core-book3s.c 55.0 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39 40 41 42 43 44
	/*
	 * The order of the MMCR array is:
	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
	 *  - 32-bit, MMCR0, MMCR1, MMCR2
	 */
	unsigned long mmcr[4];
45 46
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 48 49
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50

51
	unsigned int txn_flags;
52
	int n_txn_start;
53 54 55

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
56
	unsigned int			bhrb_users;
57 58 59
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60
};
61

62
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63

64
static struct power_pmu *ppmu;
65

66
/*
I
Ingo Molnar 已提交
67
 * Normally, to ignore kernel events we set the FCS (freeze counters
68 69 70 71 72
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
73
static unsigned int freeze_events_kernel = MMCR0_FCS;
74

75 76 77 78 79 80 81 82
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
83
#define MMCR0_FC56		0
84
#define MMCR0_PMAO		0
85
#define MMCR0_EBE		0
86
#define MMCR0_BHRBA		0
87 88
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
89 90 91 92 93 94 95 96 97 98 99 100 101

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
102 103 104 105
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
106 107 108 109 110
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

111 112 113 114 115
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

116 117 118 119
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
120
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121
{
122
	return cpuhw->mmcr[0];
123 124
}

125 126
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129
static void pmao_restore_workaround(bool ebb) { }
130 131
#endif /* CONFIG_PPC32 */

132 133
static bool regs_use_siar(struct pt_regs *regs)
{
134 135 136 137 138 139 140 141 142 143
	/*
	 * When we take a performance monitor exception the regs are setup
	 * using perf_read_regs() which overloads some fields, in particular
	 * regs->result to tell us whether to use SIAR.
	 *
	 * However if the regs are from another exception, eg. a syscall, then
	 * they have not been setup using perf_read_regs() and so regs->result
	 * is something random.
	 */
	return ((TRAP(regs) == 0xf00) && regs->result);
144 145
}

146 147 148 149 150 151 152 153 154
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

155
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156 157 158 159
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
160

161 162 163 164 165 166 167 168
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
169 170
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
171 172 173 174
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
175
	bool sdar_valid;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
191

192
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193 194 195
		*addrp = mfspr(SPRN_SDAR);
}

196
static bool regs_sihv(struct pt_regs *regs)
197 198 199
{
	unsigned long sihv = MMCRA_SIHV;

200 201 202
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

203 204 205
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

206
	return !!(regs->dsisr & sihv);
207 208
}

209
static bool regs_sipr(struct pt_regs *regs)
210 211 212
{
	unsigned long sipr = MMCRA_SIPR;

213 214 215
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

216 217 218
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

219
	return !!(regs->dsisr & sipr);
220 221
}

222 223 224 225 226 227 228 229 230
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

231 232
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
233
	bool use_siar = regs_use_siar(regs);
234

235
	if (!use_siar)
236 237 238 239 240 241 242 243
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
244
	if (ppmu->flags & PPMU_NO_SIPR) {
245 246 247 248 249
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
250

251
	/* PR has priority over HV, so order below is important */
252
	if (regs_sipr(regs))
253
		return PERF_RECORD_MISC_USER;
254 255

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256
		return PERF_RECORD_MISC_HYPERVISOR;
257

258
	return PERF_RECORD_MISC_KERNEL;
259 260 261 262 263
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
264
 * Overload regs->dar to store SIER if we have it.
265 266
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
267 268 269
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
270 271 272 273
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

274
	regs->dsisr = mmcra;
275

276 277
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
296 297
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
298 299 300 301
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
302
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
303 304 305 306
		use_siar = 0;
	else
		use_siar = 1;

307
	regs->result = use_siar;
308 309 310 311 312 313 314 315 316 317 318
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

319 320 321 322 323 324 325 326 327 328 329 330
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

331 332 333 334 335 336 337
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
338 339 340 341

	return 1;
}

342 343 344 345 346 347 348 349 350

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
351
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
352 353 354 355 356 357 358 359 360 361

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
362
	perf_sched_cb_inc(event->ctx->pmu);
363 364 365 366
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
367
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
368 369 370 371

	if (!ppmu->bhrb_nr)
		return;

