core-book3s.c 44.3 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26 27 28
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
#define BHRB_EA			0xFFFFFFFFFFFFFFFC

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
91 92 93 94
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
95 96 97 98 99
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

100 101 102 103 104
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

105 106 107 108
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
109 110
#endif /* CONFIG_PPC32 */

111 112
static bool regs_use_siar(struct pt_regs *regs)
{
113
	return !!regs->result;
114 115
}

116 117 118 119 120 121 122 123 124
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

125
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
126 127 128 129
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
130

131 132 133 134 135 136 137 138
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
139 140
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
141 142 143 144
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
145
	bool sdar_valid;
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
161

162
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
163 164 165
		*addrp = mfspr(SPRN_SDAR);
}

166
static bool regs_sihv(struct pt_regs *regs)
167 168 169
{
	unsigned long sihv = MMCRA_SIHV;

170 171 172
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

173 174 175
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

176
	return !!(regs->dsisr & sihv);
177 178
}

179
static bool regs_sipr(struct pt_regs *regs)
180 181 182
{
	unsigned long sipr = MMCRA_SIPR;

183 184 185
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

186 187 188
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

189
	return !!(regs->dsisr & sipr);
190 191
}

192 193 194 195 196 197 198 199 200
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

201 202
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
203
	bool use_siar = regs_use_siar(regs);
204

205
	if (!use_siar)
206 207 208 209 210 211 212 213
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
214
	if (ppmu->flags & PPMU_NO_SIPR) {
215 216 217 218 219
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
220

221
	/* PR has priority over HV, so order below is important */
222
	if (regs_sipr(regs))
223
		return PERF_RECORD_MISC_USER;
224 225

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
226
		return PERF_RECORD_MISC_HYPERVISOR;
227

228
	return PERF_RECORD_MISC_KERNEL;
229 230 231 232 233
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
234
 * Overload regs->dar to store SIER if we have it.
235 236
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
237 238 239
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
240 241 242 243
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

244
	regs->dsisr = mmcra;
245

246 247
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
266 267
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
268 269 270 271
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
272
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
273 274 275 276
		use_siar = 0;
	else
		use_siar = 1;

277
	regs->result = use_siar;
278 279 280 281 282 283 284 285 286 287 288
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

289 290 291 292 293 294 295 296 297 298 299 300
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

301 302 303 304 305 306 307
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
308 309 310 311

	return 1;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
388 389

/* Processing BHRB entries */
390
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
391 392 393
{
	u64 val;
	u64 addr;
394
	int r_index, u_index, pred;
395 396 397 398 399

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
400 401 402
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
403
			break;
404
		else {
405 406 407
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

408 409
			if (!addr)
				/* invalid entry */
410 411
				continue;

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
429 430

			if (val & BHRB_TARGET) {
431 432 433 434 435 436
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
437

438 439 440 441 442 443 444 445 446 447
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
448
			} else {
449 450
				/* Branches to immediate field 
				   (ie I or B form) */
451
				cpuhw->bhrb_entries[u_index].from = addr;
452 453
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
454 455 456
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
457 458
			u_index++;

459 460 461 462 463 464
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

465 466
#endif /* CONFIG_PPC64 */

467
static void perf_event_interrupt(struct pt_regs *regs);
468

469
void perf_event_print_debug(void)
470 471 472 473
{
}

/*
I
Ingo Molnar 已提交
474
 * Read one performance monitor counter (PMC).
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
499
#ifdef CONFIG_PPC64
500 501 502 503 504 505
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
506
#endif /* CONFIG_PPC64 */
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
538
#ifdef CONFIG_PPC64
539 540 541 542 543 544
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
545
#endif /* CONFIG_PPC64 */
546 547 548 549 550 551 552 553 554
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
555
 * The feasible set is returned in event_id[].
556
 */
557 558
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
559
				   int n_ev)
560
{
561
	unsigned long mask, value, nv;
562 563
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
564
	int i, j;
565 566
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
567

