sec_crypto.c 51.5 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
#include <crypto/algapi.h>
6
#include <crypto/authenc.h>
7
#include <crypto/des.h>
8 9
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
10
#include <crypto/internal/des.h>
11 12
#include <crypto/sha1.h>
#include <crypto/sha2.h>
13 14 15 16 17 18 19 20 21 22 23
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
24
#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
25 26 27 28 29 30 31 32 33 34 35 36
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
37 38 39 40
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

41 42 43 44 45 46 47 48 49 50 51
#define SEC_DE_OFFSET_V3		9
#define SEC_SCENE_OFFSET_V3	5
#define SEC_CKEY_OFFSET_V3	13
#define SEC_SRC_SGL_OFFSET_V3	11
#define SEC_DST_SGL_OFFSET_V3	14
#define SEC_CALG_OFFSET_V3	4
#define SEC_AKEY_OFFSET_V3	9
#define SEC_MAC_OFFSET_V3	4
#define SEC_AUTH_ALG_OFFSET_V3	15
#define SEC_CIPHER_AUTH_V3	0xbf
#define SEC_AUTH_CIPHER_V3	0x40
52 53 54 55
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001
56
#define SEC_SQE_LEN_RATE_MASK	0x3
57 58 59

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
60 61 62
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
63
#define SEC_MAX_AAD_LEN		65535
64
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
65 66 67 68 69 70 71 72 73 74 75 76 77

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

78
#define SEC_SQE_LEN_RATE	4
79
#define SEC_SQE_CFLAG		2
80
#define SEC_SQE_AEAD_FLAG	3
81
#define SEC_SQE_DONE		0x1
82 83 84
#define MAX_INPUT_DATA_LEN	0xFFFE00
#define BITS_MASK		0xFF
#define BYTE_BITS		0x8
85
#define SEC_XTS_NAME_SZ		0x3
86 87

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
88
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
89 90 91 92 93 94 95 96 97
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

98
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
115
	if (unlikely(req_id < 0)) {
116
		dev_err(req->ctx->dev, "alloc req id fail!\n");
117 118 119 120 121
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
122

123 124 125 126 127 128 129 130
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

131
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
132
		dev_err(req->ctx->dev, "free request id invalid!\n");
133 134 135 136 137 138 139 140 141 142 143
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

144
static int sec_aead_verify(struct sec_req *req)
145 146 147 148
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
149
	u8 *mac_out = req->aead_req.out_mac;
150 151 152 153 154 155 156 157
	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
	struct scatterlist *sgl = aead_req->src;
	size_t sz;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
				aead_req->cryptlen + aead_req->assoclen -
				authsize);
	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
158
		dev_err(req->ctx->dev, "aead verify failure!\n");
159 160 161 162 163 164
		return -EBADMSG;
	}

	return 0;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
	struct sec_sqe *bd = resp;

	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
	status->flag = (le16_to_cpu(bd->type2.done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le16_to_cpu(bd->type2.tag);
	status->err_type = bd->type2.error_type;

	return bd->type_cipher_auth & SEC_TYPE_MASK;
}

static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
	struct sec_sqe3 *bd3 = resp;

	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
	status->flag = (le16_to_cpu(bd3->done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le64_to_cpu(bd3->tag);
	status->err_type = bd3->error_type;

	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}

static int sec_cb_status_check(struct sec_req *req,
			       struct bd_status *status)
{
	struct sec_ctx *ctx = req->ctx;

	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
				    req->err_type, status->done);
		return -EIO;
	}

	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
					    status->flag);
			return -EIO;
		}
	}

	return 0;
}

213 214 215
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
216
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
217 218
	u8 type_supported = qp_ctx->ctx->type_supported;
	struct bd_status status;
219 220
	struct sec_ctx *ctx;
	struct sec_req *req;
221
	int err;
222 223
	u8 type;

