core-book3s.c 54.1 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39 40 41 42 43 44
	/*
	 * The order of the MMCR array is:
	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
	 *  - 32-bit, MMCR0, MMCR1, MMCR2
	 */
	unsigned long mmcr[4];
45 46
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 48 49
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 51 52

	unsigned int group_flag;
	int n_txn_start;
53 54 55 56 57 58 59

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60
};
61

62
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63

64
static struct power_pmu *ppmu;
65

66
/*
I
Ingo Molnar 已提交
67
 * Normally, to ignore kernel events we set the FCS (freeze counters
68 69 70 71 72
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
73
static unsigned int freeze_events_kernel = MMCR0_FCS;
74

75 76 77 78 79 80 81 82
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
83
#define MMCR0_FC56		0
84
#define MMCR0_PMAO		0
85
#define MMCR0_EBE		0
86
#define MMCR0_BHRBA		0
87 88
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
89 90 91 92 93 94 95 96 97 98 99 100 101

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
102 103 104 105
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
106 107 108 109 110
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

111 112 113 114 115
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

116 117 118 119
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
120
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121
{
122
	return cpuhw->mmcr[0];
123 124
}

125 126
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129
static void pmao_restore_workaround(bool ebb) { }
130 131
#endif /* CONFIG_PPC32 */

132 133
static bool regs_use_siar(struct pt_regs *regs)
{
134
	return !!regs->result;
135 136
}

137 138 139 140 141 142 143 144 145
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

146
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
147 148 149 150
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
151

152 153 154 155 156 157 158 159
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
160 161
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
162 163 164 165
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
166
	bool sdar_valid;
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
182

183
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
184 185 186
		*addrp = mfspr(SPRN_SDAR);
}

187
static bool regs_sihv(struct pt_regs *regs)
188 189 190
{
	unsigned long sihv = MMCRA_SIHV;

191 192 193
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

194 195 196
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

197
	return !!(regs->dsisr & sihv);
198 199
}

200
static bool regs_sipr(struct pt_regs *regs)
201 202 203
{
	unsigned long sipr = MMCRA_SIPR;

204 205 206
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

207 208 209
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

210
	return !!(regs->dsisr & sipr);
211 212
}

213 214 215 216 217 218 219 220 221
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

222 223
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
224
	bool use_siar = regs_use_siar(regs);
225

226
	if (!use_siar)
227 228 229 230 231 232 233 234
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
235
	if (ppmu->flags & PPMU_NO_SIPR) {
236 237 238 239 240
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
241

242
	/* PR has priority over HV, so order below is important */
243
	if (regs_sipr(regs))
244
		return PERF_RECORD_MISC_USER;
245 246

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
247
		return PERF_RECORD_MISC_HYPERVISOR;
248

249
	return PERF_RECORD_MISC_KERNEL;
250 251 252 253 254
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
255
 * Overload regs->dar to store SIER if we have it.
256 257
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
258 259 260
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
261 262 263 264
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

265
	regs->dsisr = mmcra;
266

267 268
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
287 288
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
289 290 291 292
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
293
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
294 295 296 297
		use_siar = 0;
	else
		use_siar = 1;

298
	regs->result = use_siar;
299 300 301 302 303 304 305 306 307 308 309
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

310 311 312 313 314 315 316 317 318 319 320 321
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

322 323 324 325 326 327 328
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
329 330 331 332

	return 1;
}

333 334 335 336 337 338 339 340 341

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
342
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
343 344 345 346 347 348 349 350 351 352

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
353
	perf_sched_cb_inc(event->ctx->pmu);
354 355 356 357
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
358
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
359 360 361 362 363 364

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
365
	perf_sched_cb_dec(event->ctx->pmu);
366 367 368 369 370 371 372 373 374 375 376 377 378 379

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
380
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
381
{
382 383 384 385
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
386 387
		power_pmu_bhrb_reset();
}
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
414 415

/* Processing BHRB entries */
416
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
417 418 419
{
	u64 val;
	u64 addr;
420
	int r_index, u_index, pred;
421 422 423 424 425

