sec_crypto.c 62.6 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */

#include <crypto/aes.h>
5
#include <crypto/aead.h>
6
#include <crypto/algapi.h>
7
#include <crypto/authenc.h>
8
#include <crypto/des.h>
9 10
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
11
#include <crypto/internal/des.h>
12 13
#include <crypto/sha1.h>
#include <crypto/sha2.h>
14 15 16 17 18 19 20 21 22 23 24
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>

#include "sec.h"
#include "sec_crypto.h"

#define SEC_PRIORITY		4001
#define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25
#define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 27 28 29 30 31 32 33 34 35 36 37
#define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)

/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET		1
#define SEC_CIPHER_OFFSET	4
#define SEC_SCENE_OFFSET	3
#define SEC_DST_SGL_OFFSET	2
#define SEC_SRC_SGL_OFFSET	7
#define SEC_CKEY_OFFSET		9
#define SEC_CMODE_OFFSET	12
38 39 40 41
#define SEC_AKEY_OFFSET         5
#define SEC_AEAD_ALG_OFFSET     11
#define SEC_AUTH_OFFSET		6

42 43 44 45 46 47 48 49 50 51 52
#define SEC_DE_OFFSET_V3		9
#define SEC_SCENE_OFFSET_V3	5
#define SEC_CKEY_OFFSET_V3	13
#define SEC_SRC_SGL_OFFSET_V3	11
#define SEC_DST_SGL_OFFSET_V3	14
#define SEC_CALG_OFFSET_V3	4
#define SEC_AKEY_OFFSET_V3	9
#define SEC_MAC_OFFSET_V3	4
#define SEC_AUTH_ALG_OFFSET_V3	15
#define SEC_CIPHER_AUTH_V3	0xbf
#define SEC_AUTH_CIPHER_V3	0x40
53 54 55 56
#define SEC_FLAG_OFFSET		7
#define SEC_FLAG_MASK		0x0780
#define SEC_TYPE_MASK		0x0F
#define SEC_DONE_MASK		0x0001
57
#define SEC_SQE_LEN_RATE_MASK	0x3
58 59 60

#define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR		128
61 62 63
#define SEC_CIPHER_AUTH		0xfe
#define SEC_AUTH_CIPHER		0x1
#define SEC_MAX_MAC_LEN		64
64
#define SEC_MAX_AAD_LEN		65535
65
#define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
66 67 68 69 70 71 72 73 74 75 76 77 78

#define SEC_PBUF_SZ			512
#define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
			SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
			SEC_PBUF_LEFT_SZ)

79
#define SEC_SQE_LEN_RATE	4
80
#define SEC_SQE_CFLAG		2
81
#define SEC_SQE_AEAD_FLAG	3
82
#define SEC_SQE_DONE		0x1
83 84
#define MIN_MAC_LEN		4
#define MAC_LEN_MASK		0x1U
85 86 87
#define MAX_INPUT_DATA_LEN	0xFFFE00
#define BITS_MASK		0xFF
#define BYTE_BITS		0x8
88
#define SEC_XTS_NAME_SZ		0x3
89 90 91 92 93 94 95 96 97 98 99 100
#define IV_CM_CAL_NUM		2
#define IV_CL_MASK		0x7
#define IV_CL_MIN		2
#define IV_CL_MID		4
#define IV_CL_MAX		8
#define IV_FLAGS_OFFSET	0x6
#define IV_CM_OFFSET		0x3
#define IV_LAST_BYTE1		1
#define IV_LAST_BYTE2		2
#define IV_LAST_BYTE_MASK	0xFF
#define IV_CTR_INIT		0x1
#define IV_BYTE_OFFSET		0x8
101 102

/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
103
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
104 105 106 107 108 109 110 111 112
{
	if (req->c_req.encrypt)
		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
				 ctx->hlf_q_num;

	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
				 ctx->hlf_q_num;
}

113
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
{
	if (req->c_req.encrypt)
		atomic_dec(&ctx->enc_qcyclic);
	else
		atomic_dec(&ctx->dec_qcyclic);
}

static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
	int req_id;

	mutex_lock(&qp_ctx->req_lock);

	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
				  0, QM_Q_DEPTH, GFP_ATOMIC);
	mutex_unlock(&qp_ctx->req_lock);
130
	if (unlikely(req_id < 0)) {
131
		dev_err(req->ctx->dev, "alloc req id fail!\n");
132 133 134 135 136
		return req_id;
	}

	req->qp_ctx = qp_ctx;
	qp_ctx->req_list[req_id] = req;
137

138 139 140 141 142 143 144 145
	return req_id;
}

static void sec_free_req_id(struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int req_id = req->req_id;

146
	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
147
		dev_err(req->ctx->dev, "free request id invalid!\n");
148 149 150 151 152 153 154 155 156 157 158
		return;
	}

	qp_ctx->req_list[req_id] = NULL;
	req->qp_ctx = NULL;

	mutex_lock(&qp_ctx->req_lock);
	idr_remove(&qp_ctx->req_idr, req_id);
	mutex_unlock(&qp_ctx->req_lock);
}

159
static int sec_aead_verify(struct sec_req *req)
160 161 162 163
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
164
	u8 *mac_out = req->aead_req.out_mac;
165 166 167 168 169 170 171 172
	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
	struct scatterlist *sgl = aead_req->src;
	size_t sz;

	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
				aead_req->cryptlen + aead_req->assoclen -
				authsize);
	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
173
		dev_err(req->ctx->dev, "aead verify failure!\n");
174 175 176 177 178 179
		return -EBADMSG;
	}

	return 0;
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
{
	struct sec_sqe *bd = resp;

	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
	status->flag = (le16_to_cpu(bd->type2.done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le16_to_cpu(bd->type2.tag);
	status->err_type = bd->type2.error_type;

	return bd->type_cipher_auth & SEC_TYPE_MASK;
}

static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
{
	struct sec_sqe3 *bd3 = resp;

	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
	status->flag = (le16_to_cpu(bd3->done_flag) &
					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
	status->tag = le64_to_cpu(bd3->tag);
	status->err_type = bd3->error_type;

	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
}

static int sec_cb_status_check(struct sec_req *req,
			       struct bd_status *status)
{
	struct sec_ctx *ctx = req->ctx;

	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
				    req->err_type, status->done);
		return -EIO;
	}

	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
					    status->flag);
			return -EIO;
		}
	}

	return 0;
}

228 229 230
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
231
	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
232 233
	u8 type_supported = qp_ctx->ctx->type_supported;
	struct bd_status status;
234 235
	struct sec_ctx *ctx;
	struct sec_req *req;
236
	int err;
237 238
	u8 type;

239 240 241 242 243 244 245 246 247
	if (type_supported == SEC_BD_TYPE2) {
		type = pre_parse_finished_bd(&status, resp);
		req = qp_ctx->req_list[status.tag];
	} else {
		type = pre_parse_finished_bd3(&status, resp);
		req = (void *)(uintptr_t)status.tag;
	}

	if (unlikely(type != type_supported)) {
248
		atomic64_inc(&dfx->err_bd_cnt);
249 250 251 252
		pr_err("err bd type [%d]\n", type);
		return;
	}

