core-book3s.c 49.1 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
78
#define MMCR0_FC56		0
79
#define MMCR0_PMAO		0
80 81 82
#define MMCR0_EBE		0
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
83 84 85 86 87 88 89 90 91 92 93 94 95

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
96 97 98 99
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
100 101 102 103 104
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

105 106 107 108 109
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

110 111 112 113 114 115 116 117 118
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	return mmcr0;
}

119 120 121 122
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
123 124
#endif /* CONFIG_PPC32 */

125 126
static bool regs_use_siar(struct pt_regs *regs)
{
127
	return !!regs->result;
128 129
}

130 131 132 133 134 135 136 137 138
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

139
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
140 141 142 143
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
144

145 146 147 148 149 150 151 152
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
153 154
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
155 156 157 158
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
159
	bool sdar_valid;
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
175

176
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
177 178 179
		*addrp = mfspr(SPRN_SDAR);
}

180
static bool regs_sihv(struct pt_regs *regs)
181 182 183
{
	unsigned long sihv = MMCRA_SIHV;

184 185 186
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

187 188 189
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

190
	return !!(regs->dsisr & sihv);
191 192
}

193
static bool regs_sipr(struct pt_regs *regs)
194 195 196
{
	unsigned long sipr = MMCRA_SIPR;

197 198 199
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

200 201 202
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

203
	return !!(regs->dsisr & sipr);
204 205
}

206 207 208 209 210 211 212 213 214
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

215 216
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
217
	bool use_siar = regs_use_siar(regs);
218

219
	if (!use_siar)
220 221 222 223 224 225 226 227
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
228
	if (ppmu->flags & PPMU_NO_SIPR) {
229 230 231 232 233
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
234

235
	/* PR has priority over HV, so order below is important */
236
	if (regs_sipr(regs))
237
		return PERF_RECORD_MISC_USER;
238 239

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
240
		return PERF_RECORD_MISC_HYPERVISOR;
241

242
	return PERF_RECORD_MISC_KERNEL;
243 244 245 246 247
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
248
 * Overload regs->dar to store SIER if we have it.
249 250
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
251 252 253
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
254 255 256 257
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

258
	regs->dsisr = mmcra;
259

260 261
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
280 281
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
282 283 284 285
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
286
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
287 288 289 290
		use_siar = 0;
	else
		use_siar = 1;

291
	regs->result = use_siar;
292 293 294 295 296 297 298 299 300 301 302
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

303 304 305 306 307 308 309 310 311 312 313 314
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

315 316 317 318 319 320 321
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
322 323 324 325

	return 1;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
402 403

/* Processing BHRB entries */
404
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
405 406 407
{
	u64 val;
	u64 addr;
408
	int r_index, u_index, pred;
409 410 411 412 413

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
414 415 416
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
417
			break;
418
		else {
419 420 421
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

422 423
			if (!addr)
				/* invalid entry */
424 425
				continue;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
443 444

			if (val & BHRB_TARGET) {
445 446 447 448 449 450
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
451

452 453 454 455 456 457 458 459 460 461
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
462
			} else {
463 464
				/* Branches to immediate field 
				   (ie I or B form) */
465
				cpuhw->bhrb_entries[u_index].from = addr;
466 467
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
468 469 470
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
471 472
			u_index++;

473 474 475 476 477 478
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

479 480 481 482 483 484 485 486
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
	return (ppmu->flags & PPMU_EBB) &&
487
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

		if (event->attr.inherit || event->attr.sample_period ||
		    event->attr.enable_on_exec || event->attr.freq)
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	if (!ebb)
		goto out;

	/* Enable EBB and read/write to all 6 PMCs for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;

	/* Add any bits from the user reg, FC or PMAO */
	mmcr0 |= current->thread.mmcr0;

	/* Be careful not to set PMXE if userspace had it cleared */
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
	mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
	return mmcr0;
}
562 563
#endif /* CONFIG_PPC64 */

564
static void perf_event_interrupt(struct pt_regs *regs);
565

566
/*
I
Ingo Molnar 已提交
567
 * Read one performance monitor counter (PMC).
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
592
#ifdef CONFIG_PPC64
593 594 595 596 597 598
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
599
#endif /* CONFIG_PPC64 */
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
631
#ifdef CONFIG_PPC64
632 633 634 635 636 637
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
638
#endif /* CONFIG_PPC64 */
639 640 641 642 643
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

	if (ppmu->flags & PPMU_EBB) {
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