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
426 427 428
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
429
			break;
430
		else {
431 432 433
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

434 435
			if (!addr)
				/* invalid entry */
436 437
				continue;

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
455 456

			if (val & BHRB_TARGET) {
457 458 459 460 461 462
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
463

464 465 466 467 468 469 470 471 472 473
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
474
			} else {
475 476
				/* Branches to immediate field 
				   (ie I or B form) */
477
				cpuhw->bhrb_entries[u_index].from = addr;
478 479
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
480 481 482
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
483 484
			u_index++;

485 486 487 488 489 490
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

491 492 493 494 495 496 497
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
498
	return (ppmu->flags & PPMU_ARCH_207S) &&
499
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

517 518 519 520 521
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

555
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
556
{
557 558
	unsigned long mmcr0 = cpuhw->mmcr[0];

559 560 561
	if (!ebb)
		goto out;

562 563
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
564

565 566 567 568 569
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
570 571
	mmcr0 |= current->thread.mmcr0;

572 573 574 575 576
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
577 578 579 580 581 582
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
583 584 585 586 587 588 589 590 591

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
592 593 594
out:
	return mmcr0;
}
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * enable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
680 681
#endif /* CONFIG_PPC64 */

682
static void perf_event_interrupt(struct pt_regs *regs);
683

684
/*
I
Ingo Molnar 已提交
685
 * Read one performance monitor counter (PMC).
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
710
#ifdef CONFIG_PPC64
711 712 713 714 715 716
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
717
#endif /* CONFIG_PPC64 */
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
749
#ifdef CONFIG_PPC64
750 751 752 753 754 755
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
756
#endif /* CONFIG_PPC64 */
757 758 759 760 761
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

800
	if (ppmu->flags & PPMU_ARCH_207S) {
801 802 803 804 805 806 807 808 809 810 811 812
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

813 814 815 816
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
817
 * The feasible set is returned in event_id[].
818
 */
819 820
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
821
				   int n_ev)
822
{
823
	unsigned long mask, value, nv;
824 825
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
826
	int i, j;
827 828
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
829

830
	if (n_ev > ppmu->n_counter)
831 832 833 834
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
835
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
836 837
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
838
					       cpuhw->alternatives[i]);
839
			event_id[i] = cpuhw->alternatives[i][0];
840
		}
841
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
842
					 &cpuhw->avalues[i][0]))
843 844 845 846
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
847 848
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
849
		if ((((nv + tadd) ^ value) & mask) != 0 ||
850 851
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
852 853
			break;
		value = nv;
854
		mask |= cpuhw->amasks[i][0];
855 856 857 858 859 860 861 862
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
863
		choice[i] = 0;
864
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
865
						  cpuhw->alternatives[i]);
866
		for (j = 1; j < n_alt[i]; ++j)
867 868 869
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
870 871 872 873 874 875 876 877 878 879 880 881 882 883
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
884
		 * See if any alternative k for event_id i,
885 886 887
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
888 889
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
890
			if ((((nv + tadd) ^ value) & mask) == 0 &&
891 892
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
893 894 895 896 897
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
898
			 * to event_id i-1 and continue enumerating its
899 900 901 902 903 904
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
905 906 907
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
908 909 910 911 912 913
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
914
			mask |= cpuhw->amasks[i][j];
915 916 917 918 919 920 921
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
922
		event_id[i] = cpuhw->alternatives[i][choice[i]];
923 924 925
	return 0;
}

926
/*
927
 * Check if newly-added events have consistent settings for
928
 * exclude_{user,kernel,hv} with each other and any previously
929
 * added events.
930
 */
931
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
932
			  int n_prev, int n_new)
933
{
934 935
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
936
	struct perf_event *event;
937

938 939 940 941 942 943 944 945
	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

946 947 948 949
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

950 951 952 953 954 955
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
956
		event = ctrs[i];
957
		if (first) {
958 959 960
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
961
			first = 0;
962 963 964
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
965
			return -EAGAIN;
966
		}
967
	}
968 969 970 971 972 973

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

974 975 976
	return 0;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

996
static void power_pmu_read(struct perf_event *event)
997
{
998
	s64 val, delta, prev;
999

