core-book3s.c 52.3 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
78
#define MMCR0_FC56		0
79
#define MMCR0_PMAO		0
80 81 82
#define MMCR0_EBE		0
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
83 84 85 86 87 88 89 90 91 92 93 94 95

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
96 97 98 99
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
100 101 102 103 104
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

105 106 107 108 109
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

110 111 112 113 114 115 116 117 118
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	return mmcr0;
}

119 120 121 122
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
123
static void pmao_restore_workaround(bool ebb) { }
124 125
#endif /* CONFIG_PPC32 */

126 127
static bool regs_use_siar(struct pt_regs *regs)
{
128
	return !!regs->result;
129 130
}

131 132 133 134 135 136 137 138 139
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

140
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
141 142 143 144
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
145

146 147 148 149 150 151 152 153
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
154 155
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
156 157 158 159
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
160
	bool sdar_valid;
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
176

177
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
178 179 180
		*addrp = mfspr(SPRN_SDAR);
}

181
static bool regs_sihv(struct pt_regs *regs)
182 183 184
{
	unsigned long sihv = MMCRA_SIHV;

185 186 187
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

188 189 190
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

191
	return !!(regs->dsisr & sihv);
192 193
}

194
static bool regs_sipr(struct pt_regs *regs)
195 196 197
{
	unsigned long sipr = MMCRA_SIPR;

198 199 200
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

201 202 203
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

204
	return !!(regs->dsisr & sipr);
205 206
}

207 208 209 210 211 212 213 214 215
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

216 217
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
218
	bool use_siar = regs_use_siar(regs);
219

220
	if (!use_siar)
221 222 223 224 225 226 227 228
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
229
	if (ppmu->flags & PPMU_NO_SIPR) {
230 231 232 233 234
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
235

236
	/* PR has priority over HV, so order below is important */
237
	if (regs_sipr(regs))
238
		return PERF_RECORD_MISC_USER;
239 240

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
241
		return PERF_RECORD_MISC_HYPERVISOR;
242

243
	return PERF_RECORD_MISC_KERNEL;
244 245 246 247 248
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
249
 * Overload regs->dar to store SIER if we have it.
250 251
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
252 253 254
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
255 256 257 258
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

259
	regs->dsisr = mmcra;
260

261 262
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
281 282
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
283 284 285 286
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
287
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
288 289 290 291
		use_siar = 0;
	else
		use_siar = 1;

292
	regs->result = use_siar;
293 294 295 296 297 298 299 300 301 302 303
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

304 305 306 307 308 309 310 311 312 313 314 315
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

316 317 318 319 320 321 322
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
323 324 325 326

	return 1;
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
403 404

/* Processing BHRB entries */
405
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
406 407 408
{
	u64 val;
	u64 addr;
409
	int r_index, u_index, pred;
410 411 412 413 414

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
415 416 417
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
418
			break;
419
		else {
420 421 422
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

423 424
			if (!addr)
				/* invalid entry */
425 426
				continue;

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
444 445

			if (val & BHRB_TARGET) {
446 447 448 449 450 451
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
452

453 454 455 456 457 458 459 460 461 462
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
463
			} else {
464 465
				/* Branches to immediate field 
				   (ie I or B form) */
466
				cpuhw->bhrb_entries[u_index].from = addr;
467 468
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
469 470 471
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
472 473
			u_index++;

474 475 476 477 478 479
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

480 481 482 483 484 485 486 487
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
	return (ppmu->flags & PPMU_EBB) &&
488
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

		if (event->attr.inherit || event->attr.sample_period ||
		    event->attr.enable_on_exec || event->attr.freq)
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	if (!ebb)
		goto out;

	/* Enable EBB and read/write to all 6 PMCs for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;

549 550 551 552 553
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
554 555
	mmcr0 |= current->thread.mmcr0;

556 557 558 559 560
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
561 562 563 564 565 566 567 568 569 570
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
	mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
	return mmcr0;
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * enable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
656 657
#endif /* CONFIG_PPC64 */

658
static void perf_event_interrupt(struct pt_regs *regs);
659

660
/*
I
Ingo Molnar 已提交
661
 * Read one performance monitor counter (PMC).
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
686
#ifdef CONFIG_PPC64
687 688 689 690 691 692
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
693
#endif /* CONFIG_PPC64 */
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
725
#ifdef CONFIG_PPC64
726 727 728 729 730 731
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
732
#endif /* CONFIG_PPC64 */
733 734 735 736 737
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

	if (ppmu->flags & PPMU_EBB) {
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