372
	WARN_ON_ONCE(!cpuhw->bhrb_users);
373
	cpuhw->bhrb_users--;
374
	perf_sched_cb_dec(event->ctx->pmu);
375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
389
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
390
{
391 392 393 394
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
395 396
		power_pmu_bhrb_reset();
}
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
423 424

/* Processing BHRB entries */
425
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
426 427 428
{
	u64 val;
	u64 addr;
429
	int r_index, u_index, pred;
430 431 432 433 434

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
435 436 437
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
438
			break;
439
		else {
440 441 442
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

443 444
			if (!addr)
				/* invalid entry */
445 446
				continue;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
464 465

			if (val & BHRB_TARGET) {
466 467 468 469 470 471
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
472

473 474 475 476 477 478 479 480 481 482
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
483
			} else {
484 485
				/* Branches to immediate field 
				   (ie I or B form) */
486
				cpuhw->bhrb_entries[u_index].from = addr;
487 488
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
489 490 491
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
492 493
			u_index++;

494 495 496 497 498 499
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

500 501 502 503 504 505 506
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
507
	return (ppmu->flags & PPMU_ARCH_207S) &&
508
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

526 527 528 529 530
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

564
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
565
{
566 567
	unsigned long mmcr0 = cpuhw->mmcr[0];

568 569 570
	if (!ebb)
		goto out;

571 572
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
573

574 575 576 577 578
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
579 580
	mmcr0 |= current->thread.mmcr0;

581 582 583 584 585
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
586 587 588 589 590 591
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
592 593 594 595 596 597 598 599 600

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
601 602 603
out:
	return mmcr0;
}
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
654
	 * disable to actually prevent the PMU exception from firing.
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
689 690
#endif /* CONFIG_PPC64 */

691
static void perf_event_interrupt(struct pt_regs *regs);
692

693
/*
I
Ingo Molnar 已提交
694
 * Read one performance monitor counter (PMC).
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
719
#ifdef CONFIG_PPC64
720 721 722 723 724 725
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
726
#endif /* CONFIG_PPC64 */
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
758
#ifdef CONFIG_PPC64
759 760 761 762 763 764
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
765
#endif /* CONFIG_PPC64 */
766 767 768 769 770
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

809
	if (ppmu->flags & PPMU_ARCH_207S) {
810 811 812 813 814 815 816 817 818 819 820 821
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

822 823 824 825
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
826
 * The feasible set is returned in event_id[].
827
 */
828 829
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
830
				   int n_ev)
831
{
832
	unsigned long mask, value, nv;
833 834
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
835
	int i, j;
836 837
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
838

839
	if (n_ev > ppmu->n_counter)
840 841 842 843
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
844
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
845 846
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
847
					       cpuhw->alternatives[i]);
848
			event_id[i] = cpuhw->alternatives[i][0];
849
		}
850
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
851
					 &cpuhw->avalues[i][0]))
852 853 854 855
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
856 857
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
858
		if ((((nv + tadd) ^ value) & mask) != 0 ||
859 860
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
861 862
			break;
		value = nv;
863
		mask |= cpuhw->amasks[i][0];
864 865 866 867 868 869 870 871
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
872
		choice[i] = 0;
873
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
874
						  cpuhw->alternatives[i]);
875
		for (j = 1; j < n_alt[i]; ++j)
876 877 878
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
879 880 881 882 883 884 885 886 887 888 889 890 891 892
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
893
		 * See if any alternative k for event_id i,
894 895 896
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
897 898
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
899
			if ((((nv + tadd) ^ value) & mask) == 0 &&
900 901
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
902 903 904 905 906
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
907
			 * to event_id i-1 and continue enumerating its
908 909 910 911 912 913
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
914 915 916
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
917 918 919 920 921 922
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
923
			mask |= cpuhw->amasks[i][j];
924 925 926 927 928 929 930
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
931
		event_id[i] = cpuhw->alternatives[i][choice[i]];
932 933 934
	return 0;
}

935
/*
936
 * Check if newly-added events have consistent settings for
937
 * exclude_{user,kernel,hv} with each other and any previously
938
 * added events.
939
 */
940
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
941
			  int n_prev, int n_new)
942
{
943 944
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
945
	struct perf_event *event;
946

947 948 949 950 951 952 953 954
	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

