slab_common.c 29.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30
#include "internal.h"

31 32 33
#include "slab.h"

enum slab_state slab_state;
34 35
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
36
struct kmem_cache *kmem_cache;
37

38 39 40 41 42 43 44 45
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

46 47 48 49 50
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

51 52 53 54
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
56
		SLAB_FAILSLAB | SLAB_KASAN)
57

V
Vladimir Davydov 已提交
58
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 61 62 63

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
64
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 66 67

static int __init setup_slab_nomerge(char *str)
{
68
	slab_nomerge = true;
69 70 71 72 73 74 75 76 77
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

78 79 80 81 82 83 84 85 86
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

87
#ifdef CONFIG_DEBUG_VM
88
static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 90 91
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
92 93
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
94
	}
95

96
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
97 98 99
	return 0;
}
#else
100
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
101 102 103
{
	return 0;
}
104 105
#endif

106 107 108 109
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

110 111 112 113 114 115
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
116 117
}

118
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
119 120 121 122 123 124 125 126
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
127
			return 0;
128 129
		}
	}
130
	return i;
131 132
}

133 134 135 136
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
137 138
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
139 140 141 142 143 144 145 146 147
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
148
		unsigned int ralign;
149 150 151 152 153 154 155 156 157 158 159 160 161

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

162 163 164 165 166 167 168 169 170 171 172
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (s->ctor)
		return 1;

173 174 175
	if (s->usersize)
		return 1;

176 177 178 179 180 181 182 183 184
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

185
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
186
		slab_flags_t flags, const char *name, void (*ctor)(void *))
187 188 189
{
	struct kmem_cache *s;

190
	if (slab_nomerge)
191 192 193 194 195 196 197 198 199 200
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

201 202 203
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

204
	list_for_each_entry_reverse(s, &slab_caches, list) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

223 224 225 226
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

227 228 229 230 231
		return s;
	}
	return NULL;
}

232
static struct kmem_cache *create_cache(const char *name,
233
		unsigned int object_size, unsigned int align,
234 235
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
236
		struct kmem_cache *root_cache)
237 238 239 240
{
	struct kmem_cache *s;
	int err;

241 242 243
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

244 245 246 247 248 249
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
250
	s->size = s->object_size = object_size;
251 252
	s->align = align;
	s->ctor = ctor;
253 254
	s->useroffset = useroffset;
	s->usersize = usersize;
255 256 257 258 259 260 261 262 263 264 265 266 267

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
268
	kmem_cache_free(kmem_cache, s);
269 270
	goto out;
}
271

272 273 274
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
275 276 277 278
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
279 280
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
281 282 283 284 285 286 287 288 289 290
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
291
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
292 293 294 295 296
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
297 298
 *
 * Return: a pointer to the cache on success, NULL on failure.
299
 */
300
struct kmem_cache *
301 302
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
303 304
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
305
		  void (*ctor)(void *))
306
{
307
	struct kmem_cache *s = NULL;
308
	const char *cache_name;
309
	int err;
310

311
	get_online_cpus();
312 313
	get_online_mems();

314
	mutex_lock(&slab_mutex);
315

316
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
317
	if (err) {
318
		goto out_unlock;
A
Andrew Morton 已提交
319
	}
320

321 322 323 324 325 326
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

327 328 329 330 331 332 333
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
334

335 336 337 338 339 340 341
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
342
	if (s)
343
		goto out_unlock;
344

345
	cache_name = kstrdup_const(name, GFP_KERNEL);
346 347 348 349
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
350

351
	s = create_cache(cache_name, size,
352
			 calculate_alignment(flags, align, size),
353
			 flags, useroffset, usersize, ctor, NULL);
354 355
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
356
		kfree_const(cache_name);
357
	}
358 359

out_unlock:
360
	mutex_unlock(&slab_mutex);
361 362

	put_online_mems();
363 364
	put_online_cpus();

365
	if (err) {
366 367 368 369
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
370
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
371 372 373 374 375
				name, err);
			dump_stack();
		}
		return NULL;
	}
376 377
	return s;
}
378 379
EXPORT_SYMBOL(kmem_cache_create_usercopy);

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
405
struct kmem_cache *
406
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
407 408
		slab_flags_t flags, void (*ctor)(void *))
{
409
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
410 411
					  ctor);
}
412
EXPORT_SYMBOL(kmem_cache_create);
413

414
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
415
{
416 417
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
418

