core-book3s.c 56.0 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39 40 41 42 43 44
	/*
	 * The order of the MMCR array is:
	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
	 *  - 32-bit, MMCR0, MMCR1, MMCR2
	 */
	unsigned long mmcr[4];
45 46
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 48 49
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50

51
	unsigned int txn_flags;
52
	int n_txn_start;
53 54 55

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
56
	unsigned int			bhrb_users;
57 58 59
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60
	u64				ic_init;
61
};
62

63
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64

65
static struct power_pmu *ppmu;
66

67
/*
I
Ingo Molnar 已提交
68
 * Normally, to ignore kernel events we set the FCS (freeze counters
69 70 71 72 73
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
74
static unsigned int freeze_events_kernel = MMCR0_FCS;
75

76 77 78 79 80 81 82 83
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
84
#define MMCR0_FC56		0
85
#define MMCR0_PMAO		0
86
#define MMCR0_EBE		0
87
#define MMCR0_BHRBA		0
88 89
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
90 91 92 93 94 95 96 97 98 99 100 101 102

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
103 104 105 106
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
107 108 109 110 111
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

112 113 114 115 116
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

117 118 119 120
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
121
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122
{
123
	return cpuhw->mmcr[0];
124 125
}

126 127
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130
static void pmao_restore_workaround(bool ebb) { }
131 132 133 134
static bool use_ic(u64 event)
{
	return false;
}
135 136
#endif /* CONFIG_PPC32 */

137 138
static bool regs_use_siar(struct pt_regs *regs)
{
139 140 141 142 143 144 145 146 147 148
	/*
	 * When we take a performance monitor exception the regs are setup
	 * using perf_read_regs() which overloads some fields, in particular
	 * regs->result to tell us whether to use SIAR.
	 *
	 * However if the regs are from another exception, eg. a syscall, then
	 * they have not been setup using perf_read_regs() and so regs->result
	 * is something random.
	 */
	return ((TRAP(regs) == 0xf00) && regs->result);
149 150
}

151 152 153 154 155 156 157 158 159
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

160
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 162 163 164
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
165

166 167 168 169 170 171 172 173
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
174 175
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
176 177 178 179
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
180
	bool sdar_valid;
181

182 183 184 185 186 187 188 189 190
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
191 192
		else if (ppmu->flags & PPMU_NO_SIAR)
			sdsync = MMCRA_SAMPLE_ENABLE;
193 194 195 196 197
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
198

199
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 201 202
		*addrp = mfspr(SPRN_SDAR);
}

203
static bool regs_sihv(struct pt_regs *regs)
204 205 206
{
	unsigned long sihv = MMCRA_SIHV;

207 208 209
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

210 211 212
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

213
	return !!(regs->dsisr & sihv);
214 215
}

216
static bool regs_sipr(struct pt_regs *regs)
217 218 219
{
	unsigned long sipr = MMCRA_SIPR;

220 221 222
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

223 224 225
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

226
	return !!(regs->dsisr & sipr);
227 228
}

229 230 231 232 233 234 235 236 237
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

238 239
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
240
	bool use_siar = regs_use_siar(regs);
241

242
	if (!use_siar)
243 244 245 246 247 248 249 250
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
251
	if (ppmu->flags & PPMU_NO_SIPR) {
252
		unsigned long siar = mfspr(SPRN_SIAR);
253
		if (is_kernel_addr(siar))
254 255 256
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
257

258
	/* PR has priority over HV, so order below is important */
259
	if (regs_sipr(regs))
260
		return PERF_RECORD_MISC_USER;
261 262

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263
		return PERF_RECORD_MISC_HYPERVISOR;
264

265
	return PERF_RECORD_MISC_KERNEL;
266 267 268 269 270
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
271
 * Overload regs->dar to store SIER if we have it.
272 273
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
274 275 276
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
277 278 279 280
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

