core-book3s.c 55.1 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39 40 41 42 43 44
	/*
	 * The order of the MMCR array is:
	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
	 *  - 32-bit, MMCR0, MMCR1, MMCR2
	 */
	unsigned long mmcr[4];
45 46
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 48 49
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 51

	unsigned int group_flag;
52
	unsigned int txn_flags;
53
	int n_txn_start;
54 55 56

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
57
	unsigned int			bhrb_users;
58 59 60
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
61
};
62

63
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64

65
static struct power_pmu *ppmu;
66

67
/*
I
Ingo Molnar 已提交
68
 * Normally, to ignore kernel events we set the FCS (freeze counters
69 70 71 72 73
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
74
static unsigned int freeze_events_kernel = MMCR0_FCS;
75

76 77 78 79 80 81 82 83
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
84
#define MMCR0_FC56		0
85
#define MMCR0_PMAO		0
86
#define MMCR0_EBE		0
87
#define MMCR0_BHRBA		0
88 89
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
90 91 92 93 94 95 96 97 98 99 100 101 102

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
103 104 105 106
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
107 108 109 110 111
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

112 113 114 115 116
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

117 118 119 120
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
121
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122
{
123
	return cpuhw->mmcr[0];
124 125
}

126 127
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130
static void pmao_restore_workaround(bool ebb) { }
131 132
#endif /* CONFIG_PPC32 */

133 134
static bool regs_use_siar(struct pt_regs *regs)
{
135 136 137 138 139 140 141 142 143 144
	/*
	 * When we take a performance monitor exception the regs are setup
	 * using perf_read_regs() which overloads some fields, in particular
	 * regs->result to tell us whether to use SIAR.
	 *
	 * However if the regs are from another exception, eg. a syscall, then
	 * they have not been setup using perf_read_regs() and so regs->result
	 * is something random.
	 */
	return ((TRAP(regs) == 0xf00) && regs->result);
145 146
}

147 148 149 150 151 152 153 154 155
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

156
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
157 158 159 160
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
161

162 163 164 165 166 167 168 169
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
170 171
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
172 173 174 175
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
176
	bool sdar_valid;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
192

193
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
194 195 196
		*addrp = mfspr(SPRN_SDAR);
}

197
static bool regs_sihv(struct pt_regs *regs)
198 199 200
{
	unsigned long sihv = MMCRA_SIHV;

201 202 203
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

204 205 206
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

207
	return !!(regs->dsisr & sihv);
208 209
}

210
static bool regs_sipr(struct pt_regs *regs)
211 212 213
{
	unsigned long sipr = MMCRA_SIPR;

214 215 216
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

217 218 219
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

220
	return !!(regs->dsisr & sipr);
221 222
}

223 224 225 226 227 228 229 230 231
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

232 233
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
234
	bool use_siar = regs_use_siar(regs);
235

236
	if (!use_siar)
237 238 239 240 241 242 243 244
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
245
	if (ppmu->flags & PPMU_NO_SIPR) {
246 247 248 249 250
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
251

252
	/* PR has priority over HV, so order below is important */
253
	if (regs_sipr(regs))
254
		return PERF_RECORD_MISC_USER;
255 256

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
257
		return PERF_RECORD_MISC_HYPERVISOR;
258

259
	return PERF_RECORD_MISC_KERNEL;
260 261 262 263 264
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
265
 * Overload regs->dar to store SIER if we have it.
266 267
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
268 269 270
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
271 272 273 274
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

275
	regs->dsisr = mmcra;
276

277 278
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
297 298
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
299 300 301 302
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
303
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
304 305 306 307
		use_siar = 0;
	else
		use_siar = 1;

308
	regs->result = use_siar;
309 310 311 312 313 314 315 316 317 318 319
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

320 321 322 323 324 325 326 327 328 329 330 331
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

332 333 334 335 336 337 338
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
339 340 341 342

	return 1;
}

343 344 345 346 347 348 349 350 351

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
352
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
353 354 355 356 357 358 359 360 361 362

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
363
	perf_sched_cb_inc(event->ctx->pmu);
364 365 366 367
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
368
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
369 370 371 372

	if (!ppmu->bhrb_nr)
		return;