224 225 226 227 228 229 230 231 232
	if (type_supported == SEC_BD_TYPE2) {
		type = pre_parse_finished_bd(&status, resp);
		req = qp_ctx->req_list[status.tag];
	} else {
		type = pre_parse_finished_bd3(&status, resp);
		req = (void *)(uintptr_t)status.tag;
	}

	if (unlikely(type != type_supported)) {
233
		atomic64_inc(&dfx->err_bd_cnt);
234 235 236 237
		pr_err("err bd type [%d]\n", type);
		return;
	}

238 239
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
240
		atomic_inc(&qp->qp_status.used);
241 242
		return;
	}
243 244

	req->err_type = status.err_type;
245
	ctx = req->ctx;
246 247
	err = sec_cb_status_check(req, &status);
	if (err)
248
		atomic64_inc(&dfx->done_flag_cnt);
249

250
	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
251
		err = sec_aead_verify(req);
252

253
	atomic64_inc(&dfx->recv_cnt);
254

255 256
	ctx->req_op->buf_unmap(ctx, req);

257
	ctx->req_op->callback(ctx, req, err);
258 259 260 261 262 263 264
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

265 266 267 268 269
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

270 271
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
272 273 274 275 276 277 278 279 280

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
281 282
	mutex_unlock(&qp_ctx->req_lock);

283
	if (unlikely(ret == -EBUSY))
284 285
		return -ENOBUFS;

286 287 288
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
289 290 291 292 293
	}

	return ret;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
385

386 387 388
	return 0;
}

389 390 391
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
392
	struct sec_alg_res *res = qp_ctx->res;
393
	struct device *dev = ctx->dev;
394 395 396 397 398
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
399

400 401 402
	if (ctx->alg_type == SEC_AEAD) {
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
403
			goto alloc_fail;
404
	}
405 406 407 408
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
409
			goto alloc_pbuf_fail;
410 411
		}
	}
412 413

	return 0;
414

415 416 417
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
418
alloc_fail:
419 420
	sec_free_civ_resource(dev, res);
	return ret;
421 422 423 424 425
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
426
	struct device *dev = ctx->dev;
427 428

	sec_free_civ_resource(dev, qp_ctx->res);
429

430 431
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
432 433
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
434 435
}

436 437 438
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
439
	struct device *dev = ctx->dev;
440 441 442 443 444
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
445
	qp = ctx->qps[qp_ctx_id];
446 447 448 449 450
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

451 452
	qp->req_cb = sec_req_cb;

453 454
	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
455
	INIT_LIST_HEAD(&qp_ctx->backlog);
456 457 458

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
459
	if (IS_ERR(qp_ctx->c_in_pool)) {
460
		dev_err(dev, "fail to create sgl pool for input!\n");
461
		goto err_destroy_idr;
462 463 464 465
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
466
	if (IS_ERR(qp_ctx->c_out_pool)) {
467 468 469 470
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

471
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
472 473 474 475 476 477 478 479 480 481
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
482
	sec_alg_resource_free(ctx, qp_ctx);
483 484 485 486 487 488 489 490 491 492 493 494
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
495
	struct device *dev = ctx->dev;
496 497

	hisi_qm_stop_qp(qp_ctx->qp);
498
	sec_alg_resource_free(ctx, qp_ctx);
499 500 501 502 503 504 505

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

506
static int sec_ctx_base_init(struct sec_ctx *ctx)
507 508 509 510
{
	struct sec_dev *sec;
	int i, ret;

511 512 513
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
514 515
		return -ENODEV;
	}
516 517

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
518
	ctx->sec = sec;
519
	ctx->dev = &sec->qm.pdev->dev;
520
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
521

522 523
	ctx->pbuf_supported = ctx->sec->iommu_used;

524
	/* Half of queue depth is taken as fake requests limit in the queue. */
525
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
526 527
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
528 529 530 531
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
532 533

	for (i = 0; i < sec->ctx_q_num; i++) {
534
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
535 536 537 538 539
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
540

541 542 543 544
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
	kfree(ctx->qp_ctx);
545 546
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
547 548 549
	return ret;
}

550
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
551
{
552
	int i;
553 554 555 556

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

557
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
558 559 560
	kfree(ctx->qp_ctx);
}