695 696 697 698
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
699
 * The feasible set is returned in event_id[].
700
 */
701 702
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
703
				   int n_ev)
704
{
705
	unsigned long mask, value, nv;
706 707
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
708
	int i, j;
709 710
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
711

712
	if (n_ev > ppmu->n_counter)
713 714 715 716
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
717
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
718 719
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
720
					       cpuhw->alternatives[i]);
721
			event_id[i] = cpuhw->alternatives[i][0];
722
		}
723
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
724
					 &cpuhw->avalues[i][0]))
725 726 727 728
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
729 730
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
731
		if ((((nv + tadd) ^ value) & mask) != 0 ||
732 733
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
734 735
			break;
		value = nv;
736
		mask |= cpuhw->amasks[i][0];
737 738 739 740 741 742 743 744
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
745
		choice[i] = 0;
746
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
747
						  cpuhw->alternatives[i]);
748
		for (j = 1; j < n_alt[i]; ++j)
749 750 751
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
766
		 * See if any alternative k for event_id i,
767 768 769
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
770 771
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
772
			if ((((nv + tadd) ^ value) & mask) == 0 &&
773 774
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
775 776 777 778 779
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
780
			 * to event_id i-1 and continue enumerating its
781 782 783 784 785 786
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
787 788 789
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
790 791 792 793 794 795
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
796
			mask |= cpuhw->amasks[i][j];
797 798 799 800 801 802 803
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
804
		event_id[i] = cpuhw->alternatives[i][choice[i]];
805 806 807
	return 0;
}

808
/*
809
 * Check if newly-added events have consistent settings for
810
 * exclude_{user,kernel,hv} with each other and any previously
811
 * added events.
812
 */
813
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
814
			  int n_prev, int n_new)
815
{
816 817
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
818
	struct perf_event *event;
819 820 821 822 823

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

824 825 826 827 828 829
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
830
		event = ctrs[i];
831
		if (first) {
832 833 834
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
835
			first = 0;
836 837 838
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
839
			return -EAGAIN;
840
		}
841
	}
842 843 844 845 846 847

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

848 849 850
	return 0;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

870
static void power_pmu_read(struct perf_event *event)
871
{
872
	s64 val, delta, prev;
873

P
Peter Zijlstra 已提交
874 875 876
	if (event->hw.state & PERF_HES_STOPPED)
		return;

877
	if (!event->hw.idx)
878
		return;
879 880 881 882 883 884 885

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

886 887 888 889 890 891
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
892
		prev = local64_read(&event->hw.prev_count);
893
		barrier();
894
		val = read_pmc(event->hw.idx);
895 896 897
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
898
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
899

900 901
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
902 903
}

904 905 906
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
907
 * us if `event' is using such a PMC.
908 909 910
 */
static int is_limited_pmc(int pmcnum)
{
911 912
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
913 914
}

915
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
916 917
				    unsigned long pmc5, unsigned long pmc6)
{
918
	struct perf_event *event;
919 920 921 922
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
923
		event = cpuhw->limited_counter[i];
924
		if (!event->hw.idx)
925
			continue;
926
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
927
		prev = local64_read(&event->hw.prev_count);
928
		event->hw.idx = 0;
929 930 931
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
932 933 934
	}
}

935
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
936 937
				  unsigned long pmc5, unsigned long pmc6)
{
938
	struct perf_event *event;
939
	u64 val, prev;
940 941 942
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
943
		event = cpuhw->limited_counter[i];
944 945
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
946 947 948
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
949
		perf_event_update_userpage(event);
950 951 952 953
	}
}

/*
954
 * Since limited events don't respect the freeze conditions, we
955
 * have to read them immediately after freezing or unfreezing the
956 957
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
958
 * cycles and instructions) between freezing/unfreezing and reading
959 960
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
961 962 963
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
964
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
965 966 967 968 969 970 971 972 973 974
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
975 976
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
977
	 * events, we first write MMCR0 with the event overflow
978
	 * interrupt enable bits turned off.
979 980 981
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
982 983
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
984 985 986
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
987
		freeze_limited_counters(cpuhw, pmc5, pmc6);
988
	else
989
		thaw_limited_counters(cpuhw, pmc5, pmc6);
990 991

	/*
992
	 * Write the full MMCR0 including the event overflow interrupt
993 994 995 996
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
997 998
}

