core-book3s.c 47.9 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26 27 28
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
#define BHRB_EA			0xFFFFFFFFFFFFFFFC

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
78
#define MMCR0_FC56		0
79
#define MMCR0_PMAO		0
80 81 82
#define MMCR0_EBE		0
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
83 84 85 86 87 88 89 90 91 92 93 94 95

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
96 97 98 99
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
100 101 102 103 104
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

105 106 107 108 109
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

110 111 112 113 114 115 116 117 118
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	return mmcr0;
}

119 120 121 122
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
123 124
#endif /* CONFIG_PPC32 */

125 126
static bool regs_use_siar(struct pt_regs *regs)
{
127
	return !!regs->result;
128 129
}

130 131 132 133 134 135 136 137 138
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

139
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
140 141 142 143
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
144

145 146 147 148 149 150 151 152
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
153 154
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
155 156 157 158
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
159
	bool sdar_valid;
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
175

176
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
177 178 179
		*addrp = mfspr(SPRN_SDAR);
}

180
static bool regs_sihv(struct pt_regs *regs)
181 182 183
{
	unsigned long sihv = MMCRA_SIHV;

184 185 186
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

187 188 189
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

190
	return !!(regs->dsisr & sihv);
191 192
}

193
static bool regs_sipr(struct pt_regs *regs)
194 195 196
{
	unsigned long sipr = MMCRA_SIPR;

197 198 199
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

200 201 202
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

203
	return !!(regs->dsisr & sipr);
204 205
}

206 207 208 209 210 211 212 213 214
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

215 216
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
217
	bool use_siar = regs_use_siar(regs);
218

219
	if (!use_siar)
220 221 222 223 224 225 226 227
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
228
	if (ppmu->flags & PPMU_NO_SIPR) {
229 230 231 232 233
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
234

235
	/* PR has priority over HV, so order below is important */
236
	if (regs_sipr(regs))
237
		return PERF_RECORD_MISC_USER;
238 239

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
240
		return PERF_RECORD_MISC_HYPERVISOR;
241

242
	return PERF_RECORD_MISC_KERNEL;
243 244 245 246 247
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
248
 * Overload regs->dar to store SIER if we have it.
249 250
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
251 252 253
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
254 255 256 257
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

258
	regs->dsisr = mmcra;
259

260 261
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
280 281
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
282 283 284 285
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
286
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
287 288 289 290
		use_siar = 0;
	else
		use_siar = 1;

291
	regs->result = use_siar;
292 293 294 295 296 297 298 299 300 301 302
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

303 304 305 306 307 308 309 310 311 312 313 314
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

315 316 317 318 319 320 321
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
322 323 324 325

	return 1;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
402 403

/* Processing BHRB entries */
404
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
405 406 407
{
	u64 val;
	u64 addr;
408
	int r_index, u_index, pred;
409 410 411 412 413

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
414 415 416
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
417
			break;
418
		else {
419 420 421
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

422 423
			if (!addr)
				/* invalid entry */
424 425
				continue;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
443 444

			if (val & BHRB_TARGET) {
445 446 447 448 449 450
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
451

452 453 454 455 456 457 458 459 460 461
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
462
			} else {
463 464
				/* Branches to immediate field 
				   (ie I or B form) */
465
				cpuhw->bhrb_entries[u_index].from = addr;
466 467
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
468 469 470
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
471 472
			u_index++;

473 474 475 476 477 478
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
	return (ppmu->flags & PPMU_EBB) &&
	       ((event->attr.config >> EVENT_CONFIG_EBB_SHIFT) & 1);
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

		if (event->attr.inherit || event->attr.sample_period ||
		    event->attr.enable_on_exec || event->attr.freq)
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	if (!ebb)
		goto out;

	/* Enable EBB and read/write to all 6 PMCs for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_PMCC_U6;

	/* Add any bits from the user reg, FC or PMAO */
	mmcr0 |= current->thread.mmcr0;

	/* Be careful not to set PMXE if userspace had it cleared */
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
	mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
	return mmcr0;
}
562 563
#endif /* CONFIG_PPC64 */

564
static void perf_event_interrupt(struct pt_regs *regs);
565

566
void perf_event_print_debug(void)
567 568 569 570
{
}

/*
I
Ingo Molnar 已提交
571
 * Read one performance monitor counter (PMC).
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
596
#ifdef CONFIG_PPC64
597 598 599 600 601 602
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
603
#endif /* CONFIG_PPC64 */
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
635
#ifdef CONFIG_PPC64
636 637 638 639 640 641
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
642
#endif /* CONFIG_PPC64 */
643 644 645 646 647 648 649 650 651
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
652
 * The feasible set is returned in event_id[].
653
 */
654 655
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
656
				   int n_ev)
657
{
658
	unsigned long mask, value, nv;
659 660
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
661
	int i, j;
662 663
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
664