P
Peter Zijlstra 已提交
1000 1001 1002
	if (event->hw.state & PERF_HES_STOPPED)
		return;

1003
	if (!event->hw.idx)
1004
		return;
1005 1006 1007 1008 1009 1010 1011

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

1012 1013 1014 1015 1016 1017
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
1018
		prev = local64_read(&event->hw.prev_count);
1019
		barrier();
1020
		val = read_pmc(event->hw.idx);
1021 1022 1023
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
1024
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1025

1026
	local64_add(delta, &event->count);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1043 1044
}

1045 1046 1047
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1048
 * us if `event' is using such a PMC.
1049 1050 1051
 */
static int is_limited_pmc(int pmcnum)
{
1052 1053
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1054 1055
}

1056
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1057 1058
				    unsigned long pmc5, unsigned long pmc6)
{
1059
	struct perf_event *event;
1060 1061 1062 1063
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1064
		event = cpuhw->limited_counter[i];
1065
		if (!event->hw.idx)
1066
			continue;
1067
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1068
		prev = local64_read(&event->hw.prev_count);
1069
		event->hw.idx = 0;
1070 1071 1072
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1073 1074 1075
	}
}

1076
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1077 1078
				  unsigned long pmc5, unsigned long pmc6)
{
1079
	struct perf_event *event;
1080
	u64 val, prev;
1081 1082 1083
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1084
		event = cpuhw->limited_counter[i];
1085 1086
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1087 1088 1089
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1090
		perf_event_update_userpage(event);
1091 1092 1093 1094
	}
}

/*
1095
 * Since limited events don't respect the freeze conditions, we
1096
 * have to read them immediately after freezing or unfreezing the
1097 1098
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1099
 * cycles and instructions) between freezing/unfreezing and reading
1100 1101
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1102 1103 1104
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1105
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1116 1117
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1118
	 * events, we first write MMCR0 with the event overflow
1119
	 * interrupt enable bits turned off.
1120 1121 1122
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1123 1124
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1125 1126 1127
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1128
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1129
	else
1130
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1131 1132

	/*
1133
	 * Write the full MMCR0 including the event overflow interrupt
1134 1135 1136 1137
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1138 1139
}

1140
/*
1141 1142
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1143
 */
P
Peter Zijlstra 已提交
1144
static void power_pmu_disable(struct pmu *pmu)
1145
{
1146
	struct cpu_hw_events *cpuhw;
1147
	unsigned long flags, mmcr0, val;
1148

1149 1150
	if (!ppmu)
		return;
1151
	local_irq_save(flags);
1152
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1153

1154
	if (!cpuhw->disabled) {
1155 1156 1157 1158
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1159
			ppc_enable_pmcs();
1160 1161 1162
			cpuhw->pmcs_enabled = 1;
		}

1163
		/*
1164
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1165
		 */
1166
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1167
		val |= MMCR0_FC;
1168 1169
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1170 1171 1172 1173 1174 1175 1176 1177 1178

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1179 1180 1181 1182 1183 1184 1185 1186 1187
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1188 1189
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1190 1191

		ebb_switch_out(mmcr0);
1192
	}
1193

1194 1195 1196 1197
	local_irq_restore(flags);
}

/*
1198 1199
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1200 1201
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1202
static void power_pmu_enable(struct pmu *pmu)
1203
{
1204 1205
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1206 1207
	unsigned long flags;
	long i;
1208
	unsigned long val, mmcr0;
1209
	s64 left;
1210
	unsigned int hwc_index[MAX_HWEVENTS];
1211 1212
	int n_lim;
	int idx;
1213
	bool ebb;
1214

1215 1216
	if (!ppmu)
		return;
1217
	local_irq_save(flags);
1218

1219
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1220 1221 1222
	if (!cpuhw->disabled)
		goto out;

1223 1224 1225 1226 1227
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1228 1229
	cpuhw->disabled = 0;