281
	regs->dsisr = mmcra;
282

283 284
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
303 304
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
305 306
	else if ((ppmu->flags & PPMU_NO_SIAR))
		use_siar = 0;
307 308 309 310
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
311
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 313 314 315
		use_siar = 0;
	else
		use_siar = 1;

316
	regs->result = use_siar;
317 318 319 320 321 322 323 324 325 326 327
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

328 329 330 331 332 333 334 335 336 337 338 339
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

340 341 342 343 344 345 346
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
347 348 349 350

	return 1;
}

351 352 353 354 355 356 357 358 359

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
360
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
361 362 363 364 365 366 367 368 369 370

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
371
	perf_sched_cb_inc(event->ctx->pmu);
372 373 374 375
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
376
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
377 378 379 380

	if (!ppmu->bhrb_nr)
		return;

381
	WARN_ON_ONCE(!cpuhw->bhrb_users);
382
	cpuhw->bhrb_users--;
383
	perf_sched_cb_dec(event->ctx->pmu);
384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
398
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
399
{
400 401 402 403
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
404 405
		power_pmu_bhrb_reset();
}
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
432 433

/* Processing BHRB entries */
434
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
435 436 437
{
	u64 val;
	u64 addr;
438
	int r_index, u_index, pred;
439 440 441 442 443

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
444 445 446
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
447
			break;
448
		else {
449 450 451
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

452 453
			if (!addr)
				/* invalid entry */
454 455
				continue;

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
473 474

			if (val & BHRB_TARGET) {
475 476 477 478 479 480
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
481

482 483 484 485 486 487 488 489 490 491
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
492
			} else {
493 494
				/* Branches to immediate field 
				   (ie I or B form) */
495
				cpuhw->bhrb_entries[u_index].from = addr;
496 497
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
498 499 500
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
501 502
			u_index++;

503 504 505 506 507 508
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

509 510 511 512 513 514 515
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
516
	return (ppmu->flags & PPMU_ARCH_207S) &&
517
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

535 536 537 538 539
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

573
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
574
{
575 576
	unsigned long mmcr0 = cpuhw->mmcr[0];

577 578 579
	if (!ebb)
		goto out;

580 581
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
582

583 584 585 586 587
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
588 589
	mmcr0 |= current->thread.mmcr0;

590 591 592 593 594
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
595 596 597 598 599 600
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
601 602 603 604 605 606 607 608 609

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
610 611 612
out:
	return mmcr0;
}
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
663
	 * disable to actually prevent the PMU exception from firing.
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
698 699 700 701 702 703 704 705 706

static bool use_ic(u64 event)
{
	if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
			(event == 0x200f2 || event == 0x300f2))
		return true;

	return false;
}
707 708
#endif /* CONFIG_PPC64 */

709
static void perf_event_interrupt(struct pt_regs *regs);
710

711
/*
I
Ingo Molnar 已提交
712
 * Read one performance monitor counter (PMC).
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
737
#ifdef CONFIG_PPC64
738 739 740 741 742 743
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
744
#endif /* CONFIG_PPC64 */
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
776
#ifdef CONFIG_PPC64
777 778 779 780 781 782
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
783
#endif /* CONFIG_PPC64 */
784 785 786 787 788
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

827
	if (ppmu->flags & PPMU_ARCH_207S) {
828 829 830 831 832 833 834 835 836 837 838 839
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

840 841 842 843
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
844
 * The feasible set is returned in event_id[].
845
 */
846 847
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
848
				   int n_ev)
849
{
850
	unsigned long mask, value, nv;
851 852
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
853
	int i, j;
854 855
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
856