568
	if (n_ev > ppmu->n_counter)
569 570 571 572
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
573
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
574 575
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
576
					       cpuhw->alternatives[i]);
577
			event_id[i] = cpuhw->alternatives[i][0];
578
		}
579
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
580
					 &cpuhw->avalues[i][0]))
581 582 583 584
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
585 586
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
587
		if ((((nv + tadd) ^ value) & mask) != 0 ||
588 589
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
590 591
			break;
		value = nv;
592
		mask |= cpuhw->amasks[i][0];
593 594 595 596 597 598 599 600
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
601
		choice[i] = 0;
602
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
603
						  cpuhw->alternatives[i]);
604
		for (j = 1; j < n_alt[i]; ++j)
605 606 607
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
608 609 610 611 612 613 614 615 616 617 618 619 620 621
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
622
		 * See if any alternative k for event_id i,
623 624 625
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
626 627
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
628
			if ((((nv + tadd) ^ value) & mask) == 0 &&
629 630
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
631 632 633 634 635
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
636
			 * to event_id i-1 and continue enumerating its
637 638 639 640 641 642
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
643 644 645
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
646 647 648 649 650 651
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
652
			mask |= cpuhw->amasks[i][j];
653 654 655 656 657 658 659
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
660
		event_id[i] = cpuhw->alternatives[i][choice[i]];
661 662 663
	return 0;
}

664
/*
665
 * Check if newly-added events have consistent settings for
666
 * exclude_{user,kernel,hv} with each other and any previously
667
 * added events.
668
 */
669
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
670
			  int n_prev, int n_new)
671
{
672 673
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
674
	struct perf_event *event;
675 676 677 678 679

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

680 681 682 683 684 685
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
686
		event = ctrs[i];
687
		if (first) {
688 689 690
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
691
			first = 0;
692 693 694
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
695
			return -EAGAIN;
696
		}
697
	}
698 699 700 701 702 703

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

704 705 706
	return 0;
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

726
static void power_pmu_read(struct perf_event *event)
727
{
728
	s64 val, delta, prev;
729

P
Peter Zijlstra 已提交
730 731 732
	if (event->hw.state & PERF_HES_STOPPED)
		return;

733
	if (!event->hw.idx)
734 735 736 737 738 739 740
		return;
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
741
		prev = local64_read(&event->hw.prev_count);
742
		barrier();
743
		val = read_pmc(event->hw.idx);
744 745 746
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
747
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
748

749 750
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
751 752
}

753 754 755
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
756
 * us if `event' is using such a PMC.
757 758 759
 */
static int is_limited_pmc(int pmcnum)
{
760 761
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
762 763
}

764
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
765 766
				    unsigned long pmc5, unsigned long pmc6)
{
767
	struct perf_event *event;
768 769 770 771
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
772
		event = cpuhw->limited_counter[i];
773
		if (!event->hw.idx)
774
			continue;
775
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
776
		prev = local64_read(&event->hw.prev_count);
777
		event->hw.idx = 0;
778 779 780
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
781 782 783
	}
}

784
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
785 786
				  unsigned long pmc5, unsigned long pmc6)
{
787
	struct perf_event *event;
788
	u64 val, prev;
789 790 791
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
792
		event = cpuhw->limited_counter[i];
793 794
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
795 796 797
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
798
		perf_event_update_userpage(event);
799 800 801 802
	}
}

/*
803
 * Since limited events don't respect the freeze conditions, we
804
 * have to read them immediately after freezing or unfreezing the
805 806
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
807
 * cycles and instructions) between freezing/unfreezing and reading
808 809
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
810 811 812
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
813
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
814 815 816 817 818 819 820 821 822 823
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
824 825
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
826
	 * events, we first write MMCR0 with the event overflow
827
	 * interrupt enable bits turned off.
828 829 830
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
831 832
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
833 834 835
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
836
		freeze_limited_counters(cpuhw, pmc5, pmc6);
837
	else
838
		thaw_limited_counters(cpuhw, pmc5, pmc6);
839 840

	/*
841
	 * Write the full MMCR0 including the event overflow interrupt
842 843 844 845
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
846 847
}

848
/*
849 850
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
851
 */
P
Peter Zijlstra 已提交
852
static void power_pmu_disable(struct pmu *pmu)
853
{
854
	struct cpu_hw_events *cpuhw;
855 856
	unsigned long flags;

857 858
	if (!ppmu)
		return;
859
	local_irq_save(flags);
860
	cpuhw = &__get_cpu_var(cpu_hw_events);
861

862
	if (!cpuhw->disabled) {
863 864 865
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;

