	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

	return sec_cipher_map(SEC_CTX_DEV(ctx), req, aq->src, aq->dst);
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct device *dev = SEC_CTX_DEV(ctx);
	struct sec_cipher_req *cq = &req->c_req;
	struct aead_request *aq = req->aead_req.aead_req;

	sec_cipher_unmap(dev, cq, aq->src, aq->dst);
}

774 775 776 777 778
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
779
	if (unlikely(ret))
780 781 782 783 784
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
785
	if (unlikely(ret))
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);

	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
804
	u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;
805

806
	memcpy(c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
807 808 809 810 811 812 813 814 815
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
816
	u8 de = 0;
817 818 819 820

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
821 822
	sec_sqe->type2.c_ivin_addr =
		cpu_to_le64(req->qp_ctx->res[req->req_id].c_ivin_dma);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

	sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	/* Just set DST address type */
	da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	sec_sqe->sdm_addr_type |= da_type;

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

856
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
857
{
858
	struct aead_request *aead_req = req->aead_req.aead_req;
859 860 861
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
862
	unsigned int cryptlen;
863
	size_t sz;
864
	u8 *iv;
865 866

	if (req->c_req.encrypt)
867
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
868
	else
869 870 871 872 873 874 875 876 877
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
878

879 880
	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
				cryptlen - iv_size);
881
	if (unlikely(sz != iv_size))
882 883 884
		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}

885 886
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
887 888 889 890 891 892 893 894
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);

	/* IV output at encrypto of CBC mode */
895
	if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
896
		sec_update_iv(req, SEC_SKCIPHER);
897

898
	if (req->fake_busy)
899 900
		sk_req->base.complete(&sk_req->base, -EINPROGRESS);

901
	sk_req->base.complete(&sk_req->base, err);
902 903
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin;

	memcpy(c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sec_sqe->type2.mac_addr =
		cpu_to_le64(req->qp_ctx->res[req->req_id].out_mac_dma);
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
		dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
		return ret;
	}

	sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);

	return 0;
}

static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	size_t sz;

	atomic_dec(&qp_ctx->pending_reqs);

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
					  qp_ctx->res[req->req_id].out_mac,
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
			dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

	if (req->fake_busy)
		a_req->base.complete(&a_req->base, -EINPROGRESS);

	a_req->base.complete(&a_req->base, err);
}

1000 1001 1002 1003 1004 1005
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;

	atomic_dec(&qp_ctx->pending_reqs);
	sec_free_req_id(req);
1006
	sec_free_queue_id(ctx, req);
1007 1008 1009 1010 1011
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1012
	int queue_id;
1013 1014

	/* To load balance */
1015 1016
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1017 1018

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1019
	if (unlikely(req->req_id < 0)) {
1020
		sec_free_queue_id(ctx, req);
1021 1022 1023 1024
		return req->req_id;
	}

	if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
1025
		req->fake_busy = true;
1026
	else
1027
		req->fake_busy = false;
1028

1029
	return 0;
1030 1031 1032 1033 1034 1035 1036
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = sec_request_init(ctx, req);
1037
	if (unlikely(ret))
1038 1039 1040
		return ret;

	ret = sec_request_transfer(ctx, req);
1041
	if (unlikely(ret))
1042 1043 1044 1045
		goto err_uninit_req;

	/* Output IV as decrypto */
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1046
		sec_update_iv(req, ctx->alg_type);
1047 1048

	ret = ctx->req_op->bd_send(ctx, req);
1049
	if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
1050
		dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
1051 1052 1053 1054 1055 1056 1057
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
			memcpy(req->c_req.sk_req->iv,
			       req->qp_ctx->res[req->req_id].c_ivin,
			       ctx->c_ctx.ivsize);
		else
			memcpy(req->aead_req.aead_req->iv,
			       req->qp_ctx->res[req->req_id].c_ivin,
			       ctx->c_ctx.ivsize);
	}
1068 1069 1070 1071 1072 1073 1074 1075

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);

	return ret;
}

1076
static const struct sec_req_op sec_skcipher_req_ops = {
1077 1078 1079 1080 1081 1082 1083 1084 1085
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
	.do_transfer	= sec_aead_copy_iv,
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1096 1097 1098 1099
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

1100
	ctx->req_op = &sec_skcipher_req_ops;
1101 1102 1103 1104 1105 1106

	return sec_skcipher_init(tfm);
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1107
	sec_skcipher_uninit(tfm);
1108 1109
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
		return -EINVAL;
	}

	ctx->req_op = &sec_aead_req_ops;
	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);

	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
		dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1200
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1201
{
1202
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1203
	struct device *dev = SEC_CTX_DEV(ctx);
1204
	u8 c_alg = ctx->c_ctx.c_alg;
1205

1206
	if (unlikely(!sk_req->src || !sk_req->dst)) {
1207 1208 1209
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
1210
	sreq->c_req.c_len = sk_req->cryptlen;
1211
	if (c_alg == SEC_CALG_3DES) {
1212
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1213 1214 1215 1216 1217
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1218
		if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
			dev_err(dev, "skcipher aes input length error!\n");
			return -EINVAL;
		}
		return 0;
	}

	dev_err(dev, "skcipher algorithm error!\n");
	return -EINVAL;
}

static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	if (!sk_req->cryptlen)
		return 0;

	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

1243 1244 1245 1246
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
		.cra_flags = CRYPTO_ALG_ASYNC,\
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

1287
static struct skcipher_alg sec_skciphers[] = {
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	u8 c_alg = ctx->c_ctx.c_alg;
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);

	if (unlikely(!req->src || !req->dst || !req->cryptlen)) {
		dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
		return -EINVAL;
	}

	/* Support AES only */
	if (unlikely(c_alg != SEC_CALG_AES)) {
		dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
		return -EINVAL;

	}
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;

	if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
		dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
		return -EINVAL;
	}

	return 0;
}

static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
		.cra_flags = CRYPTO_ALG_ASYNC,\
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
	SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
			sec_aead_ctx_exit, blksize, ivsize, authsize)

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
};

1415 1416 1417 1418 1419
int sec_register_to_crypto(void)
{
	int ret = 0;

	/* To avoid repeat register */
1420
	if (atomic_add_return(1, &sec_active_devs) == 1) {
1421 1422
		ret = crypto_register_skciphers(sec_skciphers,
						ARRAY_SIZE(sec_skciphers));
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		if (ret)
			return ret;

		ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
		if (ret)
			goto reg_aead_fail;
	}

	return ret;

reg_aead_fail:
	crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers));
1435 1436 1437 1438 1439 1440

	return ret;
}

void sec_unregister_from_crypto(void)
{
1441
	if (atomic_sub_return(1, &sec_active_devs) == 0) {
1442 1443
		crypto_unregister_skciphers(sec_skciphers,
					    ARRAY_SIZE(sec_skciphers));
1444 1445
		crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	}
1446
}