999
/*
1000 1001
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1002
 */
P
Peter Zijlstra 已提交
1003
static void power_pmu_disable(struct pmu *pmu)
1004
{
1005
	struct cpu_hw_events *cpuhw;
1006
	unsigned long flags, mmcr0, val;
1007

1008 1009
	if (!ppmu)
		return;
1010
	local_irq_save(flags);
1011
	cpuhw = &__get_cpu_var(cpu_hw_events);
1012

1013
	if (!cpuhw->disabled) {
1014 1015 1016 1017
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1018
			ppc_enable_pmcs();
1019 1020 1021
			cpuhw->pmcs_enabled = 1;
		}

1022
		/*
1023
		 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
1024
		 */
1025
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1026
		val |= MMCR0_FC;
1027
		val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
1028 1029 1030 1031 1032 1033 1034 1035 1036

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1037 1038 1039 1040 1041 1042 1043 1044 1045
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1046 1047
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1048 1049

		ebb_switch_out(mmcr0);
1050
	}
1051

1052 1053 1054 1055
	local_irq_restore(flags);
}

/*
1056 1057
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1058 1059
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1060
static void power_pmu_enable(struct pmu *pmu)
1061
{
1062 1063
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1064 1065
	unsigned long flags;
	long i;
1066
	unsigned long val, mmcr0;
1067
	s64 left;
1068
	unsigned int hwc_index[MAX_HWEVENTS];
1069 1070
	int n_lim;
	int idx;
1071
	bool ebb;
1072

1073 1074
	if (!ppmu)
		return;
1075
	local_irq_save(flags);
1076

1077
	cpuhw = &__get_cpu_var(cpu_hw_events);
1078 1079 1080
	if (!cpuhw->disabled)
		goto out;

1081 1082 1083 1084 1085
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1086 1087
	cpuhw->disabled = 0;

1088 1089 1090 1091 1092 1093 1094
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1095
	/*
1096
	 * If we didn't change anything, or only removed events,
1097 1098
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1099
	 * (possibly updated for removal of events).
1100 1101
	 */
	if (!cpuhw->n_added) {
1102
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1103
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1104
		goto out_enable;
1105 1106 1107
	}

	/*
1108
	 * Compute MMCR* values for the new set of events
1109
	 */
1110
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1111 1112 1113 1114 1115 1116
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1117 1118
	/*
	 * Add in MMCR0 freeze bits corresponding to the
1119 1120 1121
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
1122
	 */
1123 1124
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
1125
		cpuhw->mmcr[0] |= MMCR0_FCP;
1126 1127 1128
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
1129 1130
		cpuhw->mmcr[0] |= MMCR0_FCHV;

1131 1132
	/*
	 * Write the new configuration to MMCR* with the freeze
1133 1134
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1135
	 */
1136
	ppc_set_pmu_inuse(1);
1137
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1138 1139 1140 1141 1142
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
1143
	 * Read off any pre-existing events that need to move
1144 1145
	 * to another PMC.
	 */
1146 1147 1148 1149 1150 1151
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1152 1153 1154 1155
		}
	}

	/*
1156
	 * Initialize the PMCs for all the new and moved events.
1157
	 */
1158
	cpuhw->n_limited = n_lim = 0;
1159 1160 1161
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1162
			continue;
1163 1164
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1165
			cpuhw->limited_counter[n_lim] = event;
1166 1167 1168 1169
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1181
		}
1182

1183
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1184 1185
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1186
		write_pmc(idx, val);
1187

1188
		perf_event_update_userpage(event);
1189
	}
1190
	cpuhw->n_limited = n_lim;
1191
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1192 1193

 out_enable:
1194 1195
	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);

1196
	mb();
1197 1198 1199
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1200
	write_mmcr0(cpuhw, mmcr0);
1201

1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1210
 out:
1211

1212 1213 1214
	local_irq_restore(flags);
}

1215 1216
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1217
			  unsigned int *flags)
1218 1219
{
	int n = 0;
1220
	struct perf_event *event;
1221

1222
	if (!is_software_event(group)) {
1223 1224 1225
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1226
		flags[n] = group->hw.event_base;
1227 1228
		events[n++] = group->hw.config;
	}
1229
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1230 1231
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1232 1233
			if (n >= max_count)
				return -1;
1234 1235 1236
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1237 1238 1239 1240 1241 1242
		}
	}
	return n;
}