866 867 868 869
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
870
			ppc_enable_pmcs();
871 872 873
			cpuhw->pmcs_enabled = 1;
		}

874 875 876 877 878 879 880 881 882
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

883
		/*
I
Ingo Molnar 已提交
884
		 * Set the 'freeze counters' bit.
885
		 * The barrier is to make sure the mtspr has been
886
		 * executed and the PMU has frozen the events
887 888
		 * before we return.
		 */
889
		write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
890 891 892 893 894 895
		mb();
	}
	local_irq_restore(flags);
}

/*
896 897
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
898 899
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
900
static void power_pmu_enable(struct pmu *pmu)
901
{
902 903
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
904 905 906 907
	unsigned long flags;
	long i;
	unsigned long val;
	s64 left;
908
	unsigned int hwc_index[MAX_HWEVENTS];
909 910
	int n_lim;
	int idx;
911

912 913
	if (!ppmu)
		return;
914
	local_irq_save(flags);
915
	cpuhw = &__get_cpu_var(cpu_hw_events);
916 917 918 919
	if (!cpuhw->disabled) {
		local_irq_restore(flags);
		return;
	}
920 921 922
	cpuhw->disabled = 0;

	/*
923
	 * If we didn't change anything, or only removed events,
924 925
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
926
	 * (possibly updated for removal of events).
927 928
	 */
	if (!cpuhw->n_added) {
929
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
930
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
931
		if (cpuhw->n_events == 0)
932
			ppc_set_pmu_inuse(0);
933
		goto out_enable;
934 935 936
	}

	/*
937
	 * Compute MMCR* values for the new set of events
938
	 */
939
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
940 941 942 943 944 945
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

946 947
	/*
	 * Add in MMCR0 freeze bits corresponding to the
948 949 950
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
951
	 */
952 953
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
954
		cpuhw->mmcr[0] |= MMCR0_FCP;
955 956 957
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
958 959
		cpuhw->mmcr[0] |= MMCR0_FCHV;

960 961
	/*
	 * Write the new configuration to MMCR* with the freeze
962 963
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
964
	 */
965
	ppc_set_pmu_inuse(1);
966
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
967 968 969 970 971
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
972
	 * Read off any pre-existing events that need to move
973 974
	 * to another PMC.
	 */
975 976 977 978 979 980
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
981 982 983 984
		}
	}

	/*
985
	 * Initialize the PMCs for all the new and moved events.
986
	 */
987
	cpuhw->n_limited = n_lim = 0;
988 989 990
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
991
			continue;
992 993
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
994
			cpuhw->limited_counter[n_lim] = event;
995 996 997 998
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
999
		val = 0;
1000
		if (event->hw.sample_period) {
1001
			left = local64_read(&event->hw.period_left);
1002 1003 1004
			if (left < 0x80000000L)
				val = 0x80000000L - left;
		}
1005
		local64_set(&event->hw.prev_count, val);
1006
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1007 1008
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1009
		write_pmc(idx, val);
1010
		perf_event_update_userpage(event);
1011
	}
1012
	cpuhw->n_limited = n_lim;
1013
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1014 1015 1016

 out_enable:
	mb();
1017
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1018

1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1027
 out:
1028 1029 1030
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1031 1032 1033
	local_irq_restore(flags);
}

1034 1035
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1036
			  unsigned int *flags)
1037 1038
{
	int n = 0;
1039
	struct perf_event *event;
1040

1041
	if (!is_software_event(group)) {
1042 1043 1044
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1045
		flags[n] = group->hw.event_base;
1046 1047
		events[n++] = group->hw.config;
	}
1048
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1049 1050
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1051 1052
			if (n >= max_count)
				return -1;
1053 1054 1055
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1056 1057 1058 1059 1060 1061
		}
	}
	return n;
}

/*
1062 1063
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1064
 * re-enable the PMU in order to get hw_perf_enable to do the
1065 1066
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1067
static int power_pmu_add(struct perf_event *event, int ef_flags)
1068
{
1069
	struct cpu_hw_events *cpuhw;
1070 1071 1072 1073 1074
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1075
	perf_pmu_disable(event->pmu);
1076 1077