665
	if (n_ev > ppmu->n_counter)
666 667 668 669
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
670
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
671 672
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
673
					       cpuhw->alternatives[i]);
674
			event_id[i] = cpuhw->alternatives[i][0];
675
		}
676
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
677
					 &cpuhw->avalues[i][0]))
678 679 680 681
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
682 683
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
684
		if ((((nv + tadd) ^ value) & mask) != 0 ||
685 686
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
687 688
			break;
		value = nv;
689
		mask |= cpuhw->amasks[i][0];
690 691 692 693 694 695 696 697
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
698
		choice[i] = 0;
699
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
700
						  cpuhw->alternatives[i]);
701
		for (j = 1; j < n_alt[i]; ++j)
702 703 704
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
705 706 707 708 709 710 711 712 713 714 715 716 717 718
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
719
		 * See if any alternative k for event_id i,
720 721 722
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
723 724
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
725
			if ((((nv + tadd) ^ value) & mask) == 0 &&
726 727
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
728 729 730 731 732
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
733
			 * to event_id i-1 and continue enumerating its
734 735 736 737 738 739
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
740 741 742
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
743 744 745 746 747 748
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
749
			mask |= cpuhw->amasks[i][j];
750 751 752 753 754 755 756
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
757
		event_id[i] = cpuhw->alternatives[i][choice[i]];
758 759 760
	return 0;
}

761
/*
762
 * Check if newly-added events have consistent settings for
763
 * exclude_{user,kernel,hv} with each other and any previously
764
 * added events.
765
 */
766
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
767
			  int n_prev, int n_new)
768
{
769 770
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
771
	struct perf_event *event;
772 773 774 775 776

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

777 778 779 780 781 782
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
783
		event = ctrs[i];
784
		if (first) {
785 786 787
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
788
			first = 0;
789 790 791
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
792
			return -EAGAIN;
793
		}
794
	}
795 796 797 798 799 800

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

801 802 803
	return 0;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

823
static void power_pmu_read(struct perf_event *event)
824
{
825
	s64 val, delta, prev;
826

P
Peter Zijlstra 已提交
827 828 829
	if (event->hw.state & PERF_HES_STOPPED)
		return;

830
	if (!event->hw.idx)
831
		return;
832 833 834 835 836 837 838

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

839 840 841 842 843 844
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
845
		prev = local64_read(&event->hw.prev_count);
846
		barrier();
847
		val = read_pmc(event->hw.idx);
848 849 850
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
851
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
852

853 854
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
855 856
}

857 858 859
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
860
 * us if `event' is using such a PMC.
861 862 863
 */
static int is_limited_pmc(int pmcnum)
{
864 865
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
866 867
}

868
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
869 870
				    unsigned long pmc5, unsigned long pmc6)
{
871
	struct perf_event *event;
872 873 874 875
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
876
		event = cpuhw->limited_counter[i];
877
		if (!event->hw.idx)
878
			continue;
879
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
880
		prev = local64_read(&event->hw.prev_count);
881
		event->hw.idx = 0;
882 883 884
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
885 886 887
	}
}

888
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
889 890
				  unsigned long pmc5, unsigned long pmc6)
{
891
	struct perf_event *event;
892
	u64 val, prev;
893 894 895
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
896
		event = cpuhw->limited_counter[i];
897 898
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
899 900 901
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
902
		perf_event_update_userpage(event);
903 904 905 906
	}
}

/*
907
 * Since limited events don't respect the freeze conditions, we
908
 * have to read them immediately after freezing or unfreezing the
909 910
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
911
 * cycles and instructions) between freezing/unfreezing and reading
912 913
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
914 915 916
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
917
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
918 919 920 921 922 923 924 925 926 927
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
928 929
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
930
	 * events, we first write MMCR0 with the event overflow
931
	 * interrupt enable bits turned off.
932 933 934
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
935 936
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
937 938 939
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
940
		freeze_limited_counters(cpuhw, pmc5, pmc6);
941
	else
942
		thaw_limited_counters(cpuhw, pmc5, pmc6);
943 944

	/*
945
	 * Write the full MMCR0 including the event overflow interrupt
946 947 948 949
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
950 951
}