253 254
	if (unlikely(!req)) {
		atomic64_inc(&dfx->invalid_req_cnt);
255
		atomic_inc(&qp->qp_status.used);
256 257
		return;
	}
258 259

	req->err_type = status.err_type;
260
	ctx = req->ctx;
261 262
	err = sec_cb_status_check(req, &status);
	if (err)
263
		atomic64_inc(&dfx->done_flag_cnt);
264

265
	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
266
		err = sec_aead_verify(req);
267

268
	atomic64_inc(&dfx->recv_cnt);
269

270 271
	ctx->req_op->buf_unmap(ctx, req);

272
	ctx->req_op->callback(ctx, req, err);
273 274 275 276 277 278 279
}

static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
	int ret;

280 281 282 283 284
	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
		return -EBUSY;

285 286
	mutex_lock(&qp_ctx->req_lock);
	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
287 288 289 290 291 292 293 294 295

	if (ctx->fake_req_limit <=
	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
		mutex_unlock(&qp_ctx->req_lock);
		return -EBUSY;
	}
296 297
	mutex_unlock(&qp_ctx->req_lock);

298
	if (unlikely(ret == -EBUSY))
299 300
		return -ENOBUFS;

301 302 303
	if (likely(!ret)) {
		ret = -EINPROGRESS;
		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
304 305 306 307 308
	}

	return ret;
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->c_ivin_dma, GFP_KERNEL);
	if (!res->c_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->c_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->c_ivin, res->c_ivin_dma);
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
					 &res->a_ivin_dma, GFP_KERNEL);
	if (!res->a_ivin)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
	}

	return 0;
}

static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->a_ivin)
		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
				  res->a_ivin, res->a_ivin_dma);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	int i;

	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
					  &res->out_mac_dma, GFP_KERNEL);
	if (!res->out_mac)
		return -ENOMEM;

	for (i = 1; i < QM_Q_DEPTH; i++) {
		res[i].out_mac_dma = res->out_mac_dma +
				     i * (SEC_MAX_MAC_LEN << 1);
		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
	}

	return 0;
}

static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->out_mac)
		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
				  res->out_mac, res->out_mac_dma);
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	if (res->pbuf)
		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
				  res->pbuf, res->pbuf_dma);
}

/*
 * To improve performance, pbuffer is used for
 * small packets (< 512Bytes) as IOMMU translation using.
 */
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
	int pbuf_page_offset;
	int i, j, k;

	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
				&res->pbuf_dma, GFP_KERNEL);
	if (!res->pbuf)
		return -ENOMEM;

	/*
	 * SEC_PBUF_PKG contains data pbuf, iv and
	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
	 * Every PAGE contains six SEC_PBUF_PKG
	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
	 * for the SEC_TOTAL_PBUF_SZ
	 */
	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
		pbuf_page_offset = PAGE_SIZE * i;
		for (j = 0; j < SEC_PBUF_NUM; j++) {
			k = i * SEC_PBUF_NUM + j;
			if (k == QM_Q_DEPTH)
				break;
			res[k].pbuf = res->pbuf +
				j * SEC_PBUF_PKG + pbuf_page_offset;
			res[k].pbuf_dma = res->pbuf_dma +
				j * SEC_PBUF_PKG + pbuf_page_offset;
		}
	}
424

425 426 427
	return 0;
}

428 429 430
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
431
	struct sec_alg_res *res = qp_ctx->res;
432
	struct device *dev = ctx->dev;
433 434 435 436 437
	int ret;

	ret = sec_alloc_civ_resource(dev, res);
	if (ret)
		return ret;
438

439
	if (ctx->alg_type == SEC_AEAD) {
440 441 442 443
		ret = sec_alloc_aiv_resource(dev, res);
		if (ret)
			goto alloc_aiv_fail;

444 445
		ret = sec_alloc_mac_resource(dev, res);
		if (ret)
446
			goto alloc_mac_fail;
447
	}
448 449 450 451
	if (ctx->pbuf_supported) {
		ret = sec_alloc_pbuf_resource(dev, res);
		if (ret) {
			dev_err(dev, "fail to alloc pbuf dma resource!\n");
452
			goto alloc_pbuf_fail;
453 454
		}
	}
455 456

	return 0;
457

458 459 460
alloc_pbuf_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
461 462 463 464
alloc_mac_fail:
	if (ctx->alg_type == SEC_AEAD)
		sec_free_aiv_resource(dev, res);
alloc_aiv_fail:
465 466
	sec_free_civ_resource(dev, res);
	return ret;
467 468 469 470 471
}

static void sec_alg_resource_free(struct sec_ctx *ctx,
				  struct sec_qp_ctx *qp_ctx)
{
472
	struct device *dev = ctx->dev;
473 474

	sec_free_civ_resource(dev, qp_ctx->res);
475

476 477
	if (ctx->pbuf_supported)
		sec_free_pbuf_resource(dev, qp_ctx->res);
478 479
	if (ctx->alg_type == SEC_AEAD)
		sec_free_mac_resource(dev, qp_ctx->res);
480 481
}

482 483 484
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
			     int qp_ctx_id, int alg_type)
{
485
	struct device *dev = ctx->dev;
486 487 488 489 490
	struct sec_qp_ctx *qp_ctx;
	struct hisi_qp *qp;
	int ret = -ENOMEM;

	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
491
	qp = ctx->qps[qp_ctx_id];
492 493 494 495 496
	qp->req_type = 0;
	qp->qp_ctx = qp_ctx;
	qp_ctx->qp = qp;
	qp_ctx->ctx = ctx;

497 498
	qp->req_cb = sec_req_cb;

499 500
	mutex_init(&qp_ctx->req_lock);
	idr_init(&qp_ctx->req_idr);
501
	INIT_LIST_HEAD(&qp_ctx->backlog);
502 503 504

	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						     SEC_SGL_SGE_NR);
505
	if (IS_ERR(qp_ctx->c_in_pool)) {
506
		dev_err(dev, "fail to create sgl pool for input!\n");
507
		goto err_destroy_idr;
508 509 510 511
	}

	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
						      SEC_SGL_SGE_NR);
512
	if (IS_ERR(qp_ctx->c_out_pool)) {
513 514 515 516
		dev_err(dev, "fail to create sgl pool for output!\n");
		goto err_free_c_in_pool;
	}

517
	ret = sec_alg_resource_alloc(ctx, qp_ctx);
518 519 520 521 522 523 524 525 526 527
	if (ret)
		goto err_free_c_out_pool;

	ret = hisi_qm_start_qp(qp, 0);
	if (ret < 0)
		goto err_queue_free;

	return 0;

err_queue_free:
528
	sec_alg_resource_free(ctx, qp_ctx);
529 530 531 532 533 534 535 536 537 538 539 540
err_free_c_out_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
	idr_destroy(&qp_ctx->req_idr);
	return ret;
}

static void sec_release_qp_ctx(struct sec_ctx *ctx,
			       struct sec_qp_ctx *qp_ctx)
{
541
	struct device *dev = ctx->dev;
542 543

	hisi_qm_stop_qp(qp_ctx->qp);
544
	sec_alg_resource_free(ctx, qp_ctx);
545 546 547 548 549 550 551