	/*
1078
	 * Add the event to the list (if there is room)
1079 1080
	 * and check whether the total set is still feasible.
	 */
1081 1082
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1083
	if (n0 >= ppmu->n_counter)
1084
		goto out;
1085 1086 1087
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1088

1089 1090 1091 1092 1093 1094
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1095 1096
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1097 1098
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1099

1100 1101
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1102
	 * skip the schedulability test here, it will be performed
1103 1104
	 * at commit time(->commit_txn) as a whole
	 */
1105
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1106 1107
		goto nocheck;

1108
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1109
		goto out;
1110
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1111
		goto out;
1112
	event->hw.config = cpuhw->events[n0];
1113 1114

nocheck:
1115
	++cpuhw->n_events;
1116 1117 1118 1119
	++cpuhw->n_added;

	ret = 0;
 out:
1120 1121 1122
	if (has_branch_stack(event))
		power_pmu_bhrb_enable(event);

P
Peter Zijlstra 已提交
1123
	perf_pmu_enable(event->pmu);
1124 1125 1126 1127 1128
	local_irq_restore(flags);
	return ret;
}

/*
1129
 * Remove a event from the PMU.
1130
 */
P
Peter Zijlstra 已提交
1131
static void power_pmu_del(struct perf_event *event, int ef_flags)
1132
{
1133
	struct cpu_hw_events *cpuhw;
1134 1135 1136 1137
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1138
	perf_pmu_disable(event->pmu);
1139

1140 1141 1142 1143 1144
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1145
			while (++i < cpuhw->n_events) {
1146
				cpuhw->event[i-1] = cpuhw->event[i];
1147 1148 1149
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1150 1151 1152 1153 1154
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1155
			}
1156
			perf_event_update_userpage(event);
1157 1158 1159
			break;
		}
	}
1160
	for (i = 0; i < cpuhw->n_limited; ++i)
1161
		if (event == cpuhw->limited_counter[i])
1162 1163 1164
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1165
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1166 1167 1168 1169
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1170 1171
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1172 1173 1174
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1175 1176 1177
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1178
	perf_pmu_enable(event->pmu);
1179 1180 1181
	local_irq_restore(flags);
}

1182
/*
P
Peter Zijlstra 已提交
1183 1184
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1185
 */
P
Peter Zijlstra 已提交
1186 1187

static void power_pmu_start(struct perf_event *event, int ef_flags)
1188 1189
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1190
	s64 left;
1191
	unsigned long val;
1192

1193
	if (!event->hw.idx || !event->hw.sample_period)
1194
		return;
P
Peter Zijlstra 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1207 1208 1209 1210 1211 1212

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1229
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1230
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1231

1232
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1233 1234 1235
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1236
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1237
	perf_pmu_enable(event->pmu);
1238 1239 1240
	local_irq_restore(flags);
}

1241 1242 1243 1244 1245
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1246
void power_pmu_start_txn(struct pmu *pmu)
1247 1248 1249
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1250
	perf_pmu_disable(pmu);
1251
	cpuhw->group_flag |= PERF_EVENT_TXN;
1252 1253 1254 1255 1256 1257 1258 1259
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1260
void power_pmu_cancel_txn(struct pmu *pmu)
1261 1262 1263
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1264
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1265
	perf_pmu_enable(pmu);
1266 1267 1268 1269 1270 1271 1272
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1273
int power_pmu_commit_txn(struct pmu *pmu)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1291
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1292
	perf_pmu_enable(pmu);
1293 1294 1295
	return 0;
}

1296
/*
1297
 * Return 1 if we might be able to put event on a limited PMC,
1298
 * or 0 if not.
1299
 * A event can only go on a limited PMC if it counts something
1300 1301 1302
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1303
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1304 1305 1306
				 unsigned int flags)
{
	int n;
1307
	u64 alt[MAX_EVENT_ALTERNATIVES];
1308

1309 1310 1311 1312
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1313 1314 1315 1316 1317 1318
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1319
	 * The requested event_id isn't on a limited PMC already;
1320 1321 1322 1323 1324 1325 1326 1327
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1328
	return n > 0;
1329 1330 1331
}