561 562 563 564
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

565
	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
566 567 568 569 570 571 572 573 574 575 576 577
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
578
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
579 580 581
			  c_ctx->c_key, c_ctx->c_key_dma);
}

582 583 584 585
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

586
	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
587 588 589 590 591 592 593 594 595 596 597 598
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
599
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
600 601 602
			  a_ctx->a_key, a_ctx->a_key_dma);
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
	const char *alg = crypto_tfm_alg_name(&tfm->base);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->fallback = false;
	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
		return 0;

	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
						  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(c_ctx->fbtfm)) {
		pr_err("failed to alloc fallback tfm!\n");
		return PTR_ERR(c_ctx->fbtfm);
	}

	return 0;
}

623 624 625 626 627
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

628
	ctx->alg_type = SEC_SKCIPHER;
629 630 631
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
632
		pr_err("get error skcipher iv size!\n");
633 634 635 636 637 638 639 640 641 642 643
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

644 645 646 647
	ret = sec_skcipher_fbtfm_init(tfm);
	if (ret)
		goto err_fbtfm_init;

648
	return 0;
649

650 651
err_fbtfm_init:
	sec_cipher_uninit(ctx);
652 653 654 655 656 657 658 659 660
err_cipher_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

661 662 663
	if (ctx->c_ctx.fbtfm)
		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);

664 665 666 667
	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

668
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
669 670 671
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
672 673 674 675 676 677 678 679
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	ret = verify_skcipher_des3_key(tfm, key);
	if (ret)
		return ret;

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
703 704 705
		case SEC_XTS_MID_KEY_SIZE:
			c_ctx->fallback = true;
			break;
706 707 708 709 710 711 712 713
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
714 715 716
		if (c_ctx->c_alg == SEC_CALG_SM4 &&
		    keylen != AES_KEYSIZE_128) {
			pr_err("hisi_sec2: sm4 key error!\n");
717
			return -EINVAL;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		} else {
			switch (keylen) {
			case AES_KEYSIZE_128:
				c_ctx->c_key_len = SEC_CKEY_128BIT;
				break;
			case AES_KEYSIZE_192:
				c_ctx->c_key_len = SEC_CKEY_192BIT;
				break;
			case AES_KEYSIZE_256:
				c_ctx->c_key_len = SEC_CKEY_256BIT;
				break;
			default:
				pr_err("hisi_sec2: aes key error!\n");
				return -EINVAL;
			}
733 734 735 736 737 738 739 740 741 742 743 744
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
745
	struct device *dev = ctx->dev;
746 747 748 749 750
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
751
			dev_err(dev, "xts mode key err!\n");
752 753 754 755 756 757 758 759 760
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
761
		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
762 763 764 765 766 767 768 769 770 771
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
772
		dev_err(dev, "set sec key err!\n");
773 774 775 776
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);
777 778 779 780 781 782 783
	if (c_ctx->fallback) {
		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
		if (ret) {
			dev_err(dev, "failed to set fallback skcipher key!\n");
			return ret;
		}
	}
784 785 786 787 788 789 790 791 792 793 794 795 796
	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
797 798 799
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
800 801 802 803
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
804 805 806
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
807

808 809 810 811 812 813
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
814
	struct device *dev = ctx->dev;
815 816 817 818 819 820 821 822 823
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
824 825
							qp_ctx->res[req_id].pbuf,
							copy_size);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}

	c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
	c_req->c_out_dma = c_req->c_in_dma;

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
843
	struct device *dev = ctx->dev;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
				qp_ctx->res[req_id].pbuf,
				copy_size);
	if (unlikely(pbuf_length != copy_size))
		dev_err(dev, "copy pbuf data to dst error!\n");
}

859
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
860
			  struct scatterlist *src, struct scatterlist *dst)
861 862
{
	struct sec_cipher_req *c_req = &req->c_req;
863
	struct sec_aead_req *a_req = &req->aead_req;
864
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
865
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
866
	struct device *dev = ctx->dev;
867 868 869 870 871 872 873 874 875 876 877
	int ret;

	if (req->use_pbuf) {
		ret = sec_cipher_pbuf_map(ctx, req, src);
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
878