	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);

	idr_destroy(&qp_ctx->req_idr);
}

552
static int sec_ctx_base_init(struct sec_ctx *ctx)
553 554 555 556
{
	struct sec_dev *sec;
	int i, ret;

557 558 559
	ctx->qps = sec_create_qps();
	if (!ctx->qps) {
		pr_err("Can not create sec qps!\n");
560 561
		return -ENODEV;
	}
562 563

	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
564
	ctx->sec = sec;
565
	ctx->dev = &sec->qm.pdev->dev;
566
	ctx->hlf_q_num = sec->ctx_q_num >> 1;
567

568 569
	ctx->pbuf_supported = ctx->sec->iommu_used;

570
	/* Half of queue depth is taken as fake requests limit in the queue. */
571
	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
572 573
	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
			      GFP_KERNEL);
574 575 576 577
	if (!ctx->qp_ctx) {
		ret = -ENOMEM;
		goto err_destroy_qps;
	}
578 579

	for (i = 0; i < sec->ctx_q_num; i++) {
580
		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
581 582 583 584 585
		if (ret)
			goto err_sec_release_qp_ctx;
	}

	return 0;
586

587 588 589 590
err_sec_release_qp_ctx:
	for (i = i - 1; i >= 0; i--)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
	kfree(ctx->qp_ctx);
591 592
err_destroy_qps:
	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
593 594 595
	return ret;
}

596
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
597
{
598
	int i;
599 600 601 602

	for (i = 0; i < ctx->sec->ctx_q_num; i++)
		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);

603
	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
604 605 606
	kfree(ctx->qp_ctx);
}

607 608 609 610
static int sec_cipher_init(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

611
	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
612 613 614 615 616 617 618 619 620 621 622 623
					  &c_ctx->c_key_dma, GFP_KERNEL);
	if (!c_ctx->c_key)
		return -ENOMEM;

	return 0;
}

static void sec_cipher_uninit(struct sec_ctx *ctx)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
624
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
625 626 627
			  c_ctx->c_key, c_ctx->c_key_dma);
}

628 629 630 631
static int sec_auth_init(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

632
	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
633 634 635 636 637 638 639 640 641 642 643 644
					  &a_ctx->a_key_dma, GFP_KERNEL);
	if (!a_ctx->a_key)
		return -ENOMEM;

	return 0;
}

static void sec_auth_uninit(struct sec_ctx *ctx)
{
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
645
	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
646 647 648
			  a_ctx->a_key, a_ctx->a_key_dma);
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
{
	const char *alg = crypto_tfm_alg_name(&tfm->base);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;

	c_ctx->fallback = false;
	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
		return 0;

	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
						  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(c_ctx->fbtfm)) {
		pr_err("failed to alloc fallback tfm!\n");
		return PTR_ERR(c_ctx->fbtfm);
	}

	return 0;
}

669 670 671 672 673
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

674
	ctx->alg_type = SEC_SKCIPHER;
675 676 677
	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
678
		pr_err("get error skcipher iv size!\n");
679 680 681 682 683 684 685 686 687 688 689
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

690 691 692 693
	ret = sec_skcipher_fbtfm_init(tfm);
	if (ret)
		goto err_fbtfm_init;

694
	return 0;
695

696 697
err_fbtfm_init:
	sec_cipher_uninit(ctx);
698 699 700 701 702 703 704 705 706
err_cipher_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);

707 708 709
	if (ctx->c_ctx.fbtfm)
		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);

710 711 712 713
	sec_cipher_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

714
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
715 716 717
				    const u32 keylen,
				    const enum sec_cmode c_mode)
{
718 719 720 721 722 723 724 725
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	int ret;

	ret = verify_skcipher_des3_key(tfm, key);
	if (ret)
		return ret;

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	switch (keylen) {
	case SEC_DES3_2KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
		break;
	case SEC_DES3_3KEY_SIZE:
		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
				       const u32 keylen,
				       const enum sec_cmode c_mode)
{
	if (c_mode == SEC_CMODE_XTS) {
		switch (keylen) {
		case SEC_XTS_MIN_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_128BIT;
			break;
749 750 751
		case SEC_XTS_MID_KEY_SIZE:
			c_ctx->fallback = true;
			break;
752 753 754 755 756 757 758 759
		case SEC_XTS_MAX_KEY_SIZE:
			c_ctx->c_key_len = SEC_CKEY_256BIT;
			break;
		default:
			pr_err("hisi_sec2: xts mode key error!\n");
			return -EINVAL;
		}
	} else {
760 761 762
		if (c_ctx->c_alg == SEC_CALG_SM4 &&
		    keylen != AES_KEYSIZE_128) {
			pr_err("hisi_sec2: sm4 key error!\n");
763
			return -EINVAL;
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		} else {
			switch (keylen) {
			case AES_KEYSIZE_128:
				c_ctx->c_key_len = SEC_CKEY_128BIT;
				break;
			case AES_KEYSIZE_192:
				c_ctx->c_key_len = SEC_CKEY_192BIT;
				break;
			case AES_KEYSIZE_256:
				c_ctx->c_key_len = SEC_CKEY_256BIT;
				break;
			default:
				pr_err("hisi_sec2: aes key error!\n");
				return -EINVAL;
			}
779 780 781 782 783 784 785 786 787 788 789 790
		}
	}

	return 0;
}

static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			       const u32 keylen, const enum sec_calg c_alg,
			       const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
791
	struct device *dev = ctx->dev;
792 793 794 795 796
	int ret;

	if (c_mode == SEC_CMODE_XTS) {
		ret = xts_verify_key(tfm, key, keylen);
		if (ret) {
797
			dev_err(dev, "xts mode key err!\n");
798 799 800 801 802 803 804 805 806
			return ret;
		}
	}

	c_ctx->c_alg  = c_alg;
	c_ctx->c_mode = c_mode;

	switch (c_alg) {
	case SEC_CALG_3DES:
807
		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
808 809 810 811 812 813 814 815 816 817
		break;
	case SEC_CALG_AES:
	case SEC_CALG_SM4:
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		break;
	default:
		return -EINVAL;
	}

	if (ret) {
818
		dev_err(dev, "set sec key err!\n");
819 820 821 822
		return ret;
	}

	memcpy(c_ctx->c_key, key, keylen);
823 824 825 826 827 828 829
	if (c_ctx->fallback) {
		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
		if (ret) {
			dev_err(dev, "failed to set fallback skcipher key!\n");
			return ret;
		}
	}
830 831 832 833 834 835 836 837 838 839 840 841 842
	return 0;
}

#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
	u32 keylen)							\
{									\
	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
}

GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
843 844 845
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
846 847 848 849
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
850 851 852
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
853