/*
1243 1244
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1245
 * re-enable the PMU in order to get hw_perf_enable to do the
1246 1247
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1248
static int power_pmu_add(struct perf_event *event, int ef_flags)
1249
{
1250
	struct cpu_hw_events *cpuhw;
1251 1252 1253 1254 1255
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1256
	perf_pmu_disable(event->pmu);
1257 1258

	/*
1259
	 * Add the event to the list (if there is room)
1260 1261
	 * and check whether the total set is still feasible.
	 */
1262 1263
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1264
	if (n0 >= ppmu->n_counter)
1265
		goto out;
1266 1267 1268
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1269

1270 1271 1272 1273 1274 1275
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1276 1277
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1278 1279
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1280

1281 1282
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1283
	 * skip the schedulability test here, it will be performed
1284 1285
	 * at commit time(->commit_txn) as a whole
	 */
1286
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1287 1288
		goto nocheck;

1289
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1290
		goto out;
1291
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1292
		goto out;
1293
	event->hw.config = cpuhw->events[n0];
1294 1295

nocheck:
1296 1297
	ebb_event_add(event);

1298
	++cpuhw->n_events;
1299 1300 1301 1302
	++cpuhw->n_added;

	ret = 0;
 out:
1303
	if (has_branch_stack(event)) {
1304
		power_pmu_bhrb_enable(event);
1305 1306 1307
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1308

P
Peter Zijlstra 已提交
1309
	perf_pmu_enable(event->pmu);
1310 1311 1312 1313 1314
	local_irq_restore(flags);
	return ret;
}

/*
1315
 * Remove a event from the PMU.
1316
 */
P
Peter Zijlstra 已提交
1317
static void power_pmu_del(struct perf_event *event, int ef_flags)
1318
{
1319
	struct cpu_hw_events *cpuhw;
1320 1321 1322 1323
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1324
	perf_pmu_disable(event->pmu);
1325

1326 1327 1328 1329 1330
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1331
			while (++i < cpuhw->n_events) {
1332
				cpuhw->event[i-1] = cpuhw->event[i];
1333 1334 1335
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1336 1337 1338 1339 1340
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1341
			}
1342
			perf_event_update_userpage(event);
1343 1344 1345
			break;
		}
	}
1346
	for (i = 0; i < cpuhw->n_limited; ++i)
1347
		if (event == cpuhw->limited_counter[i])
1348 1349 1350
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1351
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1352 1353 1354 1355
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1356 1357
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1358 1359 1360
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1361 1362 1363
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1364
	perf_pmu_enable(event->pmu);
1365 1366 1367
	local_irq_restore(flags);
}

1368
/*
P
Peter Zijlstra 已提交
1369 1370
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1371
 */
P
Peter Zijlstra 已提交
1372 1373

static void power_pmu_start(struct perf_event *event, int ef_flags)
1374 1375
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1376
	s64 left;
1377
	unsigned long val;
1378

1379
	if (!event->hw.idx || !event->hw.sample_period)
1380
		return;
P
Peter Zijlstra 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1393 1394 1395 1396 1397 1398

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1415
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1416
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1417

1418
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1419 1420 1421
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1422
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1423
	perf_pmu_enable(event->pmu);
1424 1425 1426
	local_irq_restore(flags);
}

1427 1428 1429 1430 1431
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1432
void power_pmu_start_txn(struct pmu *pmu)
1433 1434 1435
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1436
	perf_pmu_disable(pmu);
1437
	cpuhw->group_flag |= PERF_EVENT_TXN;
1438 1439 1440 1441 1442 1443 1444 1445
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1446
void power_pmu_cancel_txn(struct pmu *pmu)
1447 1448 1449
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1450
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1451
	perf_pmu_enable(pmu);
1452 1453 1454 1455 1456 1457 1458
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1459
int power_pmu_commit_txn(struct pmu *pmu)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1477
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1478
	perf_pmu_enable(pmu);
1479 1480 1481
	return 0;
}

1482
/*
1483
 * Return 1 if we might be able to put event on a limited PMC,
1484
 * or 0 if not.
1485
 * A event can only go on a limited PMC if it counts something
1486 1487 1488
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1489
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1490 1491 1492
				 unsigned int flags)
{
	int n;
1493
	u64 alt[MAX_EVENT_ALTERNATIVES];
1494

1495 1496 1497 1498
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1499 1500 1501 1502 1503 1504
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1505
	 * The requested event_id isn't on a limited PMC already;
1506 1507 1508 1509 1510 1511 1512 1513
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1514
	return n > 0;
1515 1516 1517
}