879 880
		return ret;
	}
881 882 883 884 885 886
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

917
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
918 919
			     struct scatterlist *src, struct scatterlist *dst)
{
920
	struct sec_cipher_req *c_req = &req->c_req;
921
	struct device *dev = ctx->dev;
922

923 924 925 926 927
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
928

929 930
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
931 932
}

933 934
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
935
	struct skcipher_request *sq = req->c_req.sk_req;
936

937
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
938 939 940 941
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
942
	struct skcipher_request *sq = req->c_req.sk_req;
943

944
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
945 946
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
973
	int blocksize, digestsize, ret;
974 975 976 977 978 979 980

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
981
	digestsize = crypto_shash_digestsize(hash_tfm);
982
	if (keys->authkeylen > blocksize) {
983 984
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
985
		if (ret) {
986
			pr_err("hisi_sec2: aead auth digest error!\n");
987 988
			return -EINVAL;
		}
989
		ctx->a_key_len = digestsize;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1006
	struct device *dev = ctx->dev;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
1020
		dev_err(dev, "set sec cipher key err!\n");
1021 1022 1023 1024 1025
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
1026
		dev_err(dev, "set sec auth key err!\n");
1027 1028 1029
		goto bad_key;
	}

1030 1031 1032 1033 1034 1035
	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
		dev_err(dev, "MAC or AUTH key length error!\n");
		goto bad_key;
	}

1036
	return 0;
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1062
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1063 1064 1065 1066 1067 1068
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1069
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1070 1071
}

1072 1073 1074 1075 1076
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
1077
	if (unlikely(ret))
1078 1079 1080 1081 1082
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
1083
	if (unlikely(ret))
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);
	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
1101
	struct sec_cipher_req *c_req = &req->c_req;
1102

1103
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
1113
	u8 de = 0;
1114 1115 1116 1117

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1118
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1135 1136
	/* Set destination and source address type */
	if (req->use_pbuf) {
1137
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1138 1139
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	} else {
1140
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1141 1142 1143 1144
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	}

	sec_sqe->sdm_addr_type |= da_type;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	u32 bd_param = 0;
	u16 cipher;

	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));

	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
	sec_sqe3->data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
						c_ctx->c_mode;
	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET_V3);

	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC;
	else
		cipher = SEC_CIPHER_DEC;
	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);

	if (req->use_pbuf) {
		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
	} else {
		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
	}

	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
	if (c_req->c_in_dma != c_req->c_out_dma)
		bd_param |= 0x1 << SEC_DE_OFFSET_V3;

	bd_param |= SEC_BD_TYPE3;
	sec_sqe3->bd_param = cpu_to_le32(bd_param);

	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
	sec_sqe3->tag = cpu_to_le64(req);

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
	do {
		--bits;
		nums += counter[bits];
		counter[bits] = nums & BITS_MASK;
		nums >>= BYTE_BITS;
	} while (bits && nums);
}

1215
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1216
{
1217
	struct aead_request *aead_req = req->aead_req.aead_req;
1218 1219 1220
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1221
	unsigned int cryptlen;
1222
	size_t sz;
1223
	u8 *iv;
1224 1225

	if (req->c_req.encrypt)
1226
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1227
	else
1228 1229 1230 1231 1232 1233 1234 1235 1236
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
					cryptlen - iv_size);
		if (unlikely(sz != iv_size))
			dev_err(req->ctx->dev, "copy output iv error!\n");
	} else {
		sz = cryptlen / iv_size;
		if (cryptlen % iv_size)
			sz += 1;
		ctr_iv_inc(iv, iv_size, sz);
	}
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1269 1270
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1271 1272 1273
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1274 1275
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1276 1277 1278

	sec_free_req_id(req);

1279 1280 1281
	/* IV output at encrypto of CBC/CTR mode */
	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1282
		sec_update_iv(req, SEC_SKCIPHER);
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1295
	sk_req->base.complete(&sk_req->base, err);
1296 1297
}