1230 1231 1232 1233 1234 1235 1236
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1237
	/*
1238
	 * If we didn't change anything, or only removed events,
1239 1240
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1241
	 * (possibly updated for removal of events).
1242 1243
	 */
	if (!cpuhw->n_added) {
1244
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1245
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1246
		goto out_enable;
1247 1248 1249
	}

	/*
1250
	 * Clear all MMCR settings and recompute them for the new set of events.
1251
	 */
1252 1253
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1254
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1255
			       cpuhw->mmcr, cpuhw->event)) {
1256 1257 1258 1259 1260
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr[0] |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr[0] |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr[0] |= MMCR0_FCHV;
	}
1275

1276 1277
	/*
	 * Write the new configuration to MMCR* with the freeze
1278 1279
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1280
	 */
1281
	ppc_set_pmu_inuse(1);
1282
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1283 1284 1285
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
1286 1287
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1288 1289

	/*
1290
	 * Read off any pre-existing events that need to move
1291 1292
	 * to another PMC.
	 */
1293 1294 1295 1296 1297 1298
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1299 1300 1301 1302
		}
	}

	/*
1303
	 * Initialize the PMCs for all the new and moved events.
1304
	 */
1305
	cpuhw->n_limited = n_lim = 0;
1306 1307 1308
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1309
			continue;
1310 1311
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1312
			cpuhw->limited_counter[n_lim] = event;
1313 1314 1315 1316
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1328
		}
1329

1330
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1331 1332
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1333
		write_pmc(idx, val);
1334

1335
		perf_event_update_userpage(event);
1336
	}
1337
	cpuhw->n_limited = n_lim;
1338
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1339 1340

 out_enable:
1341 1342
	pmao_restore_workaround(ebb);

1343
	mmcr0 = ebb_switch_in(ebb, cpuhw);
1344

1345
	mb();
1346 1347 1348
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1349
	write_mmcr0(cpuhw, mmcr0);
1350

1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1359
 out:
1360

1361 1362 1363
	local_irq_restore(flags);
}

1364 1365
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1366
			  unsigned int *flags)
1367 1368
{
	int n = 0;
1369
	struct perf_event *event;
1370

1371
	if (!is_software_event(group)) {
1372 1373 1374
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1375
		flags[n] = group->hw.event_base;
1376 1377
		events[n++] = group->hw.config;
	}
1378
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1379 1380
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1381 1382
			if (n >= max_count)
				return -1;
1383 1384 1385
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1386 1387 1388 1389 1390 1391
		}
	}
	return n;
}

/*
1392 1393
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1394
 * re-enable the PMU in order to get hw_perf_enable to do the
1395 1396
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1397
static int power_pmu_add(struct perf_event *event, int ef_flags)
1398
{
1399
	struct cpu_hw_events *cpuhw;
1400 1401 1402 1403 1404
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1405
	perf_pmu_disable(event->pmu);
1406 1407

	/*
1408
	 * Add the event to the list (if there is room)
1409 1410
	 * and check whether the total set is still feasible.
	 */
1411
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1412
	n0 = cpuhw->n_events;
1413
	if (n0 >= ppmu->n_counter)
1414
		goto out;
1415 1416 1417
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1418

1419 1420 1421 1422 1423 1424
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1425 1426
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1427 1428
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1429

1430 1431
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1432
	 * skip the schedulability test here, it will be performed
1433 1434
	 * at commit time(->commit_txn) as a whole
	 */
1435
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1436 1437
		goto nocheck;

1438
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1439
		goto out;
1440
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1441
		goto out;
1442
	event->hw.config = cpuhw->events[n0];
1443 1444

nocheck:
1445 1446
	ebb_event_add(event);

1447
	++cpuhw->n_events;
1448 1449 1450 1451
	++cpuhw->n_added;

	ret = 0;
 out:
1452
	if (has_branch_stack(event)) {
1453
		power_pmu_bhrb_enable(event);
1454 1455 1456
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1457

P
Peter Zijlstra 已提交
1458
	perf_pmu_enable(event->pmu);
1459 1460 1461 1462 1463
	local_irq_restore(flags);
	return ret;
}