/*
1518 1519 1520
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1521
 */
1522
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1523
{
1524
	u64 alt[MAX_EVENT_ALTERNATIVES];
1525 1526 1527 1528 1529 1530 1531 1532 1533
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1534 1535
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1536 1537 1538 1539
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1540
 * Release the PMU if this is the last perf_event.
1541
 */
1542
static void hw_perf_event_destroy(struct perf_event *event)
1543
{
1544
	if (!atomic_add_unless(&num_events, -1, 1)) {
1545
		mutex_lock(&pmc_reserve_mutex);
1546
		if (atomic_dec_return(&num_events) == 0)
1547 1548 1549 1550 1551
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1552
/*
1553
 * Translate a generic cache event_id config to a raw event_id code.
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1582
static int power_pmu_event_init(struct perf_event *event)
1583
{
1584 1585
	u64 ev;
	unsigned long flags;
1586 1587 1588
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1589
	int n;
1590
	int err;
1591
	struct cpu_hw_events *cpuhw;
1592 1593

	if (!ppmu)
1594 1595
		return -ENOENT;

1596 1597 1598 1599 1600
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_BHRB))
			return -EOPNOTSUPP;
	}
1601

1602
	switch (event->attr.type) {
1603
	case PERF_TYPE_HARDWARE:
1604
		ev = event->attr.config;
1605
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1606
			return -EOPNOTSUPP;
1607
		ev = ppmu->generic_events[ev];
1608 1609
		break;
	case PERF_TYPE_HW_CACHE:
1610
		err = hw_perf_cache_event(event->attr.config, &ev);
1611
		if (err)
1612
			return err;
1613 1614
		break;
	case PERF_TYPE_RAW:
1615
		ev = event->attr.config;
1616
		break;
1617
	default:
1618
		return -ENOENT;
1619
	}
1620

1621 1622
	event->hw.config_base = ev;
	event->hw.idx = 0;
1623

1624 1625 1626
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1627
	 * the user set it to.
1628 1629
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1630
		event->attr.exclude_hv = 0;
1631 1632

	/*
1633
	 * If this is a per-task event, then we can use
1634 1635 1636 1637 1638
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1639
	if (event->attach_state & PERF_ATTACH_TASK)
1640 1641 1642
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1643 1644
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1645
	 */
1646
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1647
		if (can_go_on_limited_pmc(event, ev, flags)) {
1648 1649 1650
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1651
			 * The requested event_id is on a limited PMC,
1652 1653 1654 1655 1656
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1657
				return -EINVAL;
1658 1659 1660
		}
	}

1661 1662 1663 1664 1665
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1666 1667
	/*
	 * If this is in a group, check if it can go on with all the
1668
	 * other hardware events in the group.  We assume the event
1669 1670 1671
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1672
	if (event->group_leader != event) {
1673
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1674
				   ctrs, events, cflags);
1675
		if (n < 0)
1676
			return -EINVAL;
1677
	}
1678
	events[n] = ev;
1679
	ctrs[n] = event;
1680 1681
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1682
		return -EINVAL;
1683

1684
	cpuhw = &get_cpu_var(cpu_hw_events);
1685
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1686 1687 1688 1689 1690 1691 1692 1693 1694

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1695
	put_cpu_var(cpu_hw_events);
1696
	if (err)
1697
		return -EINVAL;
1698

1699 1700 1701
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1702
	local64_set(&event->hw.period_left, event->hw.last_period);
1703

1704 1705 1706 1707 1708 1709 1710
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1711 1712
	/*
	 * See if we need to reserve the PMU.
1713
	 * If no events are currently in use, then we have to take a
1714 1715 1716 1717
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1718
	if (!atomic_inc_not_zero(&num_events)) {
1719
		mutex_lock(&pmc_reserve_mutex);
1720 1721
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1722 1723
			err = -EBUSY;
		else
1724
			atomic_inc(&num_events);
1725 1726
		mutex_unlock(&pmc_reserve_mutex);
	}
1727
	event->destroy = hw_perf_event_destroy;
1728

1729
	return err;
1730 1731
}

1732 1733 1734 1735 1736
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1747
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1748 1749
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1750
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1751 1752 1753 1754
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1755 1756 1757 1758
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1759
	.event_idx	= power_pmu_event_idx,
1760
	.flush_branch_stack = power_pmu_flush_branch_stack,
1761 1762
};