1298 1299 1300
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1301
	struct sec_cipher_req *c_req = &req->c_req;
1302

1303
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1336
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
1347
		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1348 1349 1350 1351 1352 1353 1354 1355
		return ret;
	}

	sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);

	return 0;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
				   struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->mac_len /
			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_key_len /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);

	if (dir) {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	} else {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
	}
	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);

	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	int ret;

	ret = sec_skcipher_bd_fill_v3(ctx, req);
	if (unlikely(ret)) {
		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
		return ret;
	}

	sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, req, sec_sqe3);

	return 0;
}

1407 1408 1409 1410
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1411
	struct sec_aead_req *aead_req = &req->aead_req;
1412 1413 1414
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1415 1416
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1427
					  aead_req->out_mac,
1428 1429 1430 1431
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
1432
			dev_err(c->dev, "copy out mac err!\n");
1433 1434 1435 1436 1437 1438
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1449 1450 1451 1452

	a_req->base.complete(&a_req->base, err);
}

1453 1454 1455
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1456
	sec_free_queue_id(ctx, req);
1457 1458 1459 1460 1461
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1462
	int queue_id;
1463 1464

	/* To load balance */
1465 1466
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1467 1468

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1469
	if (unlikely(req->req_id < 0)) {
1470
		sec_free_queue_id(ctx, req);
1471 1472 1473
		return req->req_id;
	}

1474
	return 0;
1475 1476 1477 1478
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1479
	struct sec_cipher_req *c_req = &req->c_req;
1480 1481 1482
	int ret;

	ret = sec_request_init(ctx, req);
1483
	if (unlikely(ret))
1484 1485 1486
		return ret;

	ret = sec_request_transfer(ctx, req);
1487
	if (unlikely(ret))
1488 1489 1490
		goto err_uninit_req;

	/* Output IV as decrypto */
1491 1492
	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1493
		sec_update_iv(req, ctx->alg_type);
1494 1495

	ret = ctx->req_op->bd_send(ctx, req);
1496 1497
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1498
		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1499 1500 1501 1502 1503 1504 1505
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1506 1507
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1508
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1509 1510
			       ctx->c_ctx.ivsize);
		else
1511
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1512 1513
			       ctx->c_ctx.ivsize);
	}
1514 1515 1516 1517 1518 1519 1520

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);
	return ret;
}

1521
static const struct sec_req_op sec_skcipher_req_ops = {
1522 1523 1524 1525 1526 1527 1528 1529 1530
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
	.do_transfer	= sec_aead_copy_iv,
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static const struct sec_req_op sec_aead_req_ops_v3 = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
	.do_transfer	= sec_aead_copy_iv,
	.bd_fill	= sec_aead_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1561 1562 1563
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1564
	int ret;
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	ret = sec_skcipher_init(tfm);
	if (ret)
		return ret;

	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_skcipher_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_skcipher_req_ops_v3;
	}
1577

1578
	return ret;
1579 1580 1581 1582
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1583
	sec_skcipher_uninit(tfm);
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1595
		dev_err(ctx->dev, "get error aead iv size!\n");
1596 1597 1598 1599 1600 1601
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;
1602 1603 1604 1605 1606 1607 1608
	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_aead_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_aead_req_ops_v3;
	}
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
1650
		dev_err(ctx->dev, "aead alloc shash error!\n");
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
	struct sec_req *sreq)
{
	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
	struct device *dev = ctx->dev;
	u8 c_mode = ctx->c_ctx.c_mode;
	int ret = 0;

	switch (c_mode) {
	case SEC_CMODE_XTS:
		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
			dev_err(dev, "skcipher XTS mode input length error!\n");
			ret = -EINVAL;
		}
		break;
	case SEC_CMODE_ECB:
	case SEC_CMODE_CBC:
		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "skcipher AES input length error!\n");
			ret = -EINVAL;
		}
		break;
1704 1705 1706 1707 1708 1709 1710 1711
	case SEC_CMODE_CFB:
	case SEC_CMODE_OFB:
	case SEC_CMODE_CTR:
		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
			dev_err(dev, "skcipher HW version error!\n");
			ret = -EINVAL;
		}
		break;
1712 1713 1714 1715 1716 1717 1718
	default:
		ret = -EINVAL;
	}

	return ret;
}

1719
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1720
{
1721
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1722
	struct device *dev = ctx->dev;
1723
	u8 c_alg = ctx->c_ctx.c_alg;
1724