857
	if (n_ev > ppmu->n_counter)
858 859 860 861
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
862
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
863 864
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
865
					       cpuhw->alternatives[i]);
866
			event_id[i] = cpuhw->alternatives[i][0];
867
		}
868
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
869
					 &cpuhw->avalues[i][0]))
870 871 872 873
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
874 875
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
876
		if ((((nv + tadd) ^ value) & mask) != 0 ||
877 878
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
879 880
			break;
		value = nv;
881
		mask |= cpuhw->amasks[i][0];
882 883 884 885 886 887 888 889
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
890
		choice[i] = 0;
891
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
892
						  cpuhw->alternatives[i]);
893
		for (j = 1; j < n_alt[i]; ++j)
894 895 896
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
897 898 899 900 901 902 903 904 905 906 907 908 909 910
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
911
		 * See if any alternative k for event_id i,
912 913 914
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
915 916
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
917
			if ((((nv + tadd) ^ value) & mask) == 0 &&
918 919
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
920 921 922 923 924
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
925
			 * to event_id i-1 and continue enumerating its
926 927 928 929 930 931
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
932 933 934
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
935 936 937 938 939 940
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
941
			mask |= cpuhw->amasks[i][j];
942 943 944 945 946 947 948
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
949
		event_id[i] = cpuhw->alternatives[i][choice[i]];
950 951 952
	return 0;
}

953
/*
954
 * Check if newly-added events have consistent settings for
955
 * exclude_{user,kernel,hv} with each other and any previously
956
 * added events.
957
 */
958
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
959
			  int n_prev, int n_new)
960
{
961 962
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
963
	struct perf_event *event;
964

965 966 967 968 969 970 971 972
	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

973 974 975 976
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

977 978 979 980 981 982
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
983
		event = ctrs[i];
984
		if (first) {
985 986 987
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
988
			first = 0;
989 990 991
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
992
			return -EAGAIN;
993
		}
994
	}
995 996 997 998 999 1000

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

1001 1002 1003
	return 0;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
M
Michael Ellerman 已提交
1013
	 * number of events to rollback at once.  If we detect a rollback
1014 1015 1016 1017 1018 1019 1020 1021 1022
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

1023
static void power_pmu_read(struct perf_event *event)
1024
{
1025
	s64 val, delta, prev;
1026
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1027

P
Peter Zijlstra 已提交
1028 1029 1030
	if (event->hw.state & PERF_HES_STOPPED)
		return;

1031
	if (!event->hw.idx)
1032
		return;
1033 1034 1035

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
1036 1037 1038 1039 1040 1041 1042
		if (use_ic(event->attr.config)) {
			val = mfspr(SPRN_IC);
			if (val > cpuhw->ic_init)
				val = val - cpuhw->ic_init;
			else
				val = val + (0 - cpuhw->ic_init);
		}
1043 1044 1045 1046
		local64_set(&event->hw.prev_count, val);
		return;
	}

1047 1048 1049 1050 1051 1052
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
1053
		prev = local64_read(&event->hw.prev_count);
1054
		barrier();
1055
		val = read_pmc(event->hw.idx);
1056 1057 1058 1059 1060 1061 1062
		if (use_ic(event->attr.config)) {
			val = mfspr(SPRN_IC);
			if (val > cpuhw->ic_init)
				val = val - cpuhw->ic_init;
			else
				val = val + (0 - cpuhw->ic_init);
		}
1063 1064 1065
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
1066
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1067

1068
	local64_add(delta, &event->count);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1085 1086
}

1087 1088 1089
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1090
 * us if `event' is using such a PMC.
1091 1092 1093
 */
static int is_limited_pmc(int pmcnum)
{
1094 1095
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1096 1097
}

1098
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1099 1100
				    unsigned long pmc5, unsigned long pmc6)
{
1101
	struct perf_event *event;
1102 1103 1104 1105
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1106
		event = cpuhw->limited_counter[i];
1107
		if (!event->hw.idx)
1108
			continue;
1109
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1110
		prev = local64_read(&event->hw.prev_count);
1111
		event->hw.idx = 0;
1112 1113 1114
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1115 1116 1117
	}
}

1118
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1119 1120
				  unsigned long pmc5, unsigned long pmc6)
{
1121
	struct perf_event *event;
1122
	u64 val, prev;
1123 1124 1125
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1126
		event = cpuhw->limited_counter[i];
1127 1128
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1129 1130 1131
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1132
		perf_event_update_userpage(event);
1133 1134 1135 1136
	}
}

