reg.c 65.3 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
100
 *     - reg_num_devs_support_basehint
101
 */
102
static DEFINE_MUTEX(reg_mutex);
103

104 105 106 107 108 109
/*
 * Number of devices that registered to the core
 * that support cellular base station regulatory hints
 */
static int reg_num_devs_support_basehint;

110 111 112 113
static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
114

115
/* Used to queue up regulatory hints */
116 117 118
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

119 120 121 122 123 124 125 126 127 128 129 130
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

131 132 133
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

134 135 136
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

137 138
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
139
	.n_reg_rules = 6,
140 141
	.alpha2 =  "00",
	.reg_rules = {
142 143
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 145
		/* IEEE 802.11b/g, channels 12..13. */
		REG_RULE(2467-10, 2472+10, 40, 6, 20,
146 147
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
148 149 150 151 152 153 154
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
155
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
156 157
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
158 159 160 161

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
162
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
163 164
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
165 166 167

		/* IEEE 802.11ad (60gHz), channels 1..3 */
		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
168 169 170
	}
};

171 172
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
173

174
static char *ieee80211_regdom = "00";
175
static char user_alpha2[2];
176

177 178 179
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

180
static void reset_regdomains(bool full_reset)
181
{
182 183 184 185 186 187 188 189 190 191
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
192

193
	cfg80211_world_regdom = &world_regdom;
194
	cfg80211_regdomain = NULL;
195 196 197 198 199 200 201

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
202 203
}

204 205 206 207
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
208
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
209
{
210
	BUG_ON(!last_request);
211

212
	reset_regdomains(false);
213 214 215 216 217

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

218
bool is_world_regdom(const char *alpha2)
219 220 221 222 223 224 225
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
226

227
static bool is_alpha2_set(const char *alpha2)
228 229 230 231 232 233 234
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
235

236
static bool is_unknown_alpha2(const char *alpha2)
237 238 239
{
	if (!alpha2)
		return false;
240 241 242 243
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
244 245 246 247
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
248

249 250 251 252
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
253 254
	/*
	 * Special case where regulatory domain is the
255
	 * result of an intersection between two regulatory domain
256 257
	 * structures
	 */
258 259 260 261 262
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

263
static bool is_an_alpha2(const char *alpha2)
264 265 266
{
	if (!alpha2)
		return false;
267
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
268 269 270
		return true;
	return false;
}
271

272
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
273 274 275 276 277 278 279 280 281
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

282
static bool regdom_changes(const char *alpha2)
283
{
284 285
	assert_cfg80211_lock();

286 287 288 289 290 291 292
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

314 315
static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain *src_regd)
316 317
{
	struct ieee80211_regdomain *regd;
318
	int size_of_regd;
319 320
	unsigned int i;

321 322 323
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
324 325 326

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
327
		return ERR_PTR(-ENOMEM);
328 329 330 331 332

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333
		       sizeof(struct ieee80211_reg_rule));
334

335
	return regd;
336 337 338 339 340 341 342 343 344
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
345
static DEFINE_MUTEX(reg_regdb_search_mutex);
346 