373
	WARN_ON_ONCE(!cpuhw->bhrb_users);
374
	cpuhw->bhrb_users--;
375
	perf_sched_cb_dec(event->ctx->pmu);
376 377 378 379 380 381 382 383 384 385 386 387 388 389

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
390
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
391
{
392 393 394 395
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
396 397
		power_pmu_bhrb_reset();
}
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
424 425

/* Processing BHRB entries */
426
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
427 428 429
{
	u64 val;
	u64 addr;
430
	int r_index, u_index, pred;
431 432 433 434 435

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
436 437 438
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
439
			break;
440
		else {
441 442 443
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

444 445
			if (!addr)
				/* invalid entry */
446 447
				continue;

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
465 466

			if (val & BHRB_TARGET) {
467 468 469 470 471 472
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
473

474 475 476 477 478 479 480 481 482 483
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
484
			} else {
485 486
				/* Branches to immediate field 
				   (ie I or B form) */
487
				cpuhw->bhrb_entries[u_index].from = addr;
488 489
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
490 491 492
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
493 494
			u_index++;

495 496 497 498 499 500
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

501 502 503 504 505 506 507
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
508
	return (ppmu->flags & PPMU_ARCH_207S) &&
509
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

527 528 529 530 531
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

565
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
566
{
567 568
	unsigned long mmcr0 = cpuhw->mmcr[0];

569 570 571
	if (!ebb)
		goto out;

572 573
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
574

575 576 577 578 579
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
580 581
	mmcr0 |= current->thread.mmcr0;

582 583 584 585 586
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
587 588 589 590 591 592
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
593 594 595 596 597 598 599 600 601

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
602 603 604
out:
	return mmcr0;
}
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * enable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
690 691
#endif /* CONFIG_PPC64 */

692
static void perf_event_interrupt(struct pt_regs *regs);
693

694
/*
I
Ingo Molnar 已提交
695
 * Read one performance monitor counter (PMC).
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
720
#ifdef CONFIG_PPC64
721 722 723 724 725 726
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
727
#endif /* CONFIG_PPC64 */
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
759
#ifdef CONFIG_PPC64
760 761 762 763 764 765
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
766
#endif /* CONFIG_PPC64 */
767 768 769 770 771
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

810
	if (ppmu->flags & PPMU_ARCH_207S) {
811 812 813 814 815 816 817 818 819 820 821 822
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

823 824 825 826
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
827
 * The feasible set is returned in event_id[].
828
 */
829 830
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
831
				   int n_ev)
832
{
833
	unsigned long mask, value, nv;
834 835
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
836
	int i, j;
837 838
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
839

840
	if (n_ev > ppmu->n_counter)
841 842 843 844
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
845
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
846 847
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
848
					       cpuhw->alternatives[i]);
849
			event_id[i] = cpuhw->alternatives[i][0];
850
		}
851
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
852
					 &cpuhw->avalues[i][0]))
853 854 855 856
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
857 858
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
859
		if ((((nv + tadd) ^ value) & mask) != 0 ||
860 861
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
862 863
			break;
		value = nv;
864
		mask |= cpuhw->amasks[i][0];
865 866 867 868 869 870 871 872
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
873
		choice[i] = 0;
874
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
875
						  cpuhw->alternatives[i]);
876
		for (j = 1; j < n_alt[i]; ++j)
877 878 879
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
880 881 882 883 884 885 886 887 888 889 890 891 892 893
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
894
		 * See if any alternative k for event_id i,
895 896 897
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
898 899
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
900
			if ((((nv + tadd) ^ value) & mask) == 0 &&
901 902
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
903 904 905 906 907
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
908
			 * to event_id i-1 and continue enumerating its
909 910 911 912 913 914
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
915 916 917
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
918 919 920 921 922 923
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
924
			mask |= cpuhw->amasks[i][j];
925 926 927 928 929 930 931
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
932
		event_id[i] = cpuhw->alternatives[i][choice[i]];
933 934 935
	return 0;
}

936
/*
937
 * Check if newly-added events have consistent settings for
938
 * exclude_{user,kernel,hv} with each other and any previously
939
 * added events.
940
 */
941
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
942
			  int n_prev, int n_new)
943
{
944 945
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
946
	struct perf_event *event;
947