789 790 791 792
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
793
 * The feasible set is returned in event_id[].
794
 */
795 796
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
797
				   int n_ev)
798
{
799
	unsigned long mask, value, nv;
800 801
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
802
	int i, j;
803 804
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
805

806
	if (n_ev > ppmu->n_counter)
807 808 809 810
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
811
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
812 813
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
814
					       cpuhw->alternatives[i]);
815
			event_id[i] = cpuhw->alternatives[i][0];
816
		}
817
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
818
					 &cpuhw->avalues[i][0]))
819 820 821 822
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
823 824
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
825
		if ((((nv + tadd) ^ value) & mask) != 0 ||
826 827
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
828 829
			break;
		value = nv;
830
		mask |= cpuhw->amasks[i][0];
831 832 833 834 835 836 837 838
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
839
		choice[i] = 0;
840
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
841
						  cpuhw->alternatives[i]);
842
		for (j = 1; j < n_alt[i]; ++j)
843 844 845
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
860
		 * See if any alternative k for event_id i,
861 862 863
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
864 865
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
866
			if ((((nv + tadd) ^ value) & mask) == 0 &&
867 868
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
869 870 871 872 873
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
874
			 * to event_id i-1 and continue enumerating its
875 876 877 878 879 880
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
881 882 883
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
884 885 886 887 888 889
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
890
			mask |= cpuhw->amasks[i][j];
891 892 893 894 895 896 897
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
898
		event_id[i] = cpuhw->alternatives[i][choice[i]];
899 900 901
	return 0;
}

902
/*
903
 * Check if newly-added events have consistent settings for
904
 * exclude_{user,kernel,hv} with each other and any previously
905
 * added events.
906
 */
907
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
908
			  int n_prev, int n_new)
909
{
910 911
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
912
	struct perf_event *event;
913 914 915 916 917

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

918 919 920 921 922 923
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
924
		event = ctrs[i];
925
		if (first) {
926 927 928
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
929
			first = 0;
930 931 932
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
933
			return -EAGAIN;
934
		}
935
	}
936 937 938 939 940 941

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

942 943 944
	return 0;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

964
static void power_pmu_read(struct perf_event *event)
965
{
966
	s64 val, delta, prev;
967

P
Peter Zijlstra 已提交
968 969 970
	if (event->hw.state & PERF_HES_STOPPED)
		return;

971
	if (!event->hw.idx)
972
		return;
973 974 975 976 977 978 979

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

980 981 982 983 984 985
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
986
		prev = local64_read(&event->hw.prev_count);
987
		barrier();
988
		val = read_pmc(event->hw.idx);
989 990 991
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
992
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
993

994 995
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
996 997
}

998 999 1000
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1001
 * us if `event' is using such a PMC.
1002 1003 1004
 */
static int is_limited_pmc(int pmcnum)
{
1005 1006
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1007 1008
}

1009
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1010 1011
				    unsigned long pmc5, unsigned long pmc6)
{
1012
	struct perf_event *event;
1013 1014 1015 1016
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1017
		event = cpuhw->limited_counter[i];
1018
		if (!event->hw.idx)
1019
			continue;
1020
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1021
		prev = local64_read(&event->hw.prev_count);
1022
		event->hw.idx = 0;
1023 1024 1025
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1026 1027 1028
	}
}

1029
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1030 1031
				  unsigned long pmc5, unsigned long pmc6)
{
1032
	struct perf_event *event;
1033
	u64 val, prev;
1034 1035 1036
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1037
		event = cpuhw->limited_counter[i];
1038 1039
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1040 1041 1042
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1043
		perf_event_update_userpage(event);
1044 1045 1046 1047
	}
}

/*
1048
 * Since limited events don't respect the freeze conditions, we
1049
 * have to read them immediately after freezing or unfreezing the
1050 1051
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1052
 * cycles and instructions) between freezing/unfreezing and reading
1053 1054
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1055 1056 1057
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1058
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1069 1070
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1071
	 * events, we first write MMCR0 with the event overflow
1072
	 * interrupt enable bits turned off.
1073 1074 1075
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1076 1077
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1078 1079 1080
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1081
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1082
	else
1083
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1084 1085

	/*
1086
	 * Write the full MMCR0 including the event overflow interrupt
1087 1088 1089 1090
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1091 1092
}