/*
1137
 * Since limited events don't respect the freeze conditions, we
1138
 * have to read them immediately after freezing or unfreezing the
1139 1140
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1141
 * cycles and instructions) between freezing/unfreezing and reading
1142 1143
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1144 1145 1146
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1147
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1158 1159
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1160
	 * events, we first write MMCR0 with the event overflow
1161
	 * interrupt enable bits turned off.
1162 1163 1164
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1165 1166
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1167 1168 1169
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1170
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1171
	else
1172
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1173 1174

	/*
1175
	 * Write the full MMCR0 including the event overflow interrupt
1176 1177 1178 1179
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1180 1181
}

1182
/*
1183 1184
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1185
 */
P
Peter Zijlstra 已提交
1186
static void power_pmu_disable(struct pmu *pmu)
1187
{
1188
	struct cpu_hw_events *cpuhw;
1189
	unsigned long flags, mmcr0, val;
1190

1191 1192
	if (!ppmu)
		return;
1193
	local_irq_save(flags);
1194
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1195

1196
	if (!cpuhw->disabled) {
1197 1198 1199 1200
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1201
			ppc_enable_pmcs();
1202 1203 1204
			cpuhw->pmcs_enabled = 1;
		}

1205
		/*
1206
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1207
		 */
1208
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1209
		val |= MMCR0_FC;
1210 1211
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1212 1213 1214 1215 1216 1217 1218 1219 1220

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1221 1222 1223 1224 1225 1226 1227 1228 1229
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1230 1231
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1232 1233

		ebb_switch_out(mmcr0);
1234
	}
1235

1236 1237 1238 1239
	local_irq_restore(flags);
}

/*
1240 1241
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1242 1243
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1244
static void power_pmu_enable(struct pmu *pmu)
1245
{
1246 1247
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1248 1249
	unsigned long flags;
	long i;
1250
	unsigned long val, mmcr0;
1251
	s64 left;
1252
	unsigned int hwc_index[MAX_HWEVENTS];
1253 1254
	int n_lim;
	int idx;
1255
	bool ebb;
1256

1257 1258
	if (!ppmu)
		return;
1259
	local_irq_save(flags);
1260

1261
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1262 1263 1264
	if (!cpuhw->disabled)
		goto out;

1265 1266 1267 1268 1269
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1270 1271
	cpuhw->disabled = 0;

1272 1273 1274 1275 1276 1277 1278
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1279
	/*
1280
	 * If we didn't change anything, or only removed events,
1281 1282
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1283
	 * (possibly updated for removal of events).
1284 1285
	 */
	if (!cpuhw->n_added) {
1286
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1287
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1288
		goto out_enable;
1289 1290 1291
	}

	/*
1292
	 * Clear all MMCR settings and recompute them for the new set of events.
1293
	 */
1294 1295
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1296
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1297
			       cpuhw->mmcr, cpuhw->event)) {
1298 1299 1300 1301 1302
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr[0] |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr[0] |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr[0] |= MMCR0_FCHV;
	}
1317

1318 1319
	/*
	 * Write the new configuration to MMCR* with the freeze
1320 1321
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1322
	 */
1323
	ppc_set_pmu_inuse(1);
1324
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1325 1326 1327
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
1328 1329
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1330 1331

	/*
1332
	 * Read off any pre-existing events that need to move
1333 1334
	 * to another PMC.
	 */
1335 1336 1337 1338 1339 1340
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1341 1342 1343 1344
		}
	}

	/*
1345
	 * Initialize the PMCs for all the new and moved events.
1346
	 */
1347
	cpuhw->n_limited = n_lim = 0;
1348 1349 1350
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1351
			continue;
1352 1353
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1354
			cpuhw->limited_counter[n_lim] = event;
1355 1356 1357 1358
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1370
		}
1371

1372
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1373 1374
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1375
		write_pmc(idx, val);
1376