/*
1464
 * Remove a event from the PMU.
1465
 */
P
Peter Zijlstra 已提交
1466
static void power_pmu_del(struct perf_event *event, int ef_flags)
1467
{
1468
	struct cpu_hw_events *cpuhw;
1469 1470 1471 1472
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1473
	perf_pmu_disable(event->pmu);
1474

1475 1476
	power_pmu_read(event);

1477
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1478 1479
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1480
			while (++i < cpuhw->n_events) {
1481
				cpuhw->event[i-1] = cpuhw->event[i];
1482 1483 1484
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1485 1486 1487 1488 1489
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1490
			}
1491
			perf_event_update_userpage(event);
1492 1493 1494
			break;
		}
	}
1495
	for (i = 0; i < cpuhw->n_limited; ++i)
1496
		if (event == cpuhw->limited_counter[i])
1497 1498 1499
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1500
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1501 1502 1503 1504
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1505 1506
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1507 1508 1509
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1510 1511 1512
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1513
	perf_pmu_enable(event->pmu);
1514 1515 1516
	local_irq_restore(flags);
}

1517
/*
P
Peter Zijlstra 已提交
1518 1519
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1520
 */
P
Peter Zijlstra 已提交
1521 1522

static void power_pmu_start(struct perf_event *event, int ef_flags)
1523 1524
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1525
	s64 left;
1526
	unsigned long val;
1527

1528
	if (!event->hw.idx || !event->hw.sample_period)
1529
		return;
P
Peter Zijlstra 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1542 1543 1544 1545 1546 1547

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1564
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1565
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1566

1567
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1568 1569 1570
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1571
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1572
	perf_pmu_enable(event->pmu);
1573 1574 1575
	local_irq_restore(flags);
}

1576 1577 1578 1579 1580
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
1581
static void power_pmu_start_txn(struct pmu *pmu)
1582
{
1583
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1584

P
Peter Zijlstra 已提交
1585
	perf_pmu_disable(pmu);
1586
	cpuhw->group_flag |= PERF_EVENT_TXN;
1587 1588 1589 1590 1591 1592 1593 1594
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1595
static void power_pmu_cancel_txn(struct pmu *pmu)
1596
{
1597
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1598

1599
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1600
	perf_pmu_enable(pmu);
1601 1602 1603 1604 1605 1606 1607
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
1608
static int power_pmu_commit_txn(struct pmu *pmu)
1609 1610 1611 1612 1613 1614
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
1615
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1626
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1627
	perf_pmu_enable(pmu);
1628 1629 1630
	return 0;
}

1631
/*
1632
 * Return 1 if we might be able to put event on a limited PMC,
1633
 * or 0 if not.
1634
 * A event can only go on a limited PMC if it counts something
1635 1636 1637
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1638
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1639 1640 1641
				 unsigned int flags)
{
	int n;
1642
	u64 alt[MAX_EVENT_ALTERNATIVES];
1643

1644 1645 1646 1647
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1648 1649 1650 1651 1652 1653
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1654
	 * The requested event_id isn't on a limited PMC already;
1655 1656 1657 1658 1659 1660 1661 1662
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1663
	return n > 0;
1664 1665 1666
}

/*
1667 1668 1669
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1670
 */
1671
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1672
{
1673
	u64 alt[MAX_EVENT_ALTERNATIVES];
1674 1675 1676 1677 1678 1679 1680 1681 1682
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1683 1684
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1685 1686 1687 1688
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1689
 * Release the PMU if this is the last perf_event.
1690
 */
1691
static void hw_perf_event_destroy(struct perf_event *event)
1692
{
1693
	if (!atomic_add_unless(&num_events, -1, 1)) {
1694
		mutex_lock(&pmc_reserve_mutex);
1695
		if (atomic_dec_return(&num_events) == 0)
1696 1697 1698 1699 1700
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1701
/*
1702
 * Translate a generic cache event_id config to a raw event_id code.
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1731
static int power_pmu_event_init(struct perf_event *event)
1732
{
1733 1734
	u64 ev;
	unsigned long flags;
1735 1736 1737
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1738
	int n;
1739
	int err;
1740
	struct cpu_hw_events *cpuhw;
1741 1742

	if (!ppmu)
1743 1744
		return -ENOENT;