955 956 957 958
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

959 960 961 962 963 964
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
965
		event = ctrs[i];
966
		if (first) {
967 968 969
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
970
			first = 0;
971 972 973
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
974
			return -EAGAIN;
975
		}
976
	}
977 978 979 980 981 982

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

983 984 985
	return 0;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

1005
static void power_pmu_read(struct perf_event *event)
1006
{
1007
	s64 val, delta, prev;
1008

P
Peter Zijlstra 已提交
1009 1010 1011
	if (event->hw.state & PERF_HES_STOPPED)
		return;

1012
	if (!event->hw.idx)
1013
		return;
1014 1015 1016 1017 1018 1019 1020

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

1021 1022 1023 1024 1025 1026
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
1027
		prev = local64_read(&event->hw.prev_count);
1028
		barrier();
1029
		val = read_pmc(event->hw.idx);
1030 1031 1032
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
1033
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1034

1035
	local64_add(delta, &event->count);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1052 1053
}

1054 1055 1056
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1057
 * us if `event' is using such a PMC.
1058 1059 1060
 */
static int is_limited_pmc(int pmcnum)
{
1061 1062
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1063 1064
}

1065
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1066 1067
				    unsigned long pmc5, unsigned long pmc6)
{
1068
	struct perf_event *event;
1069 1070 1071 1072
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1073
		event = cpuhw->limited_counter[i];
1074
		if (!event->hw.idx)
1075
			continue;
1076
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1077
		prev = local64_read(&event->hw.prev_count);
1078
		event->hw.idx = 0;
1079 1080 1081
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1082 1083 1084
	}
}

1085
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1086 1087
				  unsigned long pmc5, unsigned long pmc6)
{
1088
	struct perf_event *event;
1089
	u64 val, prev;
1090 1091 1092
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1093
		event = cpuhw->limited_counter[i];
1094 1095
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1096 1097 1098
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1099
		perf_event_update_userpage(event);
1100 1101 1102 1103
	}
}

/*
1104
 * Since limited events don't respect the freeze conditions, we
1105
 * have to read them immediately after freezing or unfreezing the
1106 1107
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1108
 * cycles and instructions) between freezing/unfreezing and reading
1109 1110
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1111 1112 1113
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1114
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1125 1126
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1127
	 * events, we first write MMCR0 with the event overflow
1128
	 * interrupt enable bits turned off.
1129 1130 1131
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1132 1133
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1134 1135 1136
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1137
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1138
	else
1139
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1140 1141

	/*
1142
	 * Write the full MMCR0 including the event overflow interrupt
1143 1144 1145 1146
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1147 1148
}

1149
/*
1150 1151
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1152
 */
P
Peter Zijlstra 已提交
1153
static void power_pmu_disable(struct pmu *pmu)
1154
{
1155
	struct cpu_hw_events *cpuhw;
1156
	unsigned long flags, mmcr0, val;
1157

1158 1159
	if (!ppmu)
		return;
1160
	local_irq_save(flags);
1161
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1162

1163
	if (!cpuhw->disabled) {
1164 1165 1166 1167
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1168
			ppc_enable_pmcs();
1169 1170 1171
			cpuhw->pmcs_enabled = 1;
		}

1172
		/*
1173
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1174
		 */
1175
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1176
		val |= MMCR0_FC;
1177 1178
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1179 1180 1181 1182 1183 1184 1185 1186 1187

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1188 1189 1190 1191 1192 1193 1194 1195 1196
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1197 1198
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1199 1200

		ebb_switch_out(mmcr0);
1201
	}
1202

1203 1204 1205 1206
	local_irq_restore(flags);
}

/*
1207 1208
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1209 1210
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1211
static void power_pmu_enable(struct pmu *pmu)
1212
{
1213 1214
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1215 1216
	unsigned long flags;
	long i;
1217
	unsigned long val, mmcr0;
1218
	s64 left;
1219
	unsigned int hwc_index[MAX_HWEVENTS];
1220 1221
	int n_lim;
	int idx;
1222
	bool ebb;
1223

1224 1225
	if (!ppmu)
		return;
1226
	local_irq_save(flags);
1227

1228
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1229 1230 1231
	if (!cpuhw->disabled)
		goto out;