1377
		perf_event_update_userpage(event);
1378
	}
1379
	cpuhw->n_limited = n_lim;
1380
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1381 1382

 out_enable:
1383 1384
	pmao_restore_workaround(ebb);

1385
	mmcr0 = ebb_switch_in(ebb, cpuhw);
1386

1387
	mb();
1388 1389 1390
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1391
	write_mmcr0(cpuhw, mmcr0);
1392

1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1401
 out:
1402

1403 1404 1405
	local_irq_restore(flags);
}

1406 1407
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1408
			  unsigned int *flags)
1409 1410
{
	int n = 0;
1411
	struct perf_event *event;
1412

1413
	if (!is_software_event(group)) {
1414 1415 1416
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1417
		flags[n] = group->hw.event_base;
1418 1419
		events[n++] = group->hw.config;
	}
1420
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1421 1422
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1423 1424
			if (n >= max_count)
				return -1;
1425 1426 1427
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1428 1429 1430 1431 1432 1433
		}
	}
	return n;
}

/*
1434 1435
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1436
 * re-enable the PMU in order to get hw_perf_enable to do the
1437 1438
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1439
static int power_pmu_add(struct perf_event *event, int ef_flags)
1440
{
1441
	struct cpu_hw_events *cpuhw;
1442 1443 1444 1445 1446
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1447
	perf_pmu_disable(event->pmu);
1448 1449

	/*
1450
	 * Add the event to the list (if there is room)
1451 1452
	 * and check whether the total set is still feasible.
	 */
1453
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1454
	n0 = cpuhw->n_events;
1455
	if (n0 >= ppmu->n_counter)
1456
		goto out;
1457 1458 1459
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1460

1461 1462 1463 1464 1465 1466
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1467 1468
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1469 1470
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1471

1472 1473
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1474
	 * skip the schedulability test here, it will be performed
1475 1476
	 * at commit time(->commit_txn) as a whole
	 */
1477
	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1478 1479
		goto nocheck;

1480
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1481
		goto out;
1482
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1483
		goto out;
1484
	event->hw.config = cpuhw->events[n0];
1485 1486

nocheck:
1487 1488
	ebb_event_add(event);

1489
	++cpuhw->n_events;
1490 1491 1492 1493
	++cpuhw->n_added;

	ret = 0;
 out:
1494
	if (has_branch_stack(event)) {
1495
		power_pmu_bhrb_enable(event);
1496 1497 1498
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1499

1500 1501 1502 1503 1504 1505 1506
	/*
	 * Workaround for POWER9 DD1 to use the Instruction Counter
	 * register value for instruction counting
	 */
	if (use_ic(event->attr.config))
		cpuhw->ic_init = mfspr(SPRN_IC);

P
Peter Zijlstra 已提交
1507
	perf_pmu_enable(event->pmu);
1508 1509 1510 1511 1512
	local_irq_restore(flags);
	return ret;
}

/*
1513
 * Remove a event from the PMU.
1514
 */
P
Peter Zijlstra 已提交
1515
static void power_pmu_del(struct perf_event *event, int ef_flags)
1516
{
1517
	struct cpu_hw_events *cpuhw;
1518 1519 1520 1521
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1522
	perf_pmu_disable(event->pmu);
1523

1524 1525
	power_pmu_read(event);

1526
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1527 1528
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1529
			while (++i < cpuhw->n_events) {
1530
				cpuhw->event[i-1] = cpuhw->event[i];
1531 1532 1533
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1534 1535 1536 1537 1538
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1539
			}
1540
			perf_event_update_userpage(event);
1541 1542 1543
			break;
		}
	}
1544
	for (i = 0; i < cpuhw->n_limited; ++i)
1545
		if (event == cpuhw->limited_counter[i])
1546 1547 1548
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1549
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1550 1551 1552 1553
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1554 1555
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1556 1557 1558
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1559 1560 1561
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1562
	perf_pmu_enable(event->pmu);
1563 1564 1565
	local_irq_restore(flags);
}