1745 1746
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1747
		if (!(ppmu->flags & PPMU_ARCH_207S))
1748 1749
			return -EOPNOTSUPP;
	}
1750

1751
	switch (event->attr.type) {
1752
	case PERF_TYPE_HARDWARE:
1753
		ev = event->attr.config;
1754
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1755
			return -EOPNOTSUPP;
1756
		ev = ppmu->generic_events[ev];
1757 1758
		break;
	case PERF_TYPE_HW_CACHE:
1759
		err = hw_perf_cache_event(event->attr.config, &ev);
1760
		if (err)
1761
			return err;
1762 1763
		break;
	case PERF_TYPE_RAW:
1764
		ev = event->attr.config;
1765
		break;
1766
	default:
1767
		return -ENOENT;
1768
	}
1769

1770 1771
	event->hw.config_base = ev;
	event->hw.idx = 0;
1772

1773 1774 1775
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1776
	 * the user set it to.
1777 1778
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1779
		event->attr.exclude_hv = 0;
1780 1781

	/*
1782
	 * If this is a per-task event, then we can use
1783 1784 1785 1786 1787
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1788
	if (event->attach_state & PERF_ATTACH_TASK)
1789 1790 1791
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1792 1793
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1794
	 */
1795
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1796
		if (can_go_on_limited_pmc(event, ev, flags)) {
1797 1798 1799
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1800
			 * The requested event_id is on a limited PMC,
1801 1802 1803 1804 1805
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1806
				return -EINVAL;
1807 1808 1809
		}
	}

1810 1811 1812 1813 1814
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1815 1816
	/*
	 * If this is in a group, check if it can go on with all the
1817
	 * other hardware events in the group.  We assume the event
1818 1819 1820
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1821
	if (event->group_leader != event) {
1822
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1823
				   ctrs, events, cflags);
1824
		if (n < 0)
1825
			return -EINVAL;
1826
	}
1827
	events[n] = ev;
1828
	ctrs[n] = event;
1829 1830
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1831
		return -EINVAL;
1832

1833
	cpuhw = &get_cpu_var(cpu_hw_events);
1834
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1835 1836 1837 1838 1839

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

1840 1841
		if (cpuhw->bhrb_filter == -1) {
			put_cpu_var(cpu_hw_events);
1842
			return -EOPNOTSUPP;
1843
		}
1844 1845
	}

1846
	put_cpu_var(cpu_hw_events);
1847
	if (err)
1848
		return -EINVAL;
1849

1850 1851 1852
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1853
	local64_set(&event->hw.period_left, event->hw.last_period);
1854

1855 1856 1857 1858 1859 1860 1861
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1862 1863
	/*
	 * See if we need to reserve the PMU.
1864
	 * If no events are currently in use, then we have to take a
1865 1866 1867 1868
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1869
	if (!atomic_inc_not_zero(&num_events)) {
1870
		mutex_lock(&pmc_reserve_mutex);
1871 1872
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1873 1874
			err = -EBUSY;
		else
1875
			atomic_inc(&num_events);
1876 1877
		mutex_unlock(&pmc_reserve_mutex);
	}
1878
	event->destroy = hw_perf_event_destroy;
1879

1880
	return err;
1881 1882
}

1883 1884 1885 1886 1887
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1898
static struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1899 1900
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1901
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1902 1903 1904 1905
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1906 1907 1908 1909
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1910
	.event_idx	= power_pmu_event_idx,
1911
	.sched_task	= power_pmu_sched_task,
1912 1913
};

1914
/*
I
Ingo Molnar 已提交
1915
 * A counter has overflowed; update its count and record
1916 1917 1918
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1919
static void record_and_restart(struct perf_event *event, unsigned long val,
1920
			       struct pt_regs *regs)
1921
{
1922
	u64 period = event->hw.sample_period;
1923 1924 1925
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1926 1927 1928 1929 1930
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1931
	/* we don't have to worry about interrupts here */
1932
	prev = local64_read(&event->hw.prev_count);
1933
	delta = check_and_compute_delta(prev, val);
1934
	local64_add(delta, &event->count);
1935 1936