/*
1332 1333 1334
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1335
 */
1336
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1337
{
1338
	u64 alt[MAX_EVENT_ALTERNATIVES];
1339 1340 1341 1342 1343 1344 1345 1346 1347
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1348 1349
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1350 1351 1352 1353
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1354
 * Release the PMU if this is the last perf_event.
1355
 */
1356
static void hw_perf_event_destroy(struct perf_event *event)
1357
{
1358
	if (!atomic_add_unless(&num_events, -1, 1)) {
1359
		mutex_lock(&pmc_reserve_mutex);
1360
		if (atomic_dec_return(&num_events) == 0)
1361 1362 1363 1364 1365
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1366
/*
1367
 * Translate a generic cache event_id config to a raw event_id code.
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1396
static int power_pmu_event_init(struct perf_event *event)
1397
{
1398 1399
	u64 ev;
	unsigned long flags;
1400 1401 1402
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1403
	int n;
1404
	int err;
1405
	struct cpu_hw_events *cpuhw;
1406 1407

	if (!ppmu)
1408 1409
		return -ENOENT;

1410 1411 1412 1413 1414
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_BHRB))
			return -EOPNOTSUPP;
	}
1415

1416
	switch (event->attr.type) {
1417
	case PERF_TYPE_HARDWARE:
1418
		ev = event->attr.config;
1419
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1420
			return -EOPNOTSUPP;
1421
		ev = ppmu->generic_events[ev];
1422 1423
		break;
	case PERF_TYPE_HW_CACHE:
1424
		err = hw_perf_cache_event(event->attr.config, &ev);
1425
		if (err)
1426
			return err;
1427 1428
		break;
	case PERF_TYPE_RAW:
1429
		ev = event->attr.config;
1430
		break;
1431
	default:
1432
		return -ENOENT;
1433
	}
1434

1435 1436
	event->hw.config_base = ev;
	event->hw.idx = 0;
1437

1438 1439 1440
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1441
	 * the user set it to.
1442 1443
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1444
		event->attr.exclude_hv = 0;
1445 1446

	/*
1447
	 * If this is a per-task event, then we can use
1448 1449 1450 1451 1452
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1453
	if (event->attach_state & PERF_ATTACH_TASK)
1454 1455 1456
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1457 1458
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1459
	 */
1460
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1461
		if (can_go_on_limited_pmc(event, ev, flags)) {
1462 1463 1464
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1465
			 * The requested event_id is on a limited PMC,
1466 1467 1468 1469 1470
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1471
				return -EINVAL;
1472 1473 1474
		}
	}

1475 1476
	/*
	 * If this is in a group, check if it can go on with all the
1477
	 * other hardware events in the group.  We assume the event
1478 1479 1480
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1481
	if (event->group_leader != event) {
1482
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1483
				   ctrs, events, cflags);
1484
		if (n < 0)
1485
			return -EINVAL;
1486
	}
1487
	events[n] = ev;
1488
	ctrs[n] = event;
1489 1490
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1491
		return -EINVAL;
1492

1493
	cpuhw = &get_cpu_var(cpu_hw_events);
1494
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1495 1496 1497 1498 1499 1500 1501 1502 1503

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1504
	put_cpu_var(cpu_hw_events);
1505
	if (err)
1506
		return -EINVAL;
1507

1508 1509 1510
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1511
	local64_set(&event->hw.period_left, event->hw.last_period);
1512 1513 1514

	/*
	 * See if we need to reserve the PMU.
1515
	 * If no events are currently in use, then we have to take a
1516 1517 1518 1519
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1520
	if (!atomic_inc_not_zero(&num_events)) {
1521
		mutex_lock(&pmc_reserve_mutex);
1522 1523
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1524 1525
			err = -EBUSY;
		else
1526
			atomic_inc(&num_events);
1527 1528
		mutex_unlock(&pmc_reserve_mutex);
	}
1529
	event->destroy = hw_perf_event_destroy;
1530

1531
	return err;
1532 1533
}

1534 1535 1536 1537 1538
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1549
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1550 1551
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1552
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1553 1554 1555 1556
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1557 1558 1559 1560
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1561
	.event_idx	= power_pmu_event_idx,
1562
	.flush_branch_stack = power_pmu_flush_branch_stack,
1563 1564
};