1763
/*
I
Ingo Molnar 已提交
1764
 * A counter has overflowed; update its count and record
1765 1766 1767
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1768
static void record_and_restart(struct perf_event *event, unsigned long val,
1769
			       struct pt_regs *regs)
1770
{
1771
	u64 period = event->hw.sample_period;
1772 1773 1774
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1775 1776 1777 1778 1779
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1780
	/* we don't have to worry about interrupts here */
1781
	prev = local64_read(&event->hw.prev_count);
1782
	delta = check_and_compute_delta(prev, val);
1783
	local64_add(delta, &event->count);
1784 1785

	/*
1786
	 * See if the total period for this event has expired,
1787 1788 1789
	 * and update for the next period.
	 */
	val = 0;
1790
	left = local64_read(&event->hw.period_left) - delta;
1791 1792
	if (delta == 0)
		left++;
1793
	if (period) {
1794
		if (left <= 0) {
1795
			left += period;
1796
			if (left <= 0)
1797
				left = period;
1798
			record = siar_valid(regs);
1799
			event->hw.last_period = event->hw.sample_period;
1800
		}
1801 1802
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1803 1804
	}

P
Peter Zijlstra 已提交
1805 1806 1807 1808 1809
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1810 1811 1812
	/*
	 * Finally record data if requested.
	 */
1813
	if (record) {
1814 1815
		struct perf_sample_data data;

1816
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1817

1818
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1819 1820
			perf_get_data_addr(regs, &data.addr);

1821 1822 1823 1824 1825 1826 1827
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1828
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1829
			power_pmu_stop(event, 0);
1830 1831 1832 1833 1834
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1835
 * for an event_id.
1836 1837 1838
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1839
	u32 flags = perf_get_misc_flags(regs);
1840

1841 1842
	if (flags)
		return flags;
1843 1844
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1845 1846 1847 1848
}

/*
 * Called from generic code to get the instruction pointer
1849
 * for an event_id.
1850 1851 1852
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1853
	bool use_siar = regs_use_siar(regs);
1854

1855
	if (use_siar && siar_valid(regs))
1856
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1857 1858
	else if (use_siar)
		return 0;		// no valid instruction pointer
1859
	else
1860
		return regs->nip;
1861 1862
}

1863
static bool pmc_overflow_power7(unsigned long val)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1876 1877 1878 1879 1880 1881 1882 1883 1884
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1885 1886 1887 1888 1889
		return true;

	return false;
}

1890 1891 1892
/*
 * Performance monitor interrupt stuff
 */
1893
static void perf_event_interrupt(struct pt_regs *regs)
1894
{
1895
	int i, j;
1896 1897
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1898 1899
	unsigned long val[8];
	int found, active;
1900 1901
	int nmi;

1902
	if (cpuhw->n_limited)
1903
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1904 1905
					mfspr(SPRN_PMC6));

1906
	perf_read_regs(regs);
1907

1908
	nmi = perf_intr_is_nmi(regs);
1909 1910 1911 1912
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1913

1914 1915 1916 1917 1918 1919 1920 1921
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
1922
			continue;
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
1939
		}
1940 1941 1942
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
1943
	}
1944 1945 1946 1947 1948
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1949
				continue;
1950 1951 1952 1953 1954 1955 1956
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
1957 1958
		}
	}
1959
	if (!found && !nmi && printk_ratelimit())
1960
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1961 1962 1963

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
1964
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1965
	 * and thus allow interrupts to occur again.
1966
	 * XXX might want to use MSR.PM to keep the events frozen until
1967 1968
	 * we get back out of this interrupt.
	 */
1969
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1970

1971 1972 1973
	if (nmi)
		nmi_exit();
	else
1974
		irq_exit();
1975 1976
}

1977
static void power_pmu_setup(int cpu)
1978
{
1979
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1980

1981 1982
	if (!ppmu)
		return;
1983 1984 1985 1986
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1987
static int
1988
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2004
int register_power_pmu(struct power_pmu *pmu)
2005
{
2006 2007 2008 2009 2010 2011
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2012

2013 2014
	power_pmu.attr_groups = ppmu->attr_groups;

2015
#ifdef MSR_HV
2016 2017 2018 2019
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2020
		freeze_events_kernel = MMCR0_FCHV;
2021
#endif /* CONFIG_PPC64 */
2022

P
Peter Zijlstra 已提交
2023
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2024 2025
	perf_cpu_notifier(power_pmu_notifier);

2026 2027
	return 0;
}