854 855 856
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *src)
{
857 858
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aead_req = a_req->aead_req;
859 860
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
861
	struct device *dev = ctx->dev;
862 863
	int copy_size, pbuf_length;
	int req_id = req->req_id;
864 865 866
	struct crypto_aead *tfm;
	size_t authsize;
	u8 *mac_offset;
867 868 869 870 871 872 873

	if (ctx->alg_type == SEC_AEAD)
		copy_size = aead_req->cryptlen + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
874
			qp_ctx->res[req_id].pbuf, copy_size);
875 876 877 878
	if (unlikely(pbuf_length != copy_size)) {
		dev_err(dev, "copy src data to pbuf error!\n");
		return -EINVAL;
	}
879 880 881 882 883 884
	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
		tfm = crypto_aead_reqtfm(aead_req);
		authsize = crypto_aead_authsize(tfm);
		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
		memcpy(a_req->out_mac, mac_offset, authsize);
	}
885 886 887 888 889 890 891 892 893 894 895 896 897

	c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
	c_req->c_out_dma = c_req->c_in_dma;

	return 0;
}

static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
			struct scatterlist *dst)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
898
	struct device *dev = ctx->dev;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	int copy_size, pbuf_length;
	int req_id = req->req_id;

	if (ctx->alg_type == SEC_AEAD)
		copy_size = c_req->c_len + aead_req->assoclen;
	else
		copy_size = c_req->c_len;

	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
				qp_ctx->res[req_id].pbuf,
				copy_size);
	if (unlikely(pbuf_length != copy_size))
		dev_err(dev, "copy pbuf data to dst error!\n");
}

914
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
915
			  struct scatterlist *src, struct scatterlist *dst)
916 917
{
	struct sec_cipher_req *c_req = &req->c_req;
918
	struct sec_aead_req *a_req = &req->aead_req;
919
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
920
	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
921
	struct device *dev = ctx->dev;
922 923 924 925 926 927 928
	int ret;

	if (req->use_pbuf) {
		ret = sec_cipher_pbuf_map(ctx, req, src);
		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
		if (ctx->alg_type == SEC_AEAD) {
929 930
			a_req->a_ivin = res->a_ivin;
			a_req->a_ivin_dma = res->a_ivin_dma;
931 932 933 934
			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
			a_req->out_mac_dma = res->pbuf_dma +
					SEC_PBUF_MAC_OFFSET;
		}
935

936 937
		return ret;
	}
938 939 940
	c_req->c_ivin = res->c_ivin;
	c_req->c_ivin_dma = res->c_ivin_dma;
	if (ctx->alg_type == SEC_AEAD) {
941 942
		a_req->a_ivin = res->a_ivin;
		a_req->a_ivin_dma = res->a_ivin_dma;
943 944 945
		a_req->out_mac = res->out_mac;
		a_req->out_mac_dma = res->out_mac_dma;
	}
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
						    qp_ctx->c_in_pool,
						    req->req_id,
						    &c_req->c_in_dma);

	if (IS_ERR(c_req->c_in)) {
		dev_err(dev, "fail to dma map input sgl buffers!\n");
		return PTR_ERR(c_req->c_in);
	}

	if (dst == src) {
		c_req->c_out = c_req->c_in;
		c_req->c_out_dma = c_req->c_in_dma;
	} else {
		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
							     qp_ctx->c_out_pool,
							     req->req_id,
							     &c_req->c_out_dma);

		if (IS_ERR(c_req->c_out)) {
			dev_err(dev, "fail to dma map output sgl buffers!\n");
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
			return PTR_ERR(c_req->c_out);
		}
	}

	return 0;
}

976
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
977 978
			     struct scatterlist *src, struct scatterlist *dst)
{
979
	struct sec_cipher_req *c_req = &req->c_req;
980
	struct device *dev = ctx->dev;
981

982 983 984 985 986
	if (req->use_pbuf) {
		sec_cipher_pbuf_unmap(ctx, req, dst);
	} else {
		if (dst != src)
			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
987

988 989
		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
	}
990 991
}

992 993
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
994
	struct skcipher_request *sq = req->c_req.sk_req;
995

996
	return sec_cipher_map(ctx, req, sq->src, sq->dst);
997 998 999 1000
}

static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
1001
	struct skcipher_request *sq = req->c_req.sk_req;
1002

1003
	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
				struct crypto_authenc_keys *keys)
{
	switch (keys->enckeylen) {
	case AES_KEYSIZE_128:
		c_ctx->c_key_len = SEC_CKEY_128BIT;
		break;
	case AES_KEYSIZE_192:
		c_ctx->c_key_len = SEC_CKEY_192BIT;
		break;
	case AES_KEYSIZE_256:
		c_ctx->c_key_len = SEC_CKEY_256BIT;
		break;
	default:
		pr_err("hisi_sec2: aead aes key error!\n");
		return -EINVAL;
	}
	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);

	return 0;
}

static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
				 struct crypto_authenc_keys *keys)
{
	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1032
	int blocksize, digestsize, ret;
1033 1034 1035 1036 1037 1038 1039

	if (!keys->authkeylen) {
		pr_err("hisi_sec2: aead auth key error!\n");
		return -EINVAL;
	}

	blocksize = crypto_shash_blocksize(hash_tfm);
1040
	digestsize = crypto_shash_digestsize(hash_tfm);
1041
	if (keys->authkeylen > blocksize) {
1042 1043
		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
					      keys->authkeylen, ctx->a_key);
1044
		if (ret) {
1045
			pr_err("hisi_sec2: aead auth digest error!\n");
1046 1047
			return -EINVAL;
		}
1048
		ctx->a_key_len = digestsize;
1049 1050 1051 1052 1053 1054 1055 1056
	} else {
		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
		ctx->a_key_len = keys->authkeylen;
	}

	return 0;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
{
	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;

	if (unlikely(a_ctx->fallback_aead_tfm))
		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);

	return 0;
}

static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
				    struct crypto_aead *tfm, const u8 *key,
				    unsigned int keylen)
{
	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
}

1079 1080 1081 1082 1083 1084 1085 1086
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			   const u32 keylen, const enum sec_hash_alg a_alg,
			   const enum sec_calg c_alg,
			   const enum sec_mac_len mac_len,
			   const enum sec_cmode c_mode)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1087
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1088
	struct device *dev = ctx->dev;
1089 1090 1091 1092 1093 1094 1095 1096
	struct crypto_authenc_keys keys;
	int ret;

	ctx->a_ctx.a_alg = a_alg;
	ctx->c_ctx.c_alg = c_alg;
	ctx->a_ctx.mac_len = mac_len;
	c_ctx->c_mode = c_mode;

1097 1098 1099 1100 1101 1102 1103 1104
	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
		if (ret) {
			dev_err(dev, "set sec aes ccm cipher key err!\n");
			return ret;
		}
		memcpy(c_ctx->c_key, key, keylen);

1105 1106 1107 1108 1109 1110
		if (unlikely(a_ctx->fallback_aead_tfm)) {
			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
			if (ret)
				return ret;
		}