1232 1233 1234 1235 1236
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1237 1238
	cpuhw->disabled = 0;

1239 1240 1241 1242 1243 1244 1245
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1246
	/*
1247
	 * If we didn't change anything, or only removed events,
1248 1249
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1250
	 * (possibly updated for removal of events).
1251 1252
	 */
	if (!cpuhw->n_added) {
1253
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1254
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1255
		goto out_enable;
1256 1257 1258
	}

	/*
1259
	 * Clear all MMCR settings and recompute them for the new set of events.
1260
	 */
1261 1262
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1263
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1264
			       cpuhw->mmcr, cpuhw->event)) {
1265 1266 1267 1268 1269
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr[0] |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr[0] |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr[0] |= MMCR0_FCHV;
	}
1284

1285 1286
	/*
	 * Write the new configuration to MMCR* with the freeze
1287 1288
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1289
	 */
1290
	ppc_set_pmu_inuse(1);
1291
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292 1293 1294
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
1295 1296
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1297 1298

	/*
1299
	 * Read off any pre-existing events that need to move
1300 1301
	 * to another PMC.
	 */
1302 1303 1304 1305 1306 1307
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1308 1309 1310 1311
		}
	}

	/*
1312
	 * Initialize the PMCs for all the new and moved events.
1313
	 */
1314
	cpuhw->n_limited = n_lim = 0;
1315 1316 1317
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1318
			continue;
1319 1320
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1321
			cpuhw->limited_counter[n_lim] = event;
1322 1323 1324 1325
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1337
		}
1338

1339
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1340 1341
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1342
		write_pmc(idx, val);
1343

1344
		perf_event_update_userpage(event);
1345
	}
1346
	cpuhw->n_limited = n_lim;
1347
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1348 1349

 out_enable:
1350 1351
	pmao_restore_workaround(ebb);

1352
	mmcr0 = ebb_switch_in(ebb, cpuhw);
1353

1354
	mb();
1355 1356 1357
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1358
	write_mmcr0(cpuhw, mmcr0);
1359

1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1368
 out:
1369

1370 1371 1372
	local_irq_restore(flags);
}

1373 1374
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1375
			  unsigned int *flags)
1376 1377
{
	int n = 0;
1378
	struct perf_event *event;
1379

1380
	if (!is_software_event(group)) {
1381 1382 1383
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1384
		flags[n] = group->hw.event_base;
1385 1386
		events[n++] = group->hw.config;
	}
1387
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1388 1389
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1390 1391
			if (n >= max_count)
				return -1;
1392 1393 1394
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1395 1396 1397 1398 1399 1400
		}
	}
	return n;
}

/*
1401 1402
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1403
 * re-enable the PMU in order to get hw_perf_enable to do the
1404 1405
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1406
static int power_pmu_add(struct perf_event *event, int ef_flags)
1407
{
1408
	struct cpu_hw_events *cpuhw;
1409 1410 1411 1412 1413
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1414
	perf_pmu_disable(event->pmu);
1415 1416

	/*
1417
	 * Add the event to the list (if there is room)
1418 1419
	 * and check whether the total set is still feasible.
	 */
1420
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1421
	n0 = cpuhw->n_events;
1422
	if (n0 >= ppmu->n_counter)
1423
		goto out;
1424 1425 1426
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1427

1428 1429 1430 1431 1432 1433
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1434 1435
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1436 1437
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1438

1439 1440
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1441
	 * skip the schedulability test here, it will be performed
1442 1443
	 * at commit time(->commit_txn) as a whole
	 */
1444
	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1445 1446
		goto nocheck;

1447
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1448
		goto out;
1449
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1450
		goto out;
1451
	event->hw.config = cpuhw->events[n0];
1452 1453

nocheck:
1454 1455
	ebb_event_add(event);

1456
	++cpuhw->n_events;
1457 1458 1459 1460
	++cpuhw->n_added;

	ret = 0;
 out:
1461
	if (has_branch_stack(event)) {
1462
		power_pmu_bhrb_enable(event);
1463 1464 1465
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1466

P
Peter Zijlstra 已提交
1467
	perf_pmu_enable(event->pmu);
1468 1469 1470 1471 1472
	local_irq_restore(flags);
	return ret;
}