952
/*
953 954
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
955
 */
P
Peter Zijlstra 已提交
956
static void power_pmu_disable(struct pmu *pmu)
957
{
958
	struct cpu_hw_events *cpuhw;
959
	unsigned long flags, mmcr0, val;
960

961 962
	if (!ppmu)
		return;
963
	local_irq_save(flags);
964
	cpuhw = &__get_cpu_var(cpu_hw_events);
965

966
	if (!cpuhw->disabled) {
967 968 969 970
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
971
			ppc_enable_pmcs();
972 973 974
			cpuhw->pmcs_enabled = 1;
		}

975
		/*
976
		 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
977
		 */
978
		val  = mmcr0 = mfspr(SPRN_MMCR0);
979
		val |= MMCR0_FC;
980
		val &= ~(MMCR0_EBE | MMCR0_PMCC | MMCR0_PMAO | MMCR0_FC56);
981 982 983 984 985 986 987 988 989

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

990 991 992 993 994 995 996 997 998
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

999 1000
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1001 1002

		ebb_switch_out(mmcr0);
1003
	}
1004

1005 1006 1007 1008
	local_irq_restore(flags);
}

/*
1009 1010
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1011 1012
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1013
static void power_pmu_enable(struct pmu *pmu)
1014
{
1015 1016
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1017 1018
	unsigned long flags;
	long i;
1019
	unsigned long val, mmcr0;
1020
	s64 left;
1021
	unsigned int hwc_index[MAX_HWEVENTS];
1022 1023
	int n_lim;
	int idx;
1024
	bool ebb;
1025

1026 1027
	if (!ppmu)
		return;
1028
	local_irq_save(flags);
1029

1030
	cpuhw = &__get_cpu_var(cpu_hw_events);
1031 1032 1033
	if (!cpuhw->disabled)
		goto out;

1034 1035 1036 1037 1038
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1039 1040
	cpuhw->disabled = 0;

1041 1042 1043 1044 1045 1046 1047
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1048
	/*
1049
	 * If we didn't change anything, or only removed events,
1050 1051
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1052
	 * (possibly updated for removal of events).
1053 1054
	 */
	if (!cpuhw->n_added) {
1055
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1056
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1057
		goto out_enable;
1058 1059 1060
	}

	/*
1061
	 * Compute MMCR* values for the new set of events
1062
	 */
1063
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1064 1065 1066 1067 1068 1069
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1070 1071
	/*
	 * Add in MMCR0 freeze bits corresponding to the
1072 1073 1074
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
1075
	 */
1076 1077
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
1078
		cpuhw->mmcr[0] |= MMCR0_FCP;
1079 1080 1081
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
1082 1083
		cpuhw->mmcr[0] |= MMCR0_FCHV;

1084 1085
	/*
	 * Write the new configuration to MMCR* with the freeze
1086 1087
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1088
	 */
1089
	ppc_set_pmu_inuse(1);
1090
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1091 1092 1093 1094 1095
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
1096
	 * Read off any pre-existing events that need to move
1097 1098
	 * to another PMC.
	 */
1099 1100 1101 1102 1103 1104
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1105 1106 1107 1108
		}
	}

	/*
1109
	 * Initialize the PMCs for all the new and moved events.
1110
	 */
1111
	cpuhw->n_limited = n_lim = 0;
1112 1113 1114
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1115
			continue;
1116 1117
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1118
			cpuhw->limited_counter[n_lim] = event;
1119 1120 1121 1122
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1134
		}
1135

1136
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1137 1138
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1139
		write_pmc(idx, val);
1140

1141
		perf_event_update_userpage(event);
1142
	}
1143
	cpuhw->n_limited = n_lim;
1144
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1145 1146

 out_enable:
1147 1148
	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);

1149
	mb();
1150
	write_mmcr0(cpuhw, mmcr0);
1151

1152 1153 1154 1155 1156 1157 1158 1159
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1160
 out:
1161 1162 1163
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1164 1165 1166
	local_irq_restore(flags);
}

1167 1168
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1169
			  unsigned int *flags)
1170 1171
{
	int n = 0;
1172
	struct perf_event *event;
1173

1174
	if (!is_software_event(group)) {
1175 1176 1177
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1178
		flags[n] = group->hw.event_base;
1179 1180
		events[n++] = group->hw.config;
	}
1181
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1182 1183
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1184 1185
			if (n >= max_count)
				return -1;
1186 1187 1188
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1189 1190 1191 1192 1193 1194
		}
	}
	return n;
}