1111 1112 1113
		return 0;
	}

1114 1115 1116 1117 1118
	if (crypto_authenc_extractkeys(&keys, key, keylen))
		goto bad_key;

	ret = sec_aead_aes_set_key(c_ctx, &keys);
	if (ret) {
1119
		dev_err(dev, "set sec cipher key err!\n");
1120 1121 1122 1123 1124
		goto bad_key;
	}

	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
	if (ret) {
1125
		dev_err(dev, "set sec auth key err!\n");
1126 1127 1128
		goto bad_key;
	}

1129 1130 1131 1132 1133 1134
	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
		dev_err(dev, "MAC or AUTH key length error!\n");
		goto bad_key;
	}

1135
	return 0;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
bad_key:
	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
	return -EINVAL;
}


#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
	u32 keylen)							\
{									\
	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}

GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1156 1157 1158 1159 1160 1161 1162 1163
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1164 1165 1166 1167 1168

static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1169
	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1170 1171 1172 1173 1174 1175
}

static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aq = req->aead_req.aead_req;

1176
	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1177 1178
}

1179 1180 1181 1182 1183
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
	int ret;

	ret = ctx->req_op->buf_map(ctx, req);
1184
	if (unlikely(ret))
1185 1186 1187 1188 1189
		return ret;

	ctx->req_op->do_transfer(ctx, req);

	ret = ctx->req_op->bd_fill(ctx, req);
1190
	if (unlikely(ret))
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		goto unmap_req_buf;

	return ret;

unmap_req_buf:
	ctx->req_op->buf_unmap(ctx, req);
	return ret;
}

static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
	ctx->req_op->buf_unmap(ctx, req);
}

static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
1208
	struct sec_cipher_req *c_req = &req->c_req;
1209

1210
	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1211 1212 1213 1214 1215 1216 1217 1218 1219
}

static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	u8 scene, sa_type, da_type;
	u8 bd_type, cipher;
1220
	u8 de = 0;
1221 1222 1223 1224

	memset(sec_sqe, 0, sizeof(struct sec_sqe));

	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1225
	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
						SEC_CMODE_OFFSET);
	sec_sqe->type2.c_alg = c_ctx->c_alg;
	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET);

	bd_type = SEC_BD_TYPE2;
	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
	else
		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
	sec_sqe->type_cipher_auth = bd_type | cipher;

1242 1243
	/* Set destination and source address type */
	if (req->use_pbuf) {
1244
		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1245 1246
		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
	} else {
1247
		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1248 1249 1250 1251
		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
	}

	sec_sqe->sdm_addr_type |= da_type;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
	if (c_req->c_in_dma != c_req->c_out_dma)
		de = 0x1 << SEC_DE_OFFSET;

	sec_sqe->sds_sa_type = (de | scene | sa_type);

	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);

	return 0;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct sec_cipher_req *c_req = &req->c_req;
	u32 bd_param = 0;
	u16 cipher;

	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));

	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
	sec_sqe3->data_src_addr = cpu_to_le64(c_req->c_in_dma);
	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);

	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
						c_ctx->c_mode;
	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
						SEC_CKEY_OFFSET_V3);

	if (c_req->encrypt)
		cipher = SEC_CIPHER_ENC;
	else
		cipher = SEC_CIPHER_DEC;
	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);

	if (req->use_pbuf) {
		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
	} else {
		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
	}

	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
	if (c_req->c_in_dma != c_req->c_out_dma)
		bd_param |= 0x1 << SEC_DE_OFFSET_V3;

	bd_param |= SEC_BD_TYPE3;
	sec_sqe3->bd_param = cpu_to_le32(bd_param);

	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
	sec_sqe3->tag = cpu_to_le64(req);

	return 0;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
	do {
		--bits;
		nums += counter[bits];
		counter[bits] = nums & BITS_MASK;
		nums >>= BYTE_BITS;
	} while (bits && nums);
}

1322
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1323
{
1324
	struct aead_request *aead_req = req->aead_req.aead_req;
1325 1326 1327
	struct skcipher_request *sk_req = req->c_req.sk_req;
	u32 iv_size = req->ctx->c_ctx.ivsize;
	struct scatterlist *sgl;
1328
	unsigned int cryptlen;
1329
	size_t sz;
1330
	u8 *iv;
1331 1332

	if (req->c_req.encrypt)
1333
		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1334
	else
1335 1336 1337 1338 1339 1340 1341 1342 1343
		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;

	if (alg_type == SEC_SKCIPHER) {
		iv = sk_req->iv;
		cryptlen = sk_req->cryptlen;
	} else {
		iv = aead_req->iv;
		cryptlen = aead_req->cryptlen;
	}
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
					cryptlen - iv_size);
		if (unlikely(sz != iv_size))
			dev_err(req->ctx->dev, "copy output iv error!\n");
	} else {
		sz = cryptlen / iv_size;
		if (cryptlen % iv_size)
			sz += 1;
		ctr_iv_inc(iv, iv_size, sz);
	}
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
				struct sec_qp_ctx *qp_ctx)
{
	struct sec_req *backlog_req = NULL;

	mutex_lock(&qp_ctx->req_lock);
	if (ctx->fake_req_limit >=
	    atomic_read(&qp_ctx->qp->qp_status.used) &&
	    !list_empty(&qp_ctx->backlog)) {
		backlog_req = list_first_entry(&qp_ctx->backlog,
				typeof(*backlog_req), backlog_head);
		list_del(&backlog_req->backlog_head);
	}
	mutex_unlock(&qp_ctx->req_lock);

	return backlog_req;
}

1376 1377
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
				  int err)
1378 1379 1380
{
	struct skcipher_request *sk_req = req->c_req.sk_req;
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1381 1382
	struct skcipher_request *backlog_sk_req;
	struct sec_req *backlog_req;
1383 1384 1385

	sec_free_req_id(req);

1386 1387 1388
	/* IV output at encrypto of CBC/CTR mode */
	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1389
		sec_update_iv(req, SEC_SKCIPHER);
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	while (1) {
		backlog_req = sec_back_req_clear(ctx, qp_ctx);
		if (!backlog_req)
			break;

		backlog_sk_req = backlog_req->c_req.sk_req;
		backlog_sk_req->base.complete(&backlog_sk_req->base,
						-EINPROGRESS);
		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
	}

1402
	sk_req->base.complete(&sk_req->base, err);
1403 1404
}

1405
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1406 1407
{
	struct aead_request *aead_req = req->aead_req.aead_req;
1408
	struct sec_cipher_req *c_req = &req->c_req;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	struct sec_aead_req *a_req = &req->aead_req;
	size_t authsize = ctx->a_ctx.mac_len;
	u32 data_size = aead_req->cryptlen;
	u8 flage = 0;
	u8 cm, cl;

	/* the specification has been checked in aead_iv_demension_check() */
	cl = c_req->c_ivin[0] + 1;
	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;

	/* the last 3bit is L' */
	flage |= c_req->c_ivin[0] & IV_CL_MASK;

	/* the M' is bit3~bit5, the Flags is bit6 */
	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
	flage |= cm << IV_CM_OFFSET;
	if (aead_req->assoclen)
		flage |= 0x01 << IV_FLAGS_OFFSET;