/*
1473
 * Remove a event from the PMU.
1474
 */
P
Peter Zijlstra 已提交
1475
static void power_pmu_del(struct perf_event *event, int ef_flags)
1476
{
1477
	struct cpu_hw_events *cpuhw;
1478 1479 1480 1481
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1482
	perf_pmu_disable(event->pmu);
1483

1484 1485
	power_pmu_read(event);

1486
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1487 1488
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1489
			while (++i < cpuhw->n_events) {
1490
				cpuhw->event[i-1] = cpuhw->event[i];
1491 1492 1493
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1494 1495 1496 1497 1498
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1499
			}
1500
			perf_event_update_userpage(event);
1501 1502 1503
			break;
		}
	}
1504
	for (i = 0; i < cpuhw->n_limited; ++i)
1505
		if (event == cpuhw->limited_counter[i])
1506 1507 1508
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1509
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1510 1511 1512 1513
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1514 1515
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1516 1517 1518
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1519 1520 1521
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1522
	perf_pmu_enable(event->pmu);
1523 1524 1525
	local_irq_restore(flags);
}

1526
/*
P
Peter Zijlstra 已提交
1527 1528
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1529
 */
P
Peter Zijlstra 已提交
1530 1531

static void power_pmu_start(struct perf_event *event, int ef_flags)
1532 1533
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1534
	s64 left;
1535
	unsigned long val;
1536

1537
	if (!event->hw.idx || !event->hw.sample_period)
1538
		return;
P
Peter Zijlstra 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1551 1552 1553 1554 1555 1556

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1573
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1574
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1575

1576
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1577 1578 1579
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1580
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1581
	perf_pmu_enable(event->pmu);
1582 1583 1584
	local_irq_restore(flags);
}

1585 1586 1587 1588
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
1589 1590 1591 1592
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
1593
 */
1594
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1595
{
1596
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1597

1598 1599 1600 1601 1602 1603
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1604
	perf_pmu_disable(pmu);
1605 1606 1607 1608 1609 1610 1611 1612
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1613
static void power_pmu_cancel_txn(struct pmu *pmu)
1614
{
1615
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1616 1617 1618 1619 1620 1621 1622 1623
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;
1624

P
Peter Zijlstra 已提交
1625
	perf_pmu_enable(pmu);
1626 1627 1628 1629 1630 1631 1632
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
1633
static int power_pmu_commit_txn(struct pmu *pmu)
1634 1635 1636 1637 1638 1639
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
1640

1641
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1642 1643 1644 1645 1646 1647 1648
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuhw->txn_flags = 0;
		return 0;
	}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1659
	cpuhw->txn_flags = 0;
P
Peter Zijlstra 已提交
1660
	perf_pmu_enable(pmu);
1661 1662 1663
	return 0;
}

1664
/*
1665
 * Return 1 if we might be able to put event on a limited PMC,
1666
 * or 0 if not.
1667
 * A event can only go on a limited PMC if it counts something
1668 1669 1670
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1671
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1672 1673 1674
				 unsigned int flags)
{
	int n;
1675
	u64 alt[MAX_EVENT_ALTERNATIVES];
1676

1677 1678 1679 1680
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1681 1682 1683 1684 1685 1686
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1687
	 * The requested event_id isn't on a limited PMC already;
1688 1689 1690 1691 1692 1693 1694 1695
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1696
	return n > 0;
1697 1698 1699
}

/*
1700 1701 1702
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1703
 */
1704
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1705
{
1706
	u64 alt[MAX_EVENT_ALTERNATIVES];
1707 1708 1709 1710 1711 1712 1713 1714 1715
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1716 1717
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1718 1719 1720 1721
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1722
 * Release the PMU if this is the last perf_event.
1723
 */
1724
static void hw_perf_event_destroy(struct perf_event *event)
1725
{
1726
	if (!atomic_add_unless(&num_events, -1, 1)) {
1727
		mutex_lock(&pmc_reserve_mutex);
1728
		if (atomic_dec_return(&num_events) == 0)
1729 1730 1731 1732 1733
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1734
/*
1735
 * Translate a generic cache event_id config to a raw event_id code.
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1764
static int power_pmu_event_init(struct perf_event *event)
1765
{
1766 1767
	u64 ev;
	unsigned long flags;
1768 1769 1770
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1771
	int n;
1772
	int err;
1773
	struct cpu_hw_events *cpuhw;
1774 1775

	if (!ppmu)
1776 1777
		return -ENOENT;