1565
/*
I
Ingo Molnar 已提交
1566
 * A counter has overflowed; update its count and record
1567 1568 1569
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1570
static void record_and_restart(struct perf_event *event, unsigned long val,
1571
			       struct pt_regs *regs)
1572
{
1573
	u64 period = event->hw.sample_period;
1574 1575 1576
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1577 1578 1579 1580 1581
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1582
	/* we don't have to worry about interrupts here */
1583
	prev = local64_read(&event->hw.prev_count);
1584
	delta = check_and_compute_delta(prev, val);
1585
	local64_add(delta, &event->count);
1586 1587

	/*
1588
	 * See if the total period for this event has expired,
1589 1590 1591
	 * and update for the next period.
	 */
	val = 0;
1592
	left = local64_read(&event->hw.period_left) - delta;
1593 1594
	if (delta == 0)
		left++;
1595
	if (period) {
1596
		if (left <= 0) {
1597
			left += period;
1598
			if (left <= 0)
1599
				left = period;
1600
			record = siar_valid(regs);
1601
			event->hw.last_period = event->hw.sample_period;
1602
		}
1603 1604
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1605 1606
	}

P
Peter Zijlstra 已提交
1607 1608 1609 1610 1611
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1612 1613 1614
	/*
	 * Finally record data if requested.
	 */
1615
	if (record) {
1616 1617
		struct perf_sample_data data;

1618
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1619

1620
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1621 1622
			perf_get_data_addr(regs, &data.addr);

1623 1624 1625 1626 1627 1628 1629
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1630
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1631
			power_pmu_stop(event, 0);
1632 1633 1634 1635 1636
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1637
 * for an event_id.
1638 1639 1640
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1641
	u32 flags = perf_get_misc_flags(regs);
1642

1643 1644
	if (flags)
		return flags;
1645 1646
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1647 1648 1649 1650
}

/*
 * Called from generic code to get the instruction pointer
1651
 * for an event_id.
1652 1653 1654
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1655
	bool use_siar = regs_use_siar(regs);
1656

1657
	if (use_siar && siar_valid(regs))
1658
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1659 1660
	else if (use_siar)
		return 0;		// no valid instruction pointer
1661
	else
1662
		return regs->nip;
1663 1664
}

1665
static bool pmc_overflow_power7(unsigned long val)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1678 1679 1680 1681 1682 1683 1684 1685 1686
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1687 1688 1689 1690 1691
		return true;

	return false;
}

1692 1693 1694
/*
 * Performance monitor interrupt stuff
 */
1695
static void perf_event_interrupt(struct pt_regs *regs)
1696
{
1697
	int i, j;
1698 1699
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1700 1701
	unsigned long val[8];
	int found, active;
1702 1703
	int nmi;

1704
	if (cpuhw->n_limited)
1705
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1706 1707
					mfspr(SPRN_PMC6));

1708
	perf_read_regs(regs);
1709

1710
	nmi = perf_intr_is_nmi(regs);
1711 1712 1713 1714
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1715

1716 1717 1718 1719 1720 1721 1722 1723
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
1724
			continue;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
1741
		}
1742 1743 1744
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
1745
	}
1746 1747 1748 1749 1750
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1751
				continue;
1752 1753 1754 1755 1756 1757 1758
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
1759 1760
		}
	}
1761 1762
	if ((!found) && printk_ratelimit())
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1763 1764 1765

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
1766
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1767
	 * and thus allow interrupts to occur again.
1768
	 * XXX might want to use MSR.PM to keep the events frozen until
1769 1770
	 * we get back out of this interrupt.
	 */
1771
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1772

1773 1774 1775
	if (nmi)
		nmi_exit();
	else
1776
		irq_exit();
1777 1778
}

1779
static void power_pmu_setup(int cpu)
1780
{
1781
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1782

1783 1784
	if (!ppmu)
		return;
1785 1786 1787 1788
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1789
static int __cpuinit
1790
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

1806
int __cpuinit register_power_pmu(struct power_pmu *pmu)
1807
{
1808 1809 1810 1811 1812 1813
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
1814

1815 1816
	power_pmu.attr_groups = ppmu->attr_groups;

1817
#ifdef MSR_HV
1818 1819 1820 1821
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
1822
		freeze_events_kernel = MMCR0_FCHV;
1823
#endif /* CONFIG_PPC64 */
1824

P
Peter Zijlstra 已提交
1825
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1826 1827
	perf_cpu_notifier(power_pmu_notifier);

1828 1829
	return 0;
}