1093
/*
1094 1095
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1096
 */
P
Peter Zijlstra 已提交
1097
static void power_pmu_disable(struct pmu *pmu)
1098
{
1099
	struct cpu_hw_events *cpuhw;
1100
	unsigned long flags, mmcr0, val;
1101

1102 1103
	if (!ppmu)
		return;
1104
	local_irq_save(flags);
1105
	cpuhw = &__get_cpu_var(cpu_hw_events);
1106

1107
	if (!cpuhw->disabled) {
1108 1109 1110 1111
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1112
			ppc_enable_pmcs();
1113 1114 1115
			cpuhw->pmcs_enabled = 1;
		}

1116
		/*
1117
		 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
1118
		 */
1119
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1120
		val |= MMCR0_FC;
1121
		val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
1122 1123 1124 1125 1126 1127 1128 1129 1130

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1131 1132 1133 1134 1135 1136 1137 1138 1139
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1140 1141
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1142 1143

		ebb_switch_out(mmcr0);
1144
	}
1145

1146 1147 1148 1149
	local_irq_restore(flags);
}

/*
1150 1151
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1152 1153
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1154
static void power_pmu_enable(struct pmu *pmu)
1155
{
1156 1157
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1158 1159
	unsigned long flags;
	long i;
1160
	unsigned long val, mmcr0;
1161
	s64 left;
1162
	unsigned int hwc_index[MAX_HWEVENTS];
1163 1164
	int n_lim;
	int idx;
1165
	bool ebb;
1166

1167 1168
	if (!ppmu)
		return;
1169
	local_irq_save(flags);
1170

1171
	cpuhw = &__get_cpu_var(cpu_hw_events);
1172 1173 1174
	if (!cpuhw->disabled)
		goto out;

1175 1176 1177 1178 1179
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1180 1181
	cpuhw->disabled = 0;

1182 1183 1184 1185 1186 1187 1188
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1189
	/*
1190
	 * If we didn't change anything, or only removed events,
1191 1192
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1193
	 * (possibly updated for removal of events).
1194 1195
	 */
	if (!cpuhw->n_added) {
1196
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1197
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1198
		goto out_enable;
1199 1200 1201
	}

	/*
1202
	 * Compute MMCR* values for the new set of events
1203
	 */
1204
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1205 1206 1207 1208 1209 1210
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1211 1212
	/*
	 * Add in MMCR0 freeze bits corresponding to the
1213 1214 1215
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
1216
	 */
1217 1218
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
1219
		cpuhw->mmcr[0] |= MMCR0_FCP;
1220 1221 1222
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
1223 1224
		cpuhw->mmcr[0] |= MMCR0_FCHV;

1225 1226
	/*
	 * Write the new configuration to MMCR* with the freeze
1227 1228
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1229
	 */
1230
	ppc_set_pmu_inuse(1);
1231
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1232 1233 1234 1235 1236
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
1237
	 * Read off any pre-existing events that need to move
1238 1239
	 * to another PMC.
	 */
1240 1241 1242 1243 1244 1245
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1246 1247 1248 1249
		}
	}

	/*
1250
	 * Initialize the PMCs for all the new and moved events.
1251
	 */
1252
	cpuhw->n_limited = n_lim = 0;
1253 1254 1255
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1256
			continue;
1257 1258
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1259
			cpuhw->limited_counter[n_lim] = event;
1260 1261 1262 1263
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1275
		}
1276

1277
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1278 1279
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1280
		write_pmc(idx, val);
1281

1282
		perf_event_update_userpage(event);
1283
	}
1284
	cpuhw->n_limited = n_lim;
1285
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1286 1287

 out_enable:
1288 1289
	pmao_restore_workaround(ebb);

1290 1291
	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);

1292
	mb();
1293 1294 1295
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1296
	write_mmcr0(cpuhw, mmcr0);
1297

1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1306
 out:
1307

1308 1309 1310
	local_irq_restore(flags);
}

1311 1312
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1313
			  unsigned int *flags)
1314 1315
{
	int n = 0;
1316
	struct perf_event *event;
1317

1318
	if (!is_software_event(group)) {
1319 1320 1321
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1322
		flags[n] = group->hw.event_base;
1323 1324
		events[n++] = group->hw.config;
	}
1325
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1326 1327
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1328 1329
			if (n >= max_count)
				return -1;
1330 1331 1332
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1333 1334 1335 1336 1337 1338
		}
	}
	return n;
}