419
	/*
420
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
421
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
422
	 * through RCU and the associated kmem_cache are dereferenced
423 424 425 426 427 428 429 430
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
431

432 433 434 435 436 437 438 439 440 441 442 443
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
444 445
}

446
static int shutdown_cache(struct kmem_cache *s)
447
{
448 449 450
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

451 452
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
453

454
	list_del(&s->list);
455

456
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
457 458 459
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
460 461 462
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
463
#ifdef SLAB_SUPPORTS_SYSFS
464
		sysfs_slab_unlink(s);
465
		sysfs_slab_release(s);
466 467 468 469
#else
		slab_kmem_cache_release(s);
#endif
	}
470 471

	return 0;
472 473
}

474 475
void slab_kmem_cache_release(struct kmem_cache *s)
{
476
	__kmem_cache_release(s);
477
	kfree_const(s->name);
478 479 480
	kmem_cache_free(kmem_cache, s);
}

481 482
void kmem_cache_destroy(struct kmem_cache *s)
{
483
	int err;
484

485 486 487
	if (unlikely(!s))
		return;

488
	get_online_cpus();
489 490
	get_online_mems();

491
	mutex_lock(&slab_mutex);
492

493
	s->refcount--;
494 495 496
	if (s->refcount)
		goto out_unlock;

497
	err = shutdown_cache(s);
498
	if (err) {
J
Joe Perches 已提交
499 500
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
501 502
		dump_stack();
	}
503 504
out_unlock:
	mutex_unlock(&slab_mutex);
505

506
	put_online_mems();
507 508 509 510
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

511 512 513 514 515 516
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
517 518
 *
 * Return: %0 if all slabs were released, non-zero otherwise
519 520 521 522 523 524 525
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
526
	kasan_cache_shrink(cachep);
527
	ret = __kmem_cache_shrink(cachep);
528 529 530 531 532 533
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

534
bool slab_is_available(void)
535 536 537
{
	return slab_state >= UP;
}
538

539 540
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
541 542 543
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
544 545
{
	int err;
546
	unsigned int align = ARCH_KMALLOC_MINALIGN;
547 548 549

	s->name = name;
	s->size = s->object_size = size;
550 551 552 553 554 555 556 557 558

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

559 560
	s->useroffset = useroffset;
	s->usersize = usersize;
561

562 563 564
	err = __kmem_cache_create(s, flags);

	if (err)
565
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
566 567 568 569 570
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

571 572 573
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
574 575 576 577 578 579
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

580
	create_boot_cache(s, name, size, flags, useroffset, usersize);
581 582 583 584 585
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

586
struct kmem_cache *
587 588
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
589 590
EXPORT_SYMBOL(kmalloc_caches);

591 592 593 594 595 596
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
597
static u8 size_index[24] __ro_after_init = {
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

624
static inline unsigned int size_index_elem(unsigned int bytes)
625 626 627 628 629 630 631 632 633 634
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
635
	unsigned int index;
636 637 638 639 640 641

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
642
	} else {
643
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
644
			return NULL;
645
		index = fls(size - 1);
646
	}
647

648
	return kmalloc_caches[kmalloc_type(flags)][index];
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

668 669 670 671 672
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
673
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
701 702
};

703
/*
704 705 706 707 708 709 710 711 712
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
713
 */
714
void __init setup_kmalloc_cache_index_table(void)
715
{
716
	unsigned int i;
717

718 719 720 721
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
722
		unsigned int elem = size_index_elem(i);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
748 749
}

750
static void __init
751
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
752
{
753
	if (type == KMALLOC_RECLAIM)
754 755
		flags |= SLAB_RECLAIM_ACCOUNT;

756 757
	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
758 759
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
760 761
}

762 763 764 765 766
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
767
void __init create_kmalloc_caches(slab_flags_t flags)
768
{
769 770
	int i;
	enum kmalloc_cache_type type;
771

772 773 774 775
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
776

777 778 779 780 781 782 783 784 785 786 787 788
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
789 790
	}

791 792 793 794 795
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
796
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
797 798

		if (s) {
799
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
800
				kmalloc_info[i].name[KMALLOC_DMA],
801
				kmalloc_info[i].size,
802 803
				SLAB_CACHE_DMA | flags, 0,
				kmalloc_info[i].size);
804 805 806 807
		}
	}
#endif
}
808 809
#endif /* !CONFIG_SLOB */