	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
	a_req->a_ivin[0] = flage;

	/*
	 * the last 32bit is counter's initial number,
	 * but the nonce uses the first 16bit
	 * the tail 16bit fill with the cipher length
	 */
	if (!c_req->encrypt)
		data_size = aead_req->cryptlen - authsize;

	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
			data_size & IV_LAST_BYTE_MASK;
	data_size >>= IV_BYTE_OFFSET;
	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
			data_size & IV_LAST_BYTE_MASK;
}

static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
{
	struct aead_request *aead_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_cipher_req *c_req = &req->c_req;
	struct sec_aead_req *a_req = &req->aead_req;
1455

1456
	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
		/*
		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
		 * the  counter must set to 0x01
		 */
		ctx->a_ctx.mac_len = authsize;
		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
		set_aead_auth_iv(ctx, req);
	}

	/* GCM 12Byte Cipher_IV == Auth_IV */
	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
		ctx->a_ctx.mac_len = authsize;
		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
	}
}

static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
				 struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
				    struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct aead_request *aq = a_req->aead_req;

	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);

	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
	sqe3->a_key_addr = sqe3->c_key_addr;
	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
	sqe3->auth_mac_key |= SEC_NO_AUTH;

	if (dir)
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	else
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;

	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
	sqe3->auth_src_offset = cpu_to_le16(0x0);
	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
}

static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
			       struct sec_req *req, struct sec_sqe *sec_sqe)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sec_sqe->type2.mac_key_alg =
			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)((ctx->a_key_len) /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);

	sec_sqe->type2.mac_key_alg |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);

	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;

	if (dir)
		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
	else
		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;

	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);

	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

1556
	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe *sec_sqe = &req->sec_sqe;
	int ret;

	ret = sec_skcipher_bd_fill(ctx, req);
	if (unlikely(ret)) {
1567
		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1568 1569 1570
		return ret;
	}

1571 1572 1573 1574 1575
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
	else
		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1576 1577 1578 1579

	return 0;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
				   struct sec_req *req, struct sec_sqe3 *sqe3)
{
	struct sec_aead_req *a_req = &req->aead_req;
	struct sec_cipher_req *c_req = &req->c_req;
	struct aead_request *aq = a_req->aead_req;

	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->mac_len /
			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_key_len /
			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);

	sqe3->auth_mac_key |=
			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);

	if (dir) {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
	} else {
		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
	}
	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);

	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);

	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
}

static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
	int ret;

	ret = sec_skcipher_bd_fill_v3(ctx, req);
	if (unlikely(ret)) {
		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
		return ret;
	}

1626 1627 1628 1629 1630 1631 1632
	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
					req, sec_sqe3);
	else
		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
				       req, sec_sqe3);
1633 1634 1635 1636

	return 0;
}

1637 1638 1639 1640
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
	struct aead_request *a_req = req->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1641
	struct sec_aead_req *aead_req = &req->aead_req;
1642 1643 1644
	struct sec_cipher_req *c_req = &req->c_req;
	size_t authsize = crypto_aead_authsize(tfm);
	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1645 1646
	struct aead_request *backlog_aead_req;
	struct sec_req *backlog_req;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	size_t sz;

	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
		sec_update_iv(req, SEC_AEAD);

	/* Copy output mac */
	if (!err && c_req->encrypt) {
		struct scatterlist *sgl = a_req->dst;

		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1657
					  aead_req->out_mac,
1658 1659 1660 1661
					  authsize, a_req->cryptlen +
					  a_req->assoclen);

		if (unlikely(sz != authsize)) {
1662
			dev_err(c->dev, "copy out mac err!\n");
1663 1664 1665 1666 1667 1668
			err = -EINVAL;
		}
	}

	sec_free_req_id(req);

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	while (1) {
		backlog_req = sec_back_req_clear(c, qp_ctx);
		if (!backlog_req)
			break;

		backlog_aead_req = backlog_req->aead_req.aead_req;
		backlog_aead_req->base.complete(&backlog_aead_req->base,
						-EINPROGRESS);
		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
	}
1679 1680 1681 1682

	a_req->base.complete(&a_req->base, err);
}

1683 1684 1685
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
	sec_free_req_id(req);
1686
	sec_free_queue_id(ctx, req);
1687 1688 1689 1690 1691
}

static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
	struct sec_qp_ctx *qp_ctx;
1692
	int queue_id;
1693 1694

	/* To load balance */
1695 1696
	queue_id = sec_alloc_queue_id(ctx, req);
	qp_ctx = &ctx->qp_ctx[queue_id];
1697 1698

	req->req_id = sec_alloc_req_id(req, qp_ctx);
1699
	if (unlikely(req->req_id < 0)) {
1700
		sec_free_queue_id(ctx, req);
1701 1702 1703
		return req->req_id;
	}

1704
	return 0;
1705 1706 1707 1708
}

static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
1709
	struct sec_cipher_req *c_req = &req->c_req;
1710 1711 1712
	int ret;

	ret = sec_request_init(ctx, req);
1713
	if (unlikely(ret))
1714 1715 1716
		return ret;

	ret = sec_request_transfer(ctx, req);
1717
	if (unlikely(ret))
1718 1719 1720
		goto err_uninit_req;

	/* Output IV as decrypto */
1721 1722
	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1723
		sec_update_iv(req, ctx->alg_type);
1724 1725

	ret = ctx->req_op->bd_send(ctx, req);
1726 1727
	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1728
		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1729 1730 1731 1732 1733 1734 1735
		goto err_send_req;
	}

	return ret;

err_send_req:
	/* As failing, restore the IV from user */
1736 1737
	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
		if (ctx->alg_type == SEC_SKCIPHER)
1738
			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1739 1740
			       ctx->c_ctx.ivsize);
		else
1741
			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1742 1743
			       ctx->c_ctx.ivsize);
	}
1744 1745 1746 1747 1748 1749 1750

	sec_request_untransfer(ctx, req);
err_uninit_req:
	sec_request_uninit(ctx, req);
	return ret;
}

1751
static const struct sec_req_op sec_skcipher_req_ops = {
1752 1753 1754 1755 1756 1757 1758 1759 1760
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

1761 1762 1763
static const struct sec_req_op sec_aead_req_ops = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1764
	.do_transfer	= sec_aead_set_iv,
1765 1766 1767 1768 1769 1770
	.bd_fill	= sec_aead_bd_fill,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
	.buf_map	= sec_skcipher_sgl_map,
	.buf_unmap	= sec_skcipher_sgl_unmap,
	.do_transfer	= sec_skcipher_copy_iv,
	.bd_fill	= sec_skcipher_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_skcipher_callback,
	.process	= sec_process,
};

static const struct sec_req_op sec_aead_req_ops_v3 = {
	.buf_map	= sec_aead_sgl_map,
	.buf_unmap	= sec_aead_sgl_unmap,
1784
	.do_transfer	= sec_aead_set_iv,
1785 1786 1787 1788 1789 1790
	.bd_fill	= sec_aead_bd_fill_v3,
	.bd_send	= sec_bd_send,
	.callback	= sec_aead_callback,
	.process	= sec_process,
};