1778 1779
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1780
		if (!(ppmu->flags & PPMU_ARCH_207S))
1781 1782
			return -EOPNOTSUPP;
	}
1783

1784
	switch (event->attr.type) {
1785
	case PERF_TYPE_HARDWARE:
1786
		ev = event->attr.config;
1787
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1788
			return -EOPNOTSUPP;
1789
		ev = ppmu->generic_events[ev];
1790 1791
		break;
	case PERF_TYPE_HW_CACHE:
1792
		err = hw_perf_cache_event(event->attr.config, &ev);
1793
		if (err)
1794
			return err;
1795 1796
		break;
	case PERF_TYPE_RAW:
1797
		ev = event->attr.config;
1798
		break;
1799
	default:
1800
		return -ENOENT;
1801
	}
1802

1803 1804
	event->hw.config_base = ev;
	event->hw.idx = 0;
1805

1806 1807 1808
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1809
	 * the user set it to.
1810 1811
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1812
		event->attr.exclude_hv = 0;
1813 1814

	/*
1815
	 * If this is a per-task event, then we can use
1816 1817 1818 1819 1820
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1821
	if (event->attach_state & PERF_ATTACH_TASK)
1822 1823 1824
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1825 1826
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1827
	 */
1828
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1829
		if (can_go_on_limited_pmc(event, ev, flags)) {
1830 1831 1832
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1833
			 * The requested event_id is on a limited PMC,
1834 1835 1836 1837 1838
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1839
				return -EINVAL;
1840 1841 1842
		}
	}

1843 1844 1845 1846 1847
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1848 1849
	/*
	 * If this is in a group, check if it can go on with all the
1850
	 * other hardware events in the group.  We assume the event
1851 1852 1853
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1854
	if (event->group_leader != event) {
1855
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1856
				   ctrs, events, cflags);
1857
		if (n < 0)
1858
			return -EINVAL;
1859
	}
1860
	events[n] = ev;
1861
	ctrs[n] = event;
1862 1863
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1864
		return -EINVAL;
1865

1866
	cpuhw = &get_cpu_var(cpu_hw_events);
1867
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1868 1869 1870 1871 1872

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

1873 1874
		if (cpuhw->bhrb_filter == -1) {
			put_cpu_var(cpu_hw_events);
1875
			return -EOPNOTSUPP;
1876
		}
1877 1878
	}

1879
	put_cpu_var(cpu_hw_events);
1880
	if (err)
1881
		return -EINVAL;
1882

1883 1884 1885
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1886
	local64_set(&event->hw.period_left, event->hw.last_period);
1887

1888 1889 1890 1891 1892 1893 1894
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1895 1896
	/*
	 * See if we need to reserve the PMU.
1897
	 * If no events are currently in use, then we have to take a
1898 1899 1900 1901
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1902
	if (!atomic_inc_not_zero(&num_events)) {
1903
		mutex_lock(&pmc_reserve_mutex);
1904 1905
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1906 1907
			err = -EBUSY;
		else
1908
			atomic_inc(&num_events);
1909 1910
		mutex_unlock(&pmc_reserve_mutex);
	}
1911
	event->destroy = hw_perf_event_destroy;
1912

1913
	return err;
1914 1915
}

1916 1917 1918 1919 1920
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1931
static struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1932 1933
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1934
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1935 1936 1937 1938
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1939 1940 1941 1942
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1943
	.event_idx	= power_pmu_event_idx,
1944
	.sched_task	= power_pmu_sched_task,
1945 1946
};

1947
/*
I
Ingo Molnar 已提交
1948
 * A counter has overflowed; update its count and record
1949 1950 1951
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1952
static void record_and_restart(struct perf_event *event, unsigned long val,
1953
			       struct pt_regs *regs)
1954
{
1955
	u64 period = event->hw.sample_period;
1956 1957 1958
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1959 1960 1961 1962 1963
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1964
	/* we don't have to worry about interrupts here */
1965
	prev = local64_read(&event->hw.prev_count);
1966
	delta = check_and_compute_delta(prev, val);
1967
	local64_add(delta, &event->count);
1968 1969