/*
1339 1340
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1341
 * re-enable the PMU in order to get hw_perf_enable to do the
1342 1343
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1344
static int power_pmu_add(struct perf_event *event, int ef_flags)
1345
{
1346
	struct cpu_hw_events *cpuhw;
1347 1348 1349 1350 1351
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1352
	perf_pmu_disable(event->pmu);
1353 1354

	/*
1355
	 * Add the event to the list (if there is room)
1356 1357
	 * and check whether the total set is still feasible.
	 */
1358 1359
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1360
	if (n0 >= ppmu->n_counter)
1361
		goto out;
1362 1363 1364
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1365

1366 1367 1368 1369 1370 1371
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1372 1373
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1374 1375
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1376

1377 1378
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1379
	 * skip the schedulability test here, it will be performed
1380 1381
	 * at commit time(->commit_txn) as a whole
	 */
1382
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1383 1384
		goto nocheck;

1385
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1386
		goto out;
1387
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1388
		goto out;
1389
	event->hw.config = cpuhw->events[n0];
1390 1391

nocheck:
1392 1393
	ebb_event_add(event);

1394
	++cpuhw->n_events;
1395 1396 1397 1398
	++cpuhw->n_added;

	ret = 0;
 out:
1399
	if (has_branch_stack(event)) {
1400
		power_pmu_bhrb_enable(event);
1401 1402 1403
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1404

P
Peter Zijlstra 已提交
1405
	perf_pmu_enable(event->pmu);
1406 1407 1408 1409 1410
	local_irq_restore(flags);
	return ret;
}

/*
1411
 * Remove a event from the PMU.
1412
 */
P
Peter Zijlstra 已提交
1413
static void power_pmu_del(struct perf_event *event, int ef_flags)
1414
{
1415
	struct cpu_hw_events *cpuhw;
1416 1417 1418 1419
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1420
	perf_pmu_disable(event->pmu);
1421

1422 1423 1424 1425 1426
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1427
			while (++i < cpuhw->n_events) {
1428
				cpuhw->event[i-1] = cpuhw->event[i];
1429 1430 1431
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1432 1433 1434 1435 1436
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1437
			}
1438
			perf_event_update_userpage(event);
1439 1440 1441
			break;
		}
	}
1442
	for (i = 0; i < cpuhw->n_limited; ++i)
1443
		if (event == cpuhw->limited_counter[i])
1444 1445 1446
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1447
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1448 1449 1450 1451
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1452 1453
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1454 1455 1456
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1457 1458 1459
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1460
	perf_pmu_enable(event->pmu);
1461 1462 1463
	local_irq_restore(flags);
}

1464
/*
P
Peter Zijlstra 已提交
1465 1466
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1467
 */
P
Peter Zijlstra 已提交
1468 1469

static void power_pmu_start(struct perf_event *event, int ef_flags)
1470 1471
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1472
	s64 left;
1473
	unsigned long val;
1474

1475
	if (!event->hw.idx || !event->hw.sample_period)
1476
		return;
P
Peter Zijlstra 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1489 1490 1491 1492 1493 1494

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1511
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1512
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1513

1514
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1515 1516 1517
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1518
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1519
	perf_pmu_enable(event->pmu);
1520 1521 1522
	local_irq_restore(flags);
}

1523 1524 1525 1526 1527
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1528
void power_pmu_start_txn(struct pmu *pmu)
1529 1530 1531
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1532
	perf_pmu_disable(pmu);
1533
	cpuhw->group_flag |= PERF_EVENT_TXN;
1534 1535 1536 1537 1538 1539 1540 1541
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1542
void power_pmu_cancel_txn(struct pmu *pmu)
1543 1544 1545
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1546
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1547
	perf_pmu_enable(pmu);
1548 1549 1550 1551 1552 1553 1554
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1555
int power_pmu_commit_txn(struct pmu *pmu)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1573
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1574
	perf_pmu_enable(pmu);
1575 1576 1577
	return 0;
}

1578
/*
1579
 * Return 1 if we might be able to put event on a limited PMC,
1580
 * or 0 if not.
1581
 * A event can only go on a limited PMC if it counts something
1582 1583 1584
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1585
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1586 1587 1588
				 unsigned int flags)
{
	int n;
1589
	u64 alt[MAX_EVENT_ALTERNATIVES];
1590

1591 1592 1593 1594
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1595 1596 1597 1598 1599 1600
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1601
	 * The requested event_id isn't on a limited PMC already;
1602 1603 1604 1605 1606 1607 1608 1609
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1610
	return n > 0;
1611 1612 1613
}