1566
/*
P
Peter Zijlstra 已提交
1567 1568
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1569
 */
P
Peter Zijlstra 已提交
1570 1571

static void power_pmu_start(struct perf_event *event, int ef_flags)
1572 1573
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1574
	s64 left;
1575
	unsigned long val;
1576

1577
	if (!event->hw.idx || !event->hw.sample_period)
1578
		return;
P
Peter Zijlstra 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1591 1592 1593 1594 1595 1596

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1613
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1614
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1615

1616
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1617 1618 1619
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1620
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1621
	perf_pmu_enable(event->pmu);
1622 1623 1624
	local_irq_restore(flags);
}

1625 1626 1627 1628
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
1629 1630 1631 1632
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
1633
 */
1634
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1635
{
1636
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1637

1638 1639 1640 1641 1642 1643
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1644
	perf_pmu_disable(pmu);
1645 1646 1647 1648 1649 1650 1651 1652
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1653
static void power_pmu_cancel_txn(struct pmu *pmu)
1654
{
1655
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1656 1657 1658 1659 1660 1661 1662 1663
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;
1664

P
Peter Zijlstra 已提交
1665
	perf_pmu_enable(pmu);
1666 1667 1668 1669 1670 1671 1672
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
1673
static int power_pmu_commit_txn(struct pmu *pmu)
1674 1675 1676 1677 1678 1679
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
1680

1681
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1682 1683 1684 1685 1686 1687 1688
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuhw->txn_flags = 0;
		return 0;
	}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1699
	cpuhw->txn_flags = 0;
P
Peter Zijlstra 已提交
1700
	perf_pmu_enable(pmu);
1701 1702 1703
	return 0;
}

1704
/*
1705
 * Return 1 if we might be able to put event on a limited PMC,
1706
 * or 0 if not.
1707
 * A event can only go on a limited PMC if it counts something
1708 1709 1710
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1711
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1712 1713 1714
				 unsigned int flags)
{
	int n;
1715
	u64 alt[MAX_EVENT_ALTERNATIVES];
1716

1717 1718 1719 1720
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1721 1722 1723 1724 1725 1726
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1727
	 * The requested event_id isn't on a limited PMC already;
1728 1729 1730 1731 1732 1733 1734 1735
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1736
	return n > 0;
1737 1738 1739
}

/*
1740 1741 1742
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1743
 */
1744
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1745
{
1746
	u64 alt[MAX_EVENT_ALTERNATIVES];
1747 1748 1749 1750 1751 1752 1753 1754 1755
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1756 1757
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1758 1759 1760 1761
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1762
 * Release the PMU if this is the last perf_event.
1763
 */
1764
static void hw_perf_event_destroy(struct perf_event *event)
1765
{
1766
	if (!atomic_add_unless(&num_events, -1, 1)) {
1767
		mutex_lock(&pmc_reserve_mutex);
1768
		if (atomic_dec_return(&num_events) == 0)
1769 1770 1771 1772 1773
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1774
/*
1775
 * Translate a generic cache event_id config to a raw event_id code.
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1804
static int power_pmu_event_init(struct perf_event *event)
1805
{
1806 1807
	u64 ev;
	unsigned long flags;
1808 1809 1810
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1811
	int n;
1812
	int err;
1813
	struct cpu_hw_events *cpuhw;
1814 1815

	if (!ppmu)
1816 1817
		return -ENOENT;

1818 1819
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1820
		if (!(ppmu->flags & PPMU_ARCH_207S))
1821 1822
			return -EOPNOTSUPP;
	}
1823

1824
	switch (event->attr.type) {
1825
	case PERF_TYPE_HARDWARE:
1826
		ev = event->attr.config;
1827
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1828
			return -EOPNOTSUPP;
1829
		ev = ppmu->generic_events[ev];
1830 1831
		break;
	case PERF_TYPE_HW_CACHE:
1832
		err = hw_perf_cache_event(event->attr.config, &ev);
1833
		if (err)
1834
			return err;
1835 1836
		break;
	case PERF_TYPE_RAW:
1837
		ev = event->attr.config;
1838
		break;
1839
	default:
1840
		return -ENOENT;
1841
	}
1842