/*
1195 1196
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1197
 * re-enable the PMU in order to get hw_perf_enable to do the
1198 1199
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1200
static int power_pmu_add(struct perf_event *event, int ef_flags)
1201
{
1202
	struct cpu_hw_events *cpuhw;
1203 1204 1205 1206 1207
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1208
	perf_pmu_disable(event->pmu);
1209 1210

	/*
1211
	 * Add the event to the list (if there is room)
1212 1213
	 * and check whether the total set is still feasible.
	 */
1214 1215
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1216
	if (n0 >= ppmu->n_counter)
1217
		goto out;
1218 1219 1220
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1221

1222 1223 1224 1225 1226 1227
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1228 1229
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1230 1231
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1232

1233 1234
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1235
	 * skip the schedulability test here, it will be performed
1236 1237
	 * at commit time(->commit_txn) as a whole
	 */
1238
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1239 1240
		goto nocheck;

1241
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1242
		goto out;
1243
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1244
		goto out;
1245
	event->hw.config = cpuhw->events[n0];
1246 1247

nocheck:
1248 1249
	ebb_event_add(event);

1250
	++cpuhw->n_events;
1251 1252 1253 1254
	++cpuhw->n_added;

	ret = 0;
 out:
1255
	if (has_branch_stack(event)) {
1256
		power_pmu_bhrb_enable(event);
1257 1258 1259
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1260

P
Peter Zijlstra 已提交
1261
	perf_pmu_enable(event->pmu);
1262 1263 1264 1265 1266
	local_irq_restore(flags);
	return ret;
}

/*
1267
 * Remove a event from the PMU.
1268
 */
P
Peter Zijlstra 已提交
1269
static void power_pmu_del(struct perf_event *event, int ef_flags)
1270
{
1271
	struct cpu_hw_events *cpuhw;
1272 1273 1274 1275
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1276
	perf_pmu_disable(event->pmu);
1277

1278 1279 1280 1281 1282
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1283
			while (++i < cpuhw->n_events) {
1284
				cpuhw->event[i-1] = cpuhw->event[i];
1285 1286 1287
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1288 1289 1290 1291 1292
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1293
			}
1294
			perf_event_update_userpage(event);
1295 1296 1297
			break;
		}
	}
1298
	for (i = 0; i < cpuhw->n_limited; ++i)
1299
		if (event == cpuhw->limited_counter[i])
1300 1301 1302
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1303
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1304 1305 1306 1307
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1308 1309
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1310 1311 1312
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1313 1314 1315
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1316
	perf_pmu_enable(event->pmu);
1317 1318 1319
	local_irq_restore(flags);
}

1320
/*
P
Peter Zijlstra 已提交
1321 1322
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1323
 */
P
Peter Zijlstra 已提交
1324 1325

static void power_pmu_start(struct perf_event *event, int ef_flags)
1326 1327
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1328
	s64 left;
1329
	unsigned long val;
1330

1331
	if (!event->hw.idx || !event->hw.sample_period)
1332
		return;
P
Peter Zijlstra 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1345 1346 1347 1348 1349 1350

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1367
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1368
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1369

1370
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1371 1372 1373
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1374
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1375
	perf_pmu_enable(event->pmu);
1376 1377 1378
	local_irq_restore(flags);
}

1379 1380 1381 1382 1383
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1384
void power_pmu_start_txn(struct pmu *pmu)
1385 1386 1387
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1388
	perf_pmu_disable(pmu);
1389
	cpuhw->group_flag |= PERF_EVENT_TXN;
1390 1391 1392 1393 1394 1395 1396 1397
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1398
void power_pmu_cancel_txn(struct pmu *pmu)
1399 1400 1401
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1402
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1403
	perf_pmu_enable(pmu);
1404 1405 1406 1407 1408 1409 1410
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1411
int power_pmu_commit_txn(struct pmu *pmu)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1429
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1430
	perf_pmu_enable(pmu);
1431 1432 1433
	return 0;
}

1434
/*
1435
 * Return 1 if we might be able to put event on a limited PMC,
1436
 * or 0 if not.
1437
 * A event can only go on a limited PMC if it counts something
1438 1439 1440
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1441
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1442 1443 1444
				 unsigned int flags)
{
	int n;
1445
	u64 alt[MAX_EVENT_ALTERNATIVES];
1446

1447 1448 1449 1450
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1451 1452 1453 1454 1455 1456
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1457
	 * The requested event_id isn't on a limited PMC already;
1458 1459 1460 1461 1462 1463 1464 1465
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1466
	return n > 0;
1467 1468 1469
}