948 949 950 951 952 953 954 955
	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

956 957 958 959
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

960 961 962 963 964 965
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
966
		event = ctrs[i];
967
		if (first) {
968 969 970
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
971
			first = 0;
972 973 974
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
975
			return -EAGAIN;
976
		}
977
	}
978 979 980 981 982 983

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

984 985 986
	return 0;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

1006
static void power_pmu_read(struct perf_event *event)
1007
{
1008
	s64 val, delta, prev;
1009

P
Peter Zijlstra 已提交
1010 1011 1012
	if (event->hw.state & PERF_HES_STOPPED)
		return;

1013
	if (!event->hw.idx)
1014
		return;
1015 1016 1017 1018 1019 1020 1021

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

1022 1023 1024 1025 1026 1027
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
1028
		prev = local64_read(&event->hw.prev_count);
1029
		barrier();
1030
		val = read_pmc(event->hw.idx);
1031 1032 1033
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
1034
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1035

1036
	local64_add(delta, &event->count);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1053 1054
}

1055 1056 1057
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1058
 * us if `event' is using such a PMC.
1059 1060 1061
 */
static int is_limited_pmc(int pmcnum)
{
1062 1063
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1064 1065
}

1066
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1067 1068
				    unsigned long pmc5, unsigned long pmc6)
{
1069
	struct perf_event *event;
1070 1071 1072 1073
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1074
		event = cpuhw->limited_counter[i];
1075
		if (!event->hw.idx)
1076
			continue;
1077
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1078
		prev = local64_read(&event->hw.prev_count);
1079
		event->hw.idx = 0;
1080 1081 1082
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1083 1084 1085
	}
}

1086
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1087 1088
				  unsigned long pmc5, unsigned long pmc6)
{
1089
	struct perf_event *event;
1090
	u64 val, prev;
1091 1092 1093
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1094
		event = cpuhw->limited_counter[i];
1095 1096
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1097 1098 1099
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1100
		perf_event_update_userpage(event);
1101 1102 1103 1104
	}
}

/*
1105
 * Since limited events don't respect the freeze conditions, we
1106
 * have to read them immediately after freezing or unfreezing the
1107 1108
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1109
 * cycles and instructions) between freezing/unfreezing and reading
1110 1111
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1112 1113 1114
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1115
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1126 1127
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1128
	 * events, we first write MMCR0 with the event overflow
1129
	 * interrupt enable bits turned off.
1130 1131 1132
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1133 1134
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1135 1136 1137
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1138
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1139
	else
1140
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1141 1142

	/*
1143
	 * Write the full MMCR0 including the event overflow interrupt
1144 1145 1146 1147
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1148 1149
}

1150
/*
1151 1152
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1153
 */
P
Peter Zijlstra 已提交
1154
static void power_pmu_disable(struct pmu *pmu)
1155
{
1156
	struct cpu_hw_events *cpuhw;
1157
	unsigned long flags, mmcr0, val;
1158

1159 1160
	if (!ppmu)
		return;
1161
	local_irq_save(flags);
1162
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1163

1164
	if (!cpuhw->disabled) {
1165 1166 1167 1168
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1169
			ppc_enable_pmcs();
1170 1171 1172
			cpuhw->pmcs_enabled = 1;
		}

1173
		/*
1174
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1175
		 */
1176
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1177
		val |= MMCR0_FC;
1178 1179
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1180 1181 1182 1183 1184 1185 1186 1187 1188

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1189 1190 1191 1192 1193 1194 1195 1196 1197
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1198 1199
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1200 1201

		ebb_switch_out(mmcr0);
1202
	}
1203

1204 1205 1206 1207
	local_irq_restore(flags);
}

/*
1208 1209
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1210 1211
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1212
static void power_pmu_enable(struct pmu *pmu)
1213
{
1214 1215
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1216 1217
	unsigned long flags;
	long i;
1218
	unsigned long val, mmcr0;
1219
	s64 left;
1220
	unsigned int hwc_index[MAX_HWEVENTS];
1221 1222
	int n_lim;
	int idx;
1223
	bool ebb;
1224

1225 1226
	if (!ppmu)
		return;
1227
	local_irq_save(flags);
1228

1229
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1230 1231 1232
	if (!cpuhw->disabled)
		goto out;