810 811 812 813 814 815 816 817 818 819 820 821
gfp_t kmalloc_fix_flags(gfp_t flags)
{
	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;

	flags &= ~GFP_SLAB_BUG_MASK;
	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
			invalid_mask, &invalid_mask, flags, &flags);
	dump_stack();

	return flags;
}

V
Vladimir Davydov 已提交
822 823 824 825 826
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
827 828
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
829
	void *ret = NULL;
V
Vladimir Davydov 已提交
830 831
	struct page *page;

832 833 834
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

V
Vladimir Davydov 已提交
835
	flags |= __GFP_COMP;
836
	page = alloc_pages(flags, order);
837 838
	if (likely(page)) {
		ret = page_address(page);
839 840
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
				    PAGE_SIZE << order);
841
	}
842
	ret = kasan_kmalloc_large(ret, size, flags);
843
	/* As ret might get tagged, call kmemleak hook after KASAN. */
844
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
845 846 847 848
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

849 850 851 852 853 854 855 856 857
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
858

859 860 861
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
862
			       unsigned int count)
863 864
{
	unsigned int rand;
865
	unsigned int i;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
906
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
907
#ifdef CONFIG_SLAB
908
#define SLABINFO_RIGHTS (0600)
909
#else
910
#define SLABINFO_RIGHTS (0400)
911 912
#endif

913
static void print_slabinfo_header(struct seq_file *m)
914 915 916 917 918 919 920 921 922 923
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
924
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
925 926 927
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
928
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
929 930 931 932 933
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

934
void *slab_start(struct seq_file *m, loff_t *pos)
935 936
{
	mutex_lock(&slab_mutex);
937
	return seq_list_start(&slab_caches, *pos);
938 939
}

940
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
941
{
942
	return seq_list_next(p, &slab_caches, pos);
943 944
}

945
void slab_stop(struct seq_file *m, void *p)
946 947 948 949
{
	mutex_unlock(&slab_mutex);
}

950
static void cache_show(struct kmem_cache *s, struct seq_file *m)
951
{
952 953 954 955 956 957
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
958
		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
959 960 961 962 963 964 965 966
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
967 968
}

969
static int slab_show(struct seq_file *m, void *p)
970
{
971
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
972

973
	if (p == slab_caches.next)
974
		print_slabinfo_header(m);
975
	cache_show(s, m);
976 977 978
	return 0;
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1000
		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1001 1002 1003 1004 1005
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
1006
			pr_info("%-17s %10luKB %10luKB\n", s->name,
1007 1008 1009 1010 1011 1012
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

1013
#if defined(CONFIG_MEMCG_KMEM)
1014 1015
int memcg_slab_show(struct seq_file *m, void *p)
{
1016 1017 1018 1019
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/slabinfo.py .
	 */
1020
	return 0;
1021
}
1022
#endif
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1038
	.start = slab_start,
1039 1040
	.next = slab_next,
	.stop = slab_stop,
1041
	.show = slab_show,
1042 1043 1044 1045 1046 1047 1048
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

1049
static const struct proc_ops slabinfo_proc_ops = {
1050
	.proc_flags	= PROC_ENTRY_PERMANENT,
1051 1052 1053 1054 1055
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
1056 1057 1058 1059
};

static int __init slab_proc_init(void)
{
1060
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1061 1062 1063
	return 0;
}
module_init(slab_proc_init);
1064

Y
Yang Shi 已提交
1065
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1066 1067 1068 1069 1070

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
1071
	size_t ks;
1072

1073
	ks = ksize(p);
1074

1075
	if (ks >= new_size) {
1076
		p = kasan_krealloc((void *)p, new_size, flags);
1077
		return (void *)p;
1078
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1097 1098
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1110
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1111 1112 1113 1114 1115 1116 1117
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
1118
 * kfree_sensitive - Clear sensitive information in memory before freeing
1119 1120 1121
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
1122
 * If @p is %NULL, kfree_sensitive() does nothing.
1123 1124 1125 1126 1127
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
1128
void kfree_sensitive(const void *p)
1129 1130 1131 1132 1133
{
	size_t ks;
	void *mem = (void *)p;

	ks = ksize(mem);
1134 1135
	if (ks)
		memzero_explicit(mem, ks);
1136 1137
	kfree(mem);
}
1138
EXPORT_SYMBOL(kfree_sensitive);
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	size_t size;

	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
1171
	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1172 1173 1174
		return 0;

	size = __ksize(objp);
1175 1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1184 1185 1186 1187 1188 1189 1190
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1191 1192 1193 1194 1195 1196 1197 1198

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);