/*
1614 1615 1616
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1617
 */
1618
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1619
{
1620
	u64 alt[MAX_EVENT_ALTERNATIVES];
1621 1622 1623 1624 1625 1626 1627 1628 1629
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1630 1631
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1632 1633 1634 1635
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1636
 * Release the PMU if this is the last perf_event.
1637
 */
1638
static void hw_perf_event_destroy(struct perf_event *event)
1639
{
1640
	if (!atomic_add_unless(&num_events, -1, 1)) {
1641
		mutex_lock(&pmc_reserve_mutex);
1642
		if (atomic_dec_return(&num_events) == 0)
1643 1644 1645 1646 1647
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1648
/*
1649
 * Translate a generic cache event_id config to a raw event_id code.
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1678
static int power_pmu_event_init(struct perf_event *event)
1679
{
1680 1681
	u64 ev;
	unsigned long flags;
1682 1683 1684
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1685
	int n;
1686
	int err;
1687
	struct cpu_hw_events *cpuhw;
1688 1689

	if (!ppmu)
1690 1691
		return -ENOENT;

1692 1693 1694 1695 1696
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_BHRB))
			return -EOPNOTSUPP;
	}
1697

1698
	switch (event->attr.type) {
1699
	case PERF_TYPE_HARDWARE:
1700
		ev = event->attr.config;
1701
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1702
			return -EOPNOTSUPP;
1703
		ev = ppmu->generic_events[ev];
1704 1705
		break;
	case PERF_TYPE_HW_CACHE:
1706
		err = hw_perf_cache_event(event->attr.config, &ev);
1707
		if (err)
1708
			return err;
1709 1710
		break;
	case PERF_TYPE_RAW:
1711
		ev = event->attr.config;
1712
		break;
1713
	default:
1714
		return -ENOENT;
1715
	}
1716

1717 1718
	event->hw.config_base = ev;
	event->hw.idx = 0;
1719

1720 1721 1722
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1723
	 * the user set it to.
1724 1725
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1726
		event->attr.exclude_hv = 0;
1727 1728

	/*
1729
	 * If this is a per-task event, then we can use
1730 1731 1732 1733 1734
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1735
	if (event->attach_state & PERF_ATTACH_TASK)
1736 1737 1738
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1739 1740
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1741
	 */
1742
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1743
		if (can_go_on_limited_pmc(event, ev, flags)) {
1744 1745 1746
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1747
			 * The requested event_id is on a limited PMC,
1748 1749 1750 1751 1752
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1753
				return -EINVAL;
1754 1755 1756
		}
	}

1757 1758 1759 1760 1761
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1762 1763
	/*
	 * If this is in a group, check if it can go on with all the
1764
	 * other hardware events in the group.  We assume the event
1765 1766 1767
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1768
	if (event->group_leader != event) {
1769
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1770
				   ctrs, events, cflags);
1771
		if (n < 0)
1772
			return -EINVAL;
1773
	}
1774
	events[n] = ev;
1775
	ctrs[n] = event;
1776 1777
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1778
		return -EINVAL;
1779

1780
	cpuhw = &get_cpu_var(cpu_hw_events);
1781
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1782 1783 1784 1785 1786 1787 1788 1789 1790

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1791
	put_cpu_var(cpu_hw_events);
1792
	if (err)
1793
		return -EINVAL;
1794

1795 1796 1797
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1798
	local64_set(&event->hw.period_left, event->hw.last_period);
1799

1800 1801 1802 1803 1804 1805 1806
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1807 1808
	/*
	 * See if we need to reserve the PMU.
1809
	 * If no events are currently in use, then we have to take a
1810 1811 1812 1813
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1814
	if (!atomic_inc_not_zero(&num_events)) {
1815
		mutex_lock(&pmc_reserve_mutex);
1816 1817
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1818 1819
			err = -EBUSY;
		else
1820
			atomic_inc(&num_events);
1821 1822
		mutex_unlock(&pmc_reserve_mutex);
	}
1823
	event->destroy = hw_perf_event_destroy;
1824

1825
	return err;
1826 1827
}

1828 1829 1830 1831 1832
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1843
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1844 1845
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1846
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1847 1848 1849 1850
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1851 1852 1853 1854
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1855
	.event_idx	= power_pmu_event_idx,
1856
	.flush_branch_stack = power_pmu_flush_branch_stack,
1857 1858
};