1233 1234 1235 1236 1237
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1238 1239
	cpuhw->disabled = 0;

1240 1241 1242 1243 1244 1245 1246
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1247
	/*
1248
	 * If we didn't change anything, or only removed events,
1249 1250
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1251
	 * (possibly updated for removal of events).
1252 1253
	 */
	if (!cpuhw->n_added) {
1254
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1255
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1256
		goto out_enable;
1257 1258 1259
	}

	/*
1260
	 * Clear all MMCR settings and recompute them for the new set of events.
1261
	 */
1262 1263
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1264
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1265
			       cpuhw->mmcr, cpuhw->event)) {
1266 1267 1268 1269 1270
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr[0] |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr[0] |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr[0] |= MMCR0_FCHV;
	}
1285

1286 1287
	/*
	 * Write the new configuration to MMCR* with the freeze
1288 1289
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1290
	 */
1291
	ppc_set_pmu_inuse(1);
1292
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1293 1294 1295
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
1296 1297
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1298 1299

	/*
1300
	 * Read off any pre-existing events that need to move
1301 1302
	 * to another PMC.
	 */
1303 1304 1305 1306 1307 1308
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1309 1310 1311 1312
		}
	}

	/*
1313
	 * Initialize the PMCs for all the new and moved events.
1314
	 */
1315
	cpuhw->n_limited = n_lim = 0;
1316 1317 1318
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1319
			continue;
1320 1321
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1322
			cpuhw->limited_counter[n_lim] = event;
1323 1324 1325 1326
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1338
		}
1339

1340
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1341 1342
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1343
		write_pmc(idx, val);
1344

1345
		perf_event_update_userpage(event);
1346
	}
1347
	cpuhw->n_limited = n_lim;
1348
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1349 1350

 out_enable:
1351 1352
	pmao_restore_workaround(ebb);

1353
	mmcr0 = ebb_switch_in(ebb, cpuhw);
1354

1355
	mb();
1356 1357 1358
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1359
	write_mmcr0(cpuhw, mmcr0);
1360

1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1369
 out:
1370

1371 1372 1373
	local_irq_restore(flags);
}

1374 1375
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1376
			  unsigned int *flags)
1377 1378
{
	int n = 0;
1379
	struct perf_event *event;
1380

1381
	if (!is_software_event(group)) {
1382 1383 1384
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1385
		flags[n] = group->hw.event_base;
1386 1387
		events[n++] = group->hw.config;
	}
1388
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1389 1390
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1391 1392
			if (n >= max_count)
				return -1;
1393 1394 1395
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1396 1397 1398 1399 1400 1401
		}
	}
	return n;
}

/*
1402 1403
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1404
 * re-enable the PMU in order to get hw_perf_enable to do the
1405 1406
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1407
static int power_pmu_add(struct perf_event *event, int ef_flags)
1408
{
1409
	struct cpu_hw_events *cpuhw;
1410 1411 1412 1413 1414
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1415
	perf_pmu_disable(event->pmu);
1416 1417

	/*
1418
	 * Add the event to the list (if there is room)
1419 1420
	 * and check whether the total set is still feasible.
	 */
1421
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1422
	n0 = cpuhw->n_events;
1423
	if (n0 >= ppmu->n_counter)
1424
		goto out;
1425 1426 1427
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1428

1429 1430 1431 1432 1433 1434
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1435 1436
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1437 1438
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1439

1440 1441
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1442
	 * skip the schedulability test here, it will be performed
1443 1444
	 * at commit time(->commit_txn) as a whole
	 */
1445
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1446 1447
		goto nocheck;

1448
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1449
		goto out;
1450
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1451
		goto out;
1452
	event->hw.config = cpuhw->events[n0];
1453 1454

nocheck:
1455 1456
	ebb_event_add(event);

1457
	++cpuhw->n_events;
1458 1459 1460 1461
	++cpuhw->n_added;

	ret = 0;
 out:
1462
	if (has_branch_stack(event)) {
1463
		power_pmu_bhrb_enable(event);
1464 1465 1466
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1467

P
Peter Zijlstra 已提交
1468
	perf_pmu_enable(event->pmu);
1469 1470 1471 1472 1473
	local_irq_restore(flags);
	return ret;
}