1791 1792 1793
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1794
	int ret;
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	ret = sec_skcipher_init(tfm);
	if (ret)
		return ret;

	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_skcipher_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_skcipher_req_ops_v3;
	}
1807

1808
	return ret;
1809 1810 1811 1812
}

static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
1813
	sec_skcipher_uninit(tfm);
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823
static int sec_aead_init(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
	ctx->alg_type = SEC_AEAD;
	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1824 1825 1826
	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
		pr_err("get error aead iv size!\n");
1827 1828 1829 1830 1831 1832
		return -EINVAL;
	}

	ret = sec_ctx_base_init(ctx);
	if (ret)
		return ret;
1833 1834 1835 1836 1837 1838 1839
	if (ctx->sec->qm.ver < QM_HW_V3) {
		ctx->type_supported = SEC_BD_TYPE2;
		ctx->req_op = &sec_aead_req_ops;
	} else {
		ctx->type_supported = SEC_BD_TYPE3;
		ctx->req_op = &sec_aead_req_ops_v3;
	}
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	ret = sec_auth_init(ctx);
	if (ret)
		goto err_auth_init;

	ret = sec_cipher_init(ctx);
	if (ret)
		goto err_cipher_init;

	return ret;

err_cipher_init:
	sec_auth_uninit(ctx);
err_auth_init:
	sec_ctx_base_uninit(ctx);
	return ret;
}

static void sec_aead_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	sec_cipher_uninit(ctx);
	sec_auth_uninit(ctx);
	sec_ctx_base_uninit(ctx);
}

static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		pr_err("hisi_sec2: aead init error!\n");
		return ret;
	}

	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
	if (IS_ERR(auth_ctx->hash_tfm)) {
1881
		dev_err(ctx->dev, "aead alloc shash error!\n");
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		sec_aead_exit(tfm);
		return PTR_ERR(auth_ctx->hash_tfm);
	}

	return 0;
}

static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_shash(ctx->a_ctx.hash_tfm);
	sec_aead_exit(tfm);
}

1897 1898
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
{
1899
	struct aead_alg *alg = crypto_aead_alg(tfm);
1900
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1901 1902
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	const char *aead_name = alg->base.cra_name;
1903 1904 1905 1906 1907 1908 1909 1910
	int ret;

	ret = sec_aead_init(tfm);
	if (ret) {
		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
		return ret;
	}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
						     CRYPTO_ALG_NEED_FALLBACK |
						     CRYPTO_ALG_ASYNC);
	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
		sec_aead_exit(tfm);
		return PTR_ERR(a_ctx->fallback_aead_tfm);
	}
	a_ctx->fallback = false;

1921 1922 1923 1924 1925
	return 0;
}

static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
{
1926 1927 1928
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);

	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1929 1930 1931
	sec_aead_exit(tfm);
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha1");
}

static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha256");
}

static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
	return sec_aead_ctx_init(tfm, "sha512");
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
	struct sec_req *sreq)
{
	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
	struct device *dev = ctx->dev;
	u8 c_mode = ctx->c_ctx.c_mode;
	int ret = 0;

	switch (c_mode) {
	case SEC_CMODE_XTS:
		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
			dev_err(dev, "skcipher XTS mode input length error!\n");
			ret = -EINVAL;
		}
		break;
	case SEC_CMODE_ECB:
	case SEC_CMODE_CBC:
		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "skcipher AES input length error!\n");
			ret = -EINVAL;
		}
		break;
1970 1971 1972 1973 1974 1975 1976 1977
	case SEC_CMODE_CFB:
	case SEC_CMODE_OFB:
	case SEC_CMODE_CTR:
		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
			dev_err(dev, "skcipher HW version error!\n");
			ret = -EINVAL;
		}
		break;
1978 1979 1980 1981 1982 1983 1984
	default:
		ret = -EINVAL;
	}

	return ret;
}

1985
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1986
{
1987
	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1988
	struct device *dev = ctx->dev;
1989
	u8 c_alg = ctx->c_ctx.c_alg;
1990

1991 1992
	if (unlikely(!sk_req->src || !sk_req->dst ||
		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
1993 1994 1995
		dev_err(dev, "skcipher input param error!\n");
		return -EINVAL;
	}
1996
	sreq->c_req.c_len = sk_req->cryptlen;
1997 1998 1999 2000 2001 2002

	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2003
	if (c_alg == SEC_CALG_3DES) {
2004
		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2005 2006 2007 2008 2009
			dev_err(dev, "skcipher 3des input length error!\n");
			return -EINVAL;
		}
		return 0;
	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2010
		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2011
	}
2012

2013
	dev_err(dev, "skcipher algorithm error!\n");
2014

2015 2016 2017
	return -EINVAL;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
				    struct skcipher_request *sreq, bool encrypt)
{
	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
	struct device *dev = ctx->dev;
	int ret;

	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);

	if (!c_ctx->fbtfm) {
		dev_err(dev, "failed to check fallback tfm\n");
		return -EINVAL;
	}

	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);

	/* software need sync mode to do crypto */
	skcipher_request_set_callback(subreq, sreq->base.flags,
				      NULL, NULL);
	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
				   sreq->cryptlen, sreq->iv);
	if (encrypt)
		ret = crypto_skcipher_encrypt(subreq);
	else
		ret = crypto_skcipher_decrypt(subreq);

	skcipher_request_zero(subreq);

	return ret;
}

2049 2050 2051 2052 2053 2054 2055
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
	struct sec_req *req = skcipher_request_ctx(sk_req);
	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

2056 2057 2058
	if (!sk_req->cryptlen) {
		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
			return -EINVAL;
2059
		return 0;
2060
	}
2061

2062
	req->flag = sk_req->base.flags;
2063 2064 2065 2066
	req->c_req.sk_req = sk_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

2067 2068 2069 2070
	ret = sec_skcipher_param_check(ctx, req);
	if (unlikely(ret))
		return -EINVAL;

2071 2072 2073
	if (unlikely(ctx->c_ctx.fallback))
		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	return ctx->req_op->process(ctx, req);
}

static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, true);
}

static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
	return sec_skcipher_crypto(sk_req, false);
}

#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2094 2095 2096
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
	.decrypt = sec_skcipher_decrypt,\
	.encrypt = sec_skcipher_encrypt,\
	.min_keysize = sec_min_key_size,\
	.max_keysize = sec_max_key_size,\
	.ivsize = iv_size,\
},

#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
	max_key_size, blk_size, iv_size) \
	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)

2116
static struct skcipher_alg sec_skciphers[] = {
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2130
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2131 2132 2133
			 DES3_EDE_BLOCK_SIZE, 0)

	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2134
			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static struct skcipher_alg sec_skciphers_v3[] = {
	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)

	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
};

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
static int aead_iv_demension_check(struct aead_request *aead_req)
{
	u8 cl;

	cl = aead_req->iv[0] + 1;
	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
		return -EINVAL;