1843 1844
	event->hw.config_base = ev;
	event->hw.idx = 0;
1845

1846 1847 1848
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1849
	 * the user set it to.
1850 1851
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1852
		event->attr.exclude_hv = 0;
1853 1854

	/*
1855
	 * If this is a per-task event, then we can use
1856 1857 1858 1859 1860
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1861
	if (event->attach_state & PERF_ATTACH_TASK)
1862 1863 1864
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1865 1866
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1867
	 */
1868
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1869
		if (can_go_on_limited_pmc(event, ev, flags)) {
1870 1871 1872
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1873
			 * The requested event_id is on a limited PMC,
1874 1875 1876 1877 1878
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1879
				return -EINVAL;
1880 1881 1882
		}
	}

1883 1884 1885 1886 1887
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1888 1889
	/*
	 * If this is in a group, check if it can go on with all the
1890
	 * other hardware events in the group.  We assume the event
1891 1892 1893
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1894
	if (event->group_leader != event) {
1895
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1896
				   ctrs, events, cflags);
1897
		if (n < 0)
1898
			return -EINVAL;
1899
	}
1900
	events[n] = ev;
1901
	ctrs[n] = event;
1902 1903
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1904
		return -EINVAL;
1905

1906
	cpuhw = &get_cpu_var(cpu_hw_events);
1907
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1908 1909 1910 1911 1912

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

1913 1914
		if (cpuhw->bhrb_filter == -1) {
			put_cpu_var(cpu_hw_events);
1915
			return -EOPNOTSUPP;
1916
		}
1917 1918
	}

1919
	put_cpu_var(cpu_hw_events);
1920
	if (err)
1921
		return -EINVAL;
1922

1923 1924 1925
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1926
	local64_set(&event->hw.period_left, event->hw.last_period);
1927

1928 1929 1930 1931 1932 1933 1934
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1935 1936
	/*
	 * See if we need to reserve the PMU.
1937
	 * If no events are currently in use, then we have to take a
1938 1939 1940 1941
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1942
	if (!atomic_inc_not_zero(&num_events)) {
1943
		mutex_lock(&pmc_reserve_mutex);
1944 1945
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1946 1947
			err = -EBUSY;
		else
1948
			atomic_inc(&num_events);
1949 1950
		mutex_unlock(&pmc_reserve_mutex);
	}
1951
	event->destroy = hw_perf_event_destroy;
1952

1953
	return err;
1954 1955
}

1956 1957 1958 1959 1960
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1971
static struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1972 1973
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1974
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1975 1976 1977 1978
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1979 1980 1981 1982
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1983
	.event_idx	= power_pmu_event_idx,
1984
	.sched_task	= power_pmu_sched_task,
1985 1986
};

1987
/*
I
Ingo Molnar 已提交
1988
 * A counter has overflowed; update its count and record
1989 1990 1991
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1992
static void record_and_restart(struct perf_event *event, unsigned long val,
1993
			       struct pt_regs *regs)
1994
{
1995
	u64 period = event->hw.sample_period;
1996 1997 1998
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1999 2000 2001 2002 2003
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

2004
	/* we don't have to worry about interrupts here */
2005
	prev = local64_read(&event->hw.prev_count);
2006
	delta = check_and_compute_delta(prev, val);
2007
	local64_add(delta, &event->count);
2008 2009

	/*
2010
	 * See if the total period for this event has expired,
2011 2012 2013
	 * and update for the next period.
	 */
	val = 0;
2014
	left = local64_read(&event->hw.period_left) - delta;
2015 2016
	if (delta == 0)
		left++;
2017
	if (period) {
2018
		if (left <= 0) {
2019
			left += period;
2020
			if (left <= 0)
2021
				left = period;
2022
			record = siar_valid(regs);
2023
			event->hw.last_period = event->hw.sample_period;
2024
		}
2025 2026
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
2027 2028
	}