	/*
1937
	 * See if the total period for this event has expired,
1938 1939 1940
	 * and update for the next period.
	 */
	val = 0;
1941
	left = local64_read(&event->hw.period_left) - delta;
1942 1943
	if (delta == 0)
		left++;
1944
	if (period) {
1945
		if (left <= 0) {
1946
			left += period;
1947
			if (left <= 0)
1948
				left = period;
1949
			record = siar_valid(regs);
1950
			event->hw.last_period = event->hw.sample_period;
1951
		}
1952 1953
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1954 1955
	}

P
Peter Zijlstra 已提交
1956 1957 1958 1959 1960
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1961 1962 1963
	/*
	 * Finally record data if requested.
	 */
1964
	if (record) {
1965 1966
		struct perf_sample_data data;

1967
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1968

1969
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1970 1971
			perf_get_data_addr(regs, &data.addr);

1972 1973
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
1974
			cpuhw = this_cpu_ptr(&cpu_hw_events);
1975 1976 1977 1978
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1979
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1980
			power_pmu_stop(event, 0);
1981 1982 1983 1984 1985
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1986
 * for an event_id.
1987 1988 1989
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1990
	u32 flags = perf_get_misc_flags(regs);
1991

1992 1993
	if (flags)
		return flags;
1994 1995
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1996 1997 1998 1999
}

/*
 * Called from generic code to get the instruction pointer
2000
 * for an event_id.
2001 2002 2003
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2004
	bool use_siar = regs_use_siar(regs);
2005

2006
	if (use_siar && siar_valid(regs))
2007
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2008 2009
	else if (use_siar)
		return 0;		// no valid instruction pointer
2010
	else
2011
		return regs->nip;
2012 2013
}

2014
static bool pmc_overflow_power7(unsigned long val)
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
2027 2028 2029 2030 2031 2032 2033 2034 2035
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2036 2037 2038 2039 2040
		return true;

	return false;
}

2041 2042 2043
/*
 * Performance monitor interrupt stuff
 */
2044
static void perf_event_interrupt(struct pt_regs *regs)
2045
{
2046
	int i, j;
2047
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2048
	struct perf_event *event;
2049 2050
	unsigned long val[8];
	int found, active;
2051 2052
	int nmi;

2053
	if (cpuhw->n_limited)
2054
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2055 2056
					mfspr(SPRN_PMC6));

2057
	perf_read_regs(regs);
2058

2059
	nmi = perf_intr_is_nmi(regs);
2060 2061 2062 2063
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2064

2065 2066 2067 2068 2069 2070 2071 2072
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2073
			continue;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2090
		}
2091 2092 2093
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2094
	}
2095 2096 2097 2098 2099
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2100
				continue;
2101 2102 2103 2104 2105 2106 2107
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2108 2109
		}
	}
2110
	if (!found && !nmi && printk_ratelimit())
2111
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2112 2113 2114

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2115
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2116
	 * and thus allow interrupts to occur again.
2117
	 * XXX might want to use MSR.PM to keep the events frozen until
2118 2119
	 * we get back out of this interrupt.
	 */
2120
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2121

2122 2123 2124
	if (nmi)
		nmi_exit();
	else
2125
		irq_exit();
2126 2127
}

2128
static void power_pmu_setup(int cpu)
2129
{
2130
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2131

2132 2133
	if (!ppmu)
		return;
2134 2135 2136 2137
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2138
static int
2139
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2155
int register_power_pmu(struct power_pmu *pmu)
2156
{
2157 2158 2159 2160 2161 2162
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2163

2164 2165
	power_pmu.attr_groups = ppmu->attr_groups;

2166
#ifdef MSR_HV
2167 2168 2169 2170
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2171
		freeze_events_kernel = MMCR0_FCHV;
2172
#endif /* CONFIG_PPC64 */
2173

P
Peter Zijlstra 已提交
2174
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2175 2176
	perf_cpu_notifier(power_pmu_notifier);

2177 2178
	return 0;
}