/*
1470 1471 1472
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1473
 */
1474
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1475
{
1476
	u64 alt[MAX_EVENT_ALTERNATIVES];
1477 1478 1479 1480 1481 1482 1483 1484 1485
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1486 1487
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1488 1489 1490 1491
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1492
 * Release the PMU if this is the last perf_event.
1493
 */
1494
static void hw_perf_event_destroy(struct perf_event *event)
1495
{
1496
	if (!atomic_add_unless(&num_events, -1, 1)) {
1497
		mutex_lock(&pmc_reserve_mutex);
1498
		if (atomic_dec_return(&num_events) == 0)
1499 1500 1501 1502 1503
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1504
/*
1505
 * Translate a generic cache event_id config to a raw event_id code.
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1534
static int power_pmu_event_init(struct perf_event *event)
1535
{
1536 1537
	u64 ev;
	unsigned long flags;
1538 1539 1540
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1541
	int n;
1542
	int err;
1543
	struct cpu_hw_events *cpuhw;
1544 1545

	if (!ppmu)
1546 1547
		return -ENOENT;

1548 1549 1550 1551 1552
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_BHRB))
			return -EOPNOTSUPP;
	}
1553

1554
	switch (event->attr.type) {
1555
	case PERF_TYPE_HARDWARE:
1556
		ev = event->attr.config;
1557
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1558
			return -EOPNOTSUPP;
1559
		ev = ppmu->generic_events[ev];
1560 1561
		break;
	case PERF_TYPE_HW_CACHE:
1562
		err = hw_perf_cache_event(event->attr.config, &ev);
1563
		if (err)
1564
			return err;
1565 1566
		break;
	case PERF_TYPE_RAW:
1567
		ev = event->attr.config;
1568
		break;
1569
	default:
1570
		return -ENOENT;
1571
	}
1572

1573 1574
	event->hw.config_base = ev;
	event->hw.idx = 0;
1575

1576 1577 1578
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1579
	 * the user set it to.
1580 1581
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1582
		event->attr.exclude_hv = 0;
1583 1584

	/*
1585
	 * If this is a per-task event, then we can use
1586 1587 1588 1589 1590
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1591
	if (event->attach_state & PERF_ATTACH_TASK)
1592 1593 1594
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1595 1596
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1597
	 */
1598
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1599
		if (can_go_on_limited_pmc(event, ev, flags)) {
1600 1601 1602
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1603
			 * The requested event_id is on a limited PMC,
1604 1605 1606 1607 1608
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1609
				return -EINVAL;
1610 1611 1612
		}
	}

1613 1614 1615 1616 1617
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1618 1619
	/*
	 * If this is in a group, check if it can go on with all the
1620
	 * other hardware events in the group.  We assume the event
1621 1622 1623
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1624
	if (event->group_leader != event) {
1625
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1626
				   ctrs, events, cflags);
1627
		if (n < 0)
1628
			return -EINVAL;
1629
	}
1630
	events[n] = ev;
1631
	ctrs[n] = event;
1632 1633
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1634
		return -EINVAL;
1635

1636
	cpuhw = &get_cpu_var(cpu_hw_events);
1637
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1638 1639 1640 1641 1642 1643 1644 1645 1646

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1647
	put_cpu_var(cpu_hw_events);
1648
	if (err)
1649
		return -EINVAL;
1650

1651 1652 1653
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1654
	local64_set(&event->hw.period_left, event->hw.last_period);
1655

1656 1657 1658 1659 1660 1661 1662
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1663 1664
	/*
	 * See if we need to reserve the PMU.
1665
	 * If no events are currently in use, then we have to take a
1666 1667 1668 1669
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1670
	if (!atomic_inc_not_zero(&num_events)) {
1671
		mutex_lock(&pmc_reserve_mutex);
1672 1673
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1674 1675
			err = -EBUSY;
		else
1676
			atomic_inc(&num_events);
1677 1678
		mutex_unlock(&pmc_reserve_mutex);
	}
1679
	event->destroy = hw_perf_event_destroy;
1680

1681
	return err;
1682 1683
}

1684 1685 1686 1687 1688
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1699
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1700 1701
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1702
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1703 1704 1705 1706
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1707 1708 1709 1710
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1711
	.event_idx	= power_pmu_event_idx,
1712
	.flush_branch_stack = power_pmu_flush_branch_stack,
1713 1714
};