/*
1474
 * Remove a event from the PMU.
1475
 */
P
Peter Zijlstra 已提交
1476
static void power_pmu_del(struct perf_event *event, int ef_flags)
1477
{
1478
	struct cpu_hw_events *cpuhw;
1479 1480 1481 1482
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1483
	perf_pmu_disable(event->pmu);
1484

1485 1486
	power_pmu_read(event);

1487
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1488 1489
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1490
			while (++i < cpuhw->n_events) {
1491
				cpuhw->event[i-1] = cpuhw->event[i];
1492 1493 1494
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1495 1496 1497 1498 1499
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1500
			}
1501
			perf_event_update_userpage(event);
1502 1503 1504
			break;
		}
	}
1505
	for (i = 0; i < cpuhw->n_limited; ++i)
1506
		if (event == cpuhw->limited_counter[i])
1507 1508 1509
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1510
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1511 1512 1513 1514
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1515 1516
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1517 1518 1519
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1520 1521 1522
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1523
	perf_pmu_enable(event->pmu);
1524 1525 1526
	local_irq_restore(flags);
}

1527
/*
P
Peter Zijlstra 已提交
1528 1529
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1530
 */
P
Peter Zijlstra 已提交
1531 1532

static void power_pmu_start(struct perf_event *event, int ef_flags)
1533 1534
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1535
	s64 left;
1536
	unsigned long val;
1537

1538
	if (!event->hw.idx || !event->hw.sample_period)
1539
		return;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1552 1553 1554 1555 1556 1557

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1574
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1575
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1576

1577
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1578 1579 1580
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1581
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1582
	perf_pmu_enable(event->pmu);
1583 1584 1585
	local_irq_restore(flags);
}

1586 1587 1588 1589
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
1590 1591 1592 1593
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
1594
 */
1595
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1596
{
1597
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1598

1599 1600 1601 1602 1603 1604
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1605
	perf_pmu_disable(pmu);
1606
	cpuhw->group_flag |= PERF_EVENT_TXN;
1607 1608 1609 1610 1611 1612 1613 1614
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1615
static void power_pmu_cancel_txn(struct pmu *pmu)
1616
{
1617
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1618 1619 1620 1621 1622 1623 1624 1625
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;
1626

1627
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1628
	perf_pmu_enable(pmu);
1629 1630 1631 1632 1633 1634 1635
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
1636
static int power_pmu_commit_txn(struct pmu *pmu)
1637 1638 1639 1640 1641 1642
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
1643

1644
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1645 1646 1647 1648 1649 1650 1651
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuhw->txn_flags = 0;
		return 0;
	}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1662
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1663
	cpuhw->txn_flags = 0;
P
Peter Zijlstra 已提交
1664
	perf_pmu_enable(pmu);
1665 1666 1667
	return 0;
}

1668
/*
1669
 * Return 1 if we might be able to put event on a limited PMC,
1670
 * or 0 if not.
1671
 * A event can only go on a limited PMC if it counts something
1672 1673 1674
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1675
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1676 1677 1678
				 unsigned int flags)
{
	int n;
1679
	u64 alt[MAX_EVENT_ALTERNATIVES];
1680

1681 1682 1683 1684
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1685 1686 1687 1688 1689 1690
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1691
	 * The requested event_id isn't on a limited PMC already;
1692 1693 1694 1695 1696 1697 1698 1699
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1700
	return n > 0;
1701 1702 1703
}

/*
1704 1705 1706
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1707
 */
1708
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1709
{
1710
	u64 alt[MAX_EVENT_ALTERNATIVES];
1711 1712 1713 1714 1715 1716 1717 1718 1719
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1720 1721
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1722 1723 1724 1725
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1726
 * Release the PMU if this is the last perf_event.
1727
 */
1728
static void hw_perf_event_destroy(struct perf_event *event)
1729
{
1730
	if (!atomic_add_unless(&num_events, -1, 1)) {
1731
		mutex_lock(&pmc_reserve_mutex);
1732
		if (atomic_dec_return(&num_events) == 0)
1733 1734 1735 1736 1737
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1738
/*
1739
 * Translate a generic cache event_id config to a raw event_id code.
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1768
static int power_pmu_event_init(struct perf_event *event)
1769
{
1770 1771
	u64 ev;
	unsigned long flags;
1772 1773 1774
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1775
	int n;
1776
	int err;
1777
	struct cpu_hw_events *cpuhw;
1778 1779

	if (!ppmu)
1780 1781
		return -ENOENT;