P
Peter Zijlstra 已提交
2029 2030 2031 2032 2033
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

2034 2035 2036
	/*
	 * Finally record data if requested.
	 */
2037
	if (record) {
2038 2039
		struct perf_sample_data data;

2040
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2041

2042 2043
		if (event->attr.sample_type &
		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2044 2045
			perf_get_data_addr(regs, &data.addr);

2046 2047
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
2048
			cpuhw = this_cpu_ptr(&cpu_hw_events);
2049 2050 2051 2052
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

2053 2054 2055 2056
		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
						ppmu->get_mem_data_src)
			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);

2057 2058 2059 2060
		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
						ppmu->get_mem_weight)
			ppmu->get_mem_weight(&data.weight);

2061
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2062
			power_pmu_stop(event, 0);
2063 2064 2065 2066 2067
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
2068
 * for an event_id.
2069 2070 2071
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
2072
	u32 flags = perf_get_misc_flags(regs);
2073

2074 2075
	if (flags)
		return flags;
2076 2077
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
2078 2079 2080 2081
}

/*
 * Called from generic code to get the instruction pointer
2082
 * for an event_id.
2083 2084 2085
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2086
	bool use_siar = regs_use_siar(regs);
2087

2088
	if (use_siar && siar_valid(regs))
2089
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2090 2091
	else if (use_siar)
		return 0;		// no valid instruction pointer
2092
	else
2093
		return regs->nip;
2094 2095
}

2096
static bool pmc_overflow_power7(unsigned long val)
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
2109 2110 2111 2112 2113 2114 2115 2116 2117
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2118 2119 2120 2121 2122
		return true;

	return false;
}

2123 2124 2125
/*
 * Performance monitor interrupt stuff
 */
2126
static void perf_event_interrupt(struct pt_regs *regs)
2127
{
2128
	int i, j;
2129
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2130
	struct perf_event *event;
2131 2132
	unsigned long val[8];
	int found, active;
2133 2134
	int nmi;

2135
	if (cpuhw->n_limited)
2136
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2137 2138
					mfspr(SPRN_PMC6));

2139
	perf_read_regs(regs);
2140

2141
	nmi = perf_intr_is_nmi(regs);
2142 2143 2144 2145
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2146

2147 2148 2149 2150 2151 2152 2153 2154
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2155
			continue;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2172
		}
2173 2174 2175
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2176
	}
2177 2178 2179 2180 2181
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2182
				continue;
2183 2184 2185 2186 2187 2188 2189
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2190 2191
		}
	}
2192
	if (!found && !nmi && printk_ratelimit())
2193
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2194 2195 2196

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2197
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2198
	 * and thus allow interrupts to occur again.
2199
	 * XXX might want to use MSR.PM to keep the events frozen until
2200 2201
	 * we get back out of this interrupt.
	 */
2202
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2203

2204 2205 2206
	if (nmi)
		nmi_exit();
	else
2207
		irq_exit();
2208 2209
}

2210
static int power_pmu_prepare_cpu(unsigned int cpu)
2211
{
2212
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2213

2214 2215 2216
	if (ppmu) {
		memset(cpuhw, 0, sizeof(*cpuhw));
		cpuhw->mmcr[0] = MMCR0_FC;
2217
	}
2218
	return 0;
2219 2220
}

2221
int register_power_pmu(struct power_pmu *pmu)
2222
{
2223 2224 2225 2226 2227 2228
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2229

2230 2231
	power_pmu.attr_groups = ppmu->attr_groups;

2232
#ifdef MSR_HV
2233 2234 2235 2236
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2237
		freeze_events_kernel = MMCR0_FCHV;
2238
#endif /* CONFIG_PPC64 */
2239

P
Peter Zijlstra 已提交
2240
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
T
Thomas Gleixner 已提交
2241
	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2242
			  power_pmu_prepare_cpu, NULL);
2243 2244
	return 0;
}