1715
/*
I
Ingo Molnar 已提交
1716
 * A counter has overflowed; update its count and record
1717 1718 1719
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1720
static void record_and_restart(struct perf_event *event, unsigned long val,
1721
			       struct pt_regs *regs)
1722
{
1723
	u64 period = event->hw.sample_period;
1724 1725 1726
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1727 1728 1729 1730 1731
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1732
	/* we don't have to worry about interrupts here */
1733
	prev = local64_read(&event->hw.prev_count);
1734
	delta = check_and_compute_delta(prev, val);
1735
	local64_add(delta, &event->count);
1736 1737

	/*
1738
	 * See if the total period for this event has expired,
1739 1740 1741
	 * and update for the next period.
	 */
	val = 0;
1742
	left = local64_read(&event->hw.period_left) - delta;
1743 1744
	if (delta == 0)
		left++;
1745
	if (period) {
1746
		if (left <= 0) {
1747
			left += period;
1748
			if (left <= 0)
1749
				left = period;
1750
			record = siar_valid(regs);
1751
			event->hw.last_period = event->hw.sample_period;
1752
		}
1753 1754
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1755 1756
	}

P
Peter Zijlstra 已提交
1757 1758 1759 1760 1761
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1762 1763 1764
	/*
	 * Finally record data if requested.
	 */
1765
	if (record) {
1766 1767
		struct perf_sample_data data;

1768
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1769

1770
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1771 1772
			perf_get_data_addr(regs, &data.addr);

1773 1774 1775 1776 1777 1778 1779
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1780
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1781
			power_pmu_stop(event, 0);
1782 1783 1784 1785 1786
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1787
 * for an event_id.
1788 1789 1790
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1791
	u32 flags = perf_get_misc_flags(regs);
1792

1793 1794
	if (flags)
		return flags;
1795 1796
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1797 1798 1799 1800
}

/*
 * Called from generic code to get the instruction pointer
1801
 * for an event_id.
1802 1803 1804
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1805
	bool use_siar = regs_use_siar(regs);
1806

1807
	if (use_siar && siar_valid(regs))
1808
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1809 1810
	else if (use_siar)
		return 0;		// no valid instruction pointer
1811
	else
1812
		return regs->nip;
1813 1814
}

1815
static bool pmc_overflow_power7(unsigned long val)
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1828 1829 1830 1831 1832 1833 1834 1835 1836
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1837 1838 1839 1840 1841
		return true;

	return false;
}

1842 1843 1844
/*
 * Performance monitor interrupt stuff
 */
1845
static void perf_event_interrupt(struct pt_regs *regs)
1846
{
1847
	int i, j;
1848 1849
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1850 1851
	unsigned long val[8];
	int found, active;
1852 1853
	int nmi;

1854
	if (cpuhw->n_limited)
1855
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1856 1857
					mfspr(SPRN_PMC6));

1858
	perf_read_regs(regs);
1859

1860
	nmi = perf_intr_is_nmi(regs);
1861 1862 1863 1864
	if (nmi)
		nmi_enter();
	else
		irq_enter();
1865

1866 1867 1868 1869 1870 1871 1872 1873
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
1874
			continue;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
1891
		}
1892 1893 1894
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
1895
	}
1896 1897 1898 1899 1900
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1901
				continue;
1902 1903 1904 1905 1906 1907 1908
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
1909 1910
		}
	}
1911
	if (!found && !nmi && printk_ratelimit())
1912
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1913 1914 1915

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
1916
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1917
	 * and thus allow interrupts to occur again.
1918
	 * XXX might want to use MSR.PM to keep the events frozen until
1919 1920
	 * we get back out of this interrupt.
	 */
1921
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1922

1923 1924 1925
	if (nmi)
		nmi_exit();
	else
1926
		irq_exit();
1927 1928
}

1929
static void power_pmu_setup(int cpu)
1930
{
1931
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1932

1933 1934
	if (!ppmu)
		return;
1935 1936 1937 1938
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

1939
static int
1940
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

1956
int register_power_pmu(struct power_pmu *pmu)
1957
{
1958 1959 1960 1961 1962 1963
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
1964

1965 1966
	power_pmu.attr_groups = ppmu->attr_groups;

1967
#ifdef MSR_HV
1968 1969 1970 1971
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
1972
		freeze_events_kernel = MMCR0_FCHV;
1973
#endif /* CONFIG_PPC64 */
1974

P
Peter Zijlstra 已提交
1975
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1976 1977
	perf_cpu_notifier(power_pmu_notifier);

1978 1979
	return 0;
}