1782 1783
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1784
		if (!(ppmu->flags & PPMU_ARCH_207S))
1785 1786
			return -EOPNOTSUPP;
	}
1787

1788
	switch (event->attr.type) {
1789
	case PERF_TYPE_HARDWARE:
1790
		ev = event->attr.config;
1791
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1792
			return -EOPNOTSUPP;
1793
		ev = ppmu->generic_events[ev];
1794 1795
		break;
	case PERF_TYPE_HW_CACHE:
1796
		err = hw_perf_cache_event(event->attr.config, &ev);
1797
		if (err)
1798
			return err;
1799 1800
		break;
	case PERF_TYPE_RAW:
1801
		ev = event->attr.config;
1802
		break;
1803
	default:
1804
		return -ENOENT;
1805
	}
1806

1807 1808
	event->hw.config_base = ev;
	event->hw.idx = 0;
1809

1810 1811 1812
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1813
	 * the user set it to.
1814 1815
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1816
		event->attr.exclude_hv = 0;
1817 1818

	/*
1819
	 * If this is a per-task event, then we can use
1820 1821 1822 1823 1824
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1825
	if (event->attach_state & PERF_ATTACH_TASK)
1826 1827 1828
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1829 1830
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1831
	 */
1832
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1833
		if (can_go_on_limited_pmc(event, ev, flags)) {
1834 1835 1836
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1837
			 * The requested event_id is on a limited PMC,
1838 1839 1840 1841 1842
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1843
				return -EINVAL;
1844 1845 1846
		}
	}

1847 1848 1849 1850 1851
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1852 1853
	/*
	 * If this is in a group, check if it can go on with all the
1854
	 * other hardware events in the group.  We assume the event
1855 1856 1857
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1858
	if (event->group_leader != event) {
1859
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1860
				   ctrs, events, cflags);
1861
		if (n < 0)
1862
			return -EINVAL;
1863
	}
1864
	events[n] = ev;
1865
	ctrs[n] = event;
1866 1867
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1868
		return -EINVAL;
1869

1870
	cpuhw = &get_cpu_var(cpu_hw_events);
1871
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1872 1873 1874 1875 1876

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

1877 1878
		if (cpuhw->bhrb_filter == -1) {
			put_cpu_var(cpu_hw_events);
1879
			return -EOPNOTSUPP;
1880
		}
1881 1882
	}

1883
	put_cpu_var(cpu_hw_events);
1884
	if (err)
1885
		return -EINVAL;
1886

1887 1888 1889
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1890
	local64_set(&event->hw.period_left, event->hw.last_period);
1891

1892 1893 1894 1895 1896 1897 1898
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1899 1900
	/*
	 * See if we need to reserve the PMU.
1901
	 * If no events are currently in use, then we have to take a
1902 1903 1904 1905
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1906
	if (!atomic_inc_not_zero(&num_events)) {
1907
		mutex_lock(&pmc_reserve_mutex);
1908 1909
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1910 1911
			err = -EBUSY;
		else
1912
			atomic_inc(&num_events);
1913 1914
		mutex_unlock(&pmc_reserve_mutex);
	}
1915
	event->destroy = hw_perf_event_destroy;
1916

1917
	return err;
1918 1919
}

1920 1921 1922 1923 1924
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1935
static struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1936 1937
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1938
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1939 1940 1941 1942
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1943 1944 1945 1946
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1947
	.event_idx	= power_pmu_event_idx,
1948
	.sched_task	= power_pmu_sched_task,
1949 1950
};

1951
/*
I
Ingo Molnar 已提交
1952
 * A counter has overflowed; update its count and record
1953 1954 1955
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1956
static void record_and_restart(struct perf_event *event, unsigned long val,
1957
			       struct pt_regs *regs)
1958
{
1959
	u64 period = event->hw.sample_period;
1960 1961 1962
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1963 1964 1965 1966 1967
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1968
	/* we don't have to worry about interrupts here */
1969
	prev = local64_read(&event->hw.prev_count);
1970
	delta = check_and_compute_delta(prev, val);
1971
	local64_add(delta, &event->count);
1972 1973