1725 1726
	if (unlikely(!sk_req->src || !sk_req->dst ||
		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
1727 1728 1729
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
1730
	sreq->c_req.c_len = sk_req->cryptlen;
1731 1732 1733 1734 1735 1736

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

1737
	if (c_alg == SEC_CALG_3DES) {
1738
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1739 1740 1741 1742 1743
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1744
		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
1745
	}
1746

1747
	dev_err(dev, "skcipher algorithm error!\n");
1748

1749 1750 1751
	return -EINVAL;
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
				    struct skcipher_request *sreq, bool encrypt)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct device *dev = ctx->dev;
	int ret;

	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);

	if (!c_ctx->fbtfm) {
		dev_err(dev, "failed to check fallback tfm\n");
		return -EINVAL;
	}

	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);

	/* software need sync mode to do crypto */
	skcipher_request_set_callback(subreq, sreq->base.flags,
				      NULL, NULL);
	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
				   sreq->cryptlen, sreq->iv);
	if (encrypt)
		ret = crypto_skcipher_encrypt(subreq);
	else
		ret = crypto_skcipher_decrypt(subreq);

	skcipher_request_zero(subreq);

	return ret;
}

1783 1784 1785 1786 1787 1788 1789
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

1790 1791 1792
	if (!sk_req->cryptlen) {
		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
			return -EINVAL;
1793
		return 0;
1794
	}
1795

1796
	req->flag = sk_req->base.flags;
1797 1798 1799 1800
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

1801 1802 1803 1804
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

1805 1806 1807
	if (unlikely(ctx->c_ctx.fallback))
		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
1828 1829 1830
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

1850
static struct skcipher_alg sec_skciphers[] = {
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static struct skcipher_alg sec_skciphers_v3[] = {
	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
};

1906 1907 1908 1909 1910
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
1911 1912
	struct device *dev = ctx->dev;
	u8 c_alg = ctx->c_ctx.c_alg;
1913

1914 1915
	if (unlikely(!req->src || !req->dst || !req->cryptlen ||
		req->assoclen > SEC_MAX_AAD_LEN)) {
1916
		dev_err(dev, "aead input param error!\n");
1917 1918 1919
		return -EINVAL;
	}

1920 1921 1922 1923 1924 1925
	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

1926 1927
	/* Support AES only */
	if (unlikely(c_alg != SEC_CALG_AES)) {
1928
		dev_err(dev, "aead crypto alg error!\n");
1929 1930 1931 1932 1933 1934 1935 1936
		return -EINVAL;
	}
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;

	if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
1937
		dev_err(dev, "aead crypto length error!\n");
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		return -EINVAL;
	}

	return 0;
}

static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

1951
	req->flag = a_req->base.flags;
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
1980
		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,\
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
	SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
			sec_aead_ctx_exit, blksize, ivsize, authsize)

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
};

2012
int sec_register_to_crypto(struct hisi_qm *qm)
2013
{
2014
	int ret;
2015 2016

	/* To avoid repeat register */
2017 2018 2019 2020
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
2021

2022 2023 2024 2025 2026 2027
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_skciphers(sec_skciphers_v3,
						ARRAY_SIZE(sec_skciphers_v3));
		if (ret)
			goto reg_skcipher_fail;
	}
2028 2029
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		goto reg_aead_fail;
	return ret;

reg_aead_fail:
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
reg_skcipher_fail:
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2040 2041 2042
	return ret;
}

2043
void sec_unregister_from_crypto(struct hisi_qm *qm)
2044
{
2045 2046 2047
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
2048 2049 2050
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2051
}