	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
		return -EOVERFLOW;

	return 0;
}

static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2187 2188 2189 2190
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
2191
	u8 c_mode = ctx->c_ctx.c_mode;
2192
	struct device *dev = ctx->dev;
2193
	int ret;
2194

2195 2196 2197
	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
	    req->assoclen > SEC_MAX_AAD_LEN)) {
		dev_err(dev, "aead input spec error!\n");
2198 2199 2200
		return -EINVAL;
	}

2201 2202 2203 2204
	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
		authsize & MAC_LEN_MASK)))) {
		dev_err(dev, "aead input mac length error!\n");
2205 2206
		return -EINVAL;
	}
2207 2208 2209 2210 2211 2212 2213 2214 2215

	if (c_mode == SEC_CMODE_CCM) {
		ret = aead_iv_demension_check(req);
		if (ret) {
			dev_err(dev, "aead input iv param error!\n");
			return ret;
		}
	}

2216 2217 2218 2219
	if (sreq->c_req.encrypt)
		sreq->c_req.c_len = req->cryptlen;
	else
		sreq->c_req.c_len = req->cryptlen - authsize;
2220 2221 2222 2223 2224 2225 2226 2227 2228
	if (c_mode == SEC_CMODE_CBC) {
		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
			dev_err(dev, "aead crypto length error!\n");
			return -EINVAL;
		}
	}

	return 0;
}
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
	struct aead_request *req = sreq->aead_req.aead_req;
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	size_t authsize = crypto_aead_authsize(tfm);
	struct device *dev = ctx->dev;
	u8 c_alg = ctx->c_ctx.c_alg;

	if (unlikely(!req->src || !req->dst)) {
		dev_err(dev, "aead input param error!\n");
2240 2241 2242
		return -EINVAL;
	}

2243 2244 2245 2246
	if (ctx->sec->qm.ver == QM_HW_V2) {
		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
		    req->cryptlen <= authsize))) {
			dev_err(dev, "Kunpeng920 not support 0 length!\n");
2247
			ctx->a_ctx.fallback = true;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
			return -EINVAL;
		}
	}

	/* Support AES or SM4 */
	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
		dev_err(dev, "aead crypto alg error!\n");
		return -EINVAL;
	}

	if (unlikely(sec_aead_spec_check(ctx, sreq)))
		return -EINVAL;

	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
		SEC_PBUF_SZ)
		sreq->use_pbuf = true;
	else
		sreq->use_pbuf = false;

2267 2268 2269
	return 0;
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
				struct aead_request *aead_req,
				bool encrypt)
{
	struct aead_request *subreq = aead_request_ctx(aead_req);
	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
	struct device *dev = ctx->dev;

	/* Kunpeng920 aead mode not support input 0 size */
	if (!a_ctx->fallback_aead_tfm) {
		dev_err(dev, "aead fallbcak tfm is NULL!\n");
		return -EINVAL;
	}

	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
	aead_request_set_callback(subreq, aead_req->base.flags,
				  aead_req->base.complete, aead_req->base.data);
	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
			       aead_req->cryptlen, aead_req->iv);
	aead_request_set_ad(subreq, aead_req->assoclen);

	return encrypt ? crypto_aead_encrypt(subreq) :
		   crypto_aead_decrypt(subreq);
}

2295 2296 2297 2298 2299 2300 2301
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
	struct sec_req *req = aead_request_ctx(a_req);
	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
	int ret;

2302
	req->flag = a_req->base.flags;
2303 2304 2305 2306 2307
	req->aead_req.aead_req = a_req;
	req->c_req.encrypt = encrypt;
	req->ctx = ctx;

	ret = sec_aead_param_check(ctx, req);
2308 2309 2310
	if (unlikely(ret)) {
		if (ctx->a_ctx.fallback)
			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2311
		return -EINVAL;
2312
	}
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

	return ctx->req_op->process(ctx, req);
}

static int sec_aead_encrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, true);
}

static int sec_aead_decrypt(struct aead_request *a_req)
{
	return sec_aead_crypto(a_req, false);
}

2327
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2328 2329 2330 2331 2332 2333
			 ctx_exit, blk_size, iv_size, max_authsize)\
{\
	.base = {\
		.cra_name = sec_cra_name,\
		.cra_driver_name = "hisi_sec_"sec_cra_name,\
		.cra_priority = SEC_PRIORITY,\
2334 2335 2336
		.cra_flags = CRYPTO_ALG_ASYNC |\
		 CRYPTO_ALG_ALLOCATES_MEMORY |\
		 CRYPTO_ALG_NEED_FALLBACK,\
2337 2338 2339 2340 2341 2342 2343
		.cra_blocksize = blk_size,\
		.cra_ctxsize = sizeof(struct sec_ctx),\
		.cra_module = THIS_MODULE,\
	},\
	.init = ctx_init,\
	.exit = ctx_exit,\
	.setkey = sec_set_key,\
2344
	.setauthsize = sec_aead_setauthsize,\
2345 2346 2347 2348 2349 2350 2351 2352 2353
	.decrypt = sec_aead_decrypt,\
	.encrypt = sec_aead_encrypt,\
	.ivsize = iv_size,\
	.maxauthsize = max_authsize,\
}

static struct aead_alg sec_aeads[] = {
	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2354 2355
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2356 2357 2358

	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2359 2360
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2361 2362 2363

	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
		     AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),

	SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
};

static struct aead_alg sec_aeads_v3[] = {
	SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),

	SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2384 2385
};

2386
int sec_register_to_crypto(struct hisi_qm *qm)
2387
{
2388
	int ret;
2389 2390

	/* To avoid repeat register */
2391 2392 2393 2394
	ret = crypto_register_skciphers(sec_skciphers,
					ARRAY_SIZE(sec_skciphers));
	if (ret)
		return ret;
2395

2396 2397 2398 2399 2400 2401
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_skciphers(sec_skciphers_v3,
						ARRAY_SIZE(sec_skciphers_v3));
		if (ret)
			goto reg_skcipher_fail;
	}
2402

2403 2404
	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
	if (ret)
2405
		goto reg_aead_fail;
2406 2407 2408 2409 2410
	if (qm->ver > QM_HW_V2) {
		ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
		if (ret)
			goto reg_aead_v3_fail;
	}
2411 2412
	return ret;

2413 2414
reg_aead_v3_fail:
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2415 2416 2417 2418 2419 2420 2421
reg_aead_fail:
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
reg_skcipher_fail:
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2422 2423 2424
	return ret;
}

2425
void sec_unregister_from_crypto(struct hisi_qm *qm)
2426
{
2427 2428 2429 2430 2431
	if (qm->ver > QM_HW_V2)
		crypto_unregister_aeads(sec_aeads_v3,
					ARRAY_SIZE(sec_aeads_v3));
	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));

2432 2433 2434
	if (qm->ver > QM_HW_V2)
		crypto_unregister_skciphers(sec_skciphers_v3,
					    ARRAY_SIZE(sec_skciphers_v3));
2435 2436
	crypto_unregister_skciphers(sec_skciphers,
				    ARRAY_SIZE(sec_skciphers));
2437
}