	/*
1974
	 * See if the total period for this event has expired,
1975 1976 1977
	 * and update for the next period.
	 */
	val = 0;
1978
	left = local64_read(&event->hw.period_left) - delta;
1979 1980
	if (delta == 0)
		left++;
1981
	if (period) {
1982
		if (left <= 0) {
1983
			left += period;
1984
			if (left <= 0)
1985
				left = period;
1986
			record = siar_valid(regs);
1987
			event->hw.last_period = event->hw.sample_period;
1988
		}
1989 1990
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1991 1992
	}

P
Peter Zijlstra 已提交
1993 1994 1995 1996 1997
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1998 1999 2000
	/*
	 * Finally record data if requested.
	 */
2001
	if (record) {
2002 2003
		struct perf_sample_data data;

2004
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2005

2006
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
2007 2008
			perf_get_data_addr(regs, &data.addr);

2009 2010
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
2011
			cpuhw = this_cpu_ptr(&cpu_hw_events);
2012 2013 2014 2015
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

2016
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2017
			power_pmu_stop(event, 0);
2018 2019 2020 2021 2022
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
2023
 * for an event_id.
2024 2025 2026
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
2027
	u32 flags = perf_get_misc_flags(regs);
2028

2029 2030
	if (flags)
		return flags;
2031 2032
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
2033 2034 2035 2036
}

/*
 * Called from generic code to get the instruction pointer
2037
 * for an event_id.
2038 2039 2040
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2041
	bool use_siar = regs_use_siar(regs);
2042

2043
	if (use_siar && siar_valid(regs))
2044
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2045 2046
	else if (use_siar)
		return 0;		// no valid instruction pointer
2047
	else
2048
		return regs->nip;
2049 2050
}

2051
static bool pmc_overflow_power7(unsigned long val)
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
2064 2065 2066 2067 2068 2069 2070 2071 2072
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2073 2074 2075 2076 2077
		return true;

	return false;
}

2078 2079 2080
/*
 * Performance monitor interrupt stuff
 */
2081
static void perf_event_interrupt(struct pt_regs *regs)
2082
{
2083
	int i, j;
2084
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2085
	struct perf_event *event;
2086 2087
	unsigned long val[8];
	int found, active;
2088 2089
	int nmi;

2090
	if (cpuhw->n_limited)
2091
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2092 2093
					mfspr(SPRN_PMC6));

2094
	perf_read_regs(regs);
2095

2096
	nmi = perf_intr_is_nmi(regs);
2097 2098 2099 2100
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2101

2102 2103 2104 2105 2106 2107 2108 2109
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2110
			continue;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2127
		}
2128 2129 2130
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2131
	}
2132 2133 2134 2135 2136
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2137
				continue;
2138 2139 2140 2141 2142 2143 2144
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2145 2146
		}
	}
2147
	if (!found && !nmi && printk_ratelimit())
2148
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2149 2150 2151

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2152
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2153
	 * and thus allow interrupts to occur again.
2154
	 * XXX might want to use MSR.PM to keep the events frozen until
2155 2156
	 * we get back out of this interrupt.
	 */
2157
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2158

2159 2160 2161
	if (nmi)
		nmi_exit();
	else
2162
		irq_exit();
2163 2164
}

2165
static void power_pmu_setup(int cpu)
2166
{
2167
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2168

2169 2170
	if (!ppmu)
		return;
2171 2172 2173 2174
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2175
static int
2176
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2192
int register_power_pmu(struct power_pmu *pmu)
2193
{
2194 2195 2196 2197 2198 2199
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2200

2201 2202
	power_pmu.attr_groups = ppmu->attr_groups;

2203
#ifdef MSR_HV
2204 2205 2206 2207
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2208
		freeze_events_kernel = MMCR0_FCHV;
2209
#endif /* CONFIG_PPC64 */
2210

P
Peter Zijlstra 已提交
2211
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2212 2213
	perf_cpu_notifier(power_pmu_notifier);

2214 2215
	return 0;
}