	/*
1970
	 * See if the total period for this event has expired,
1971 1972 1973
	 * and update for the next period.
	 */
	val = 0;
1974
	left = local64_read(&event->hw.period_left) - delta;
1975 1976
	if (delta == 0)
		left++;
1977
	if (period) {
1978
		if (left <= 0) {
1979
			left += period;
1980
			if (left <= 0)
1981
				left = period;
1982
			record = siar_valid(regs);
1983
			event->hw.last_period = event->hw.sample_period;
1984
		}
1985 1986
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1987 1988
	}

P
Peter Zijlstra 已提交
1989 1990 1991 1992 1993
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1994 1995 1996
	/*
	 * Finally record data if requested.
	 */
1997
	if (record) {
1998 1999
		struct perf_sample_data data;

2000
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2001

2002
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2003 2004
			perf_get_data_addr(regs, &data.addr);

2005 2006
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
2007
			cpuhw = this_cpu_ptr(&cpu_hw_events);
2008 2009 2010 2011
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

2012
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2013
			power_pmu_stop(event, 0);
2014 2015 2016 2017 2018
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
2019
 * for an event_id.
2020 2021 2022
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
2023
	u32 flags = perf_get_misc_flags(regs);
2024

2025 2026
	if (flags)
		return flags;
2027 2028
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
2029 2030 2031 2032
}

/*
 * Called from generic code to get the instruction pointer
2033
 * for an event_id.
2034 2035 2036
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2037
	bool use_siar = regs_use_siar(regs);
2038

2039
	if (use_siar && siar_valid(regs))
2040
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2041 2042
	else if (use_siar)
		return 0;		// no valid instruction pointer
2043
	else
2044
		return regs->nip;
2045 2046
}

2047
static bool pmc_overflow_power7(unsigned long val)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
2060 2061 2062 2063 2064 2065 2066 2067 2068
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2069 2070 2071 2072 2073
		return true;

	return false;
}

2074 2075 2076
/*
 * Performance monitor interrupt stuff
 */
2077
static void perf_event_interrupt(struct pt_regs *regs)
2078
{
2079
	int i, j;
2080
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2081
	struct perf_event *event;
2082 2083
	unsigned long val[8];
	int found, active;
2084 2085
	int nmi;

2086
	if (cpuhw->n_limited)
2087
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2088 2089
					mfspr(SPRN_PMC6));

2090
	perf_read_regs(regs);
2091

2092
	nmi = perf_intr_is_nmi(regs);
2093 2094 2095 2096
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2097

2098 2099 2100 2101 2102 2103 2104 2105
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2106
			continue;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2123
		}
2124 2125 2126
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2127
	}
2128 2129 2130 2131 2132
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2133
				continue;
2134 2135 2136 2137 2138 2139 2140
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2141 2142
		}
	}
2143
	if (!found && !nmi && printk_ratelimit())
2144
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2145 2146 2147

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2148
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2149
	 * and thus allow interrupts to occur again.
2150
	 * XXX might want to use MSR.PM to keep the events frozen until
2151 2152
	 * we get back out of this interrupt.
	 */
2153
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2154

2155 2156 2157
	if (nmi)
		nmi_exit();
	else
2158
		irq_exit();
2159 2160
}

2161
static void power_pmu_setup(int cpu)
2162
{
2163
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2164

2165 2166
	if (!ppmu)
		return;
2167 2168 2169 2170
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2171
static int
2172
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2188
int register_power_pmu(struct power_pmu *pmu)
2189
{
2190 2191 2192 2193 2194 2195
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2196

2197 2198
	power_pmu.attr_groups = ppmu->attr_groups;

2199
#ifdef MSR_HV
2200 2201 2202 2203
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2204
		freeze_events_kernel = MMCR0_FCHV;
2205
#endif /* CONFIG_PPC64 */
2206

P
Peter Zijlstra 已提交
2207
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2208 2209
	perf_cpu_notifier(power_pmu_notifier);

2210 2211
	return 0;
}