1859
/*
I
Ingo Molnar 已提交
1860
 * A counter has overflowed; update its count and record
1861 1862 1863
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1864
static void record_and_restart(struct perf_event *event, unsigned long val,
1865
			       struct pt_regs *regs)
1866
{
1867
	u64 period = event->hw.sample_period;
1868 1869 1870
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1871 1872 1873 1874 1875
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1876
	/* we don't have to worry about interrupts here */
1877
	prev = local64_read(&event->hw.prev_count);
1878
	delta = check_and_compute_delta(prev, val);
1879
	local64_add(delta, &event->count);
1880 1881

	/*
1882
	 * See if the total period for this event has expired,
1883 1884 1885
	 * and update for the next period.
	 */
	val = 0;
1886
	left = local64_read(&event->hw.period_left) - delta;
1887 1888
	if (delta == 0)
		left++;
1889
	if (period) {
1890
		if (left <= 0) {
1891
			left += period;
1892
			if (left <= 0)
1893
				left = period;
1894
			record = siar_valid(regs);
1895
			event->hw.last_period = event->hw.sample_period;
1896
		}
1897 1898
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1899 1900
	}

P
Peter Zijlstra 已提交
1901 1902 1903 1904 1905
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1906 1907 1908
	/*
	 * Finally record data if requested.
	 */
1909
	if (record) {
1910 1911
		struct perf_sample_data data;

1912
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1913

1914
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1915 1916
			perf_get_data_addr(regs, &data.addr);

1917 1918 1919 1920 1921 1922 1923
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1924
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1925
			power_pmu_stop(event, 0);
1926 1927 1928 1929 1930
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1931
 * for an event_id.
1932 1933 1934
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1935
	u32 flags = perf_get_misc_flags(regs);
1936

1937 1938
	if (flags)
		return flags;
1939 1940
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1941 1942 1943 1944
}

/*
 * Called from generic code to get the instruction pointer
1945
 * for an event_id.
1946 1947 1948
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1949
	bool use_siar = regs_use_siar(regs);
1950

1951
	if (use_siar && siar_valid(regs))
1952
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1953 1954
	else if (use_siar)
		return 0;		// no valid instruction pointer
1955
	else
1956
		return regs->nip;
1957 1958
}

1959
static bool pmc_overflow_power7(unsigned long val)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1972 1973 1974 1975 1976 1977 1978 1979 1980
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1981 1982 1983 1984 1985
		return true;

	return false;
}

1986 1987 1988
/*
 * Performance monitor interrupt stuff
 */
1989
static void perf_event_interrupt(struct pt_regs *regs)
1990
{
1991
	int i, j;
1992 1993
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1994 1995
	unsigned long val[8];
	int found, active;
1996 1997
	int nmi;

1998
	if (cpuhw->n_limited)
1999
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2000 2001
					mfspr(SPRN_PMC6));

2002
	perf_read_regs(regs);
2003

2004
	nmi = perf_intr_is_nmi(regs);
2005 2006 2007 2008
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2009

2010 2011 2012 2013 2014 2015 2016 2017
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2018
			continue;
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2035
		}
2036 2037 2038
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2039
	}
2040 2041 2042 2043 2044
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2045
				continue;
2046 2047 2048 2049 2050 2051 2052
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2053 2054
		}
	}
2055
	if (!found && !nmi && printk_ratelimit())
2056
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2057 2058 2059

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2060
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2061
	 * and thus allow interrupts to occur again.
2062
	 * XXX might want to use MSR.PM to keep the events frozen until
2063 2064
	 * we get back out of this interrupt.
	 */
2065
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2066

2067 2068 2069
	if (nmi)
		nmi_exit();
	else
2070
		irq_exit();
2071 2072
}

2073
static void power_pmu_setup(int cpu)
2074
{
2075
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2076

2077 2078
	if (!ppmu)
		return;
2079 2080 2081 2082
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2083
static int
2084
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2100
int register_power_pmu(struct power_pmu *pmu)
2101
{
2102 2103 2104 2105 2106 2107
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2108

2109 2110
	power_pmu.attr_groups = ppmu->attr_groups;

2111
#ifdef MSR_HV
2112 2113 2114 2115
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2116
		freeze_events_kernel = MMCR0_FCHV;
2117
#endif /* CONFIG_PPC64 */
2118

P
Peter Zijlstra 已提交
2119
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2120 2121
	perf_cpu_notifier(power_pmu_notifier);

2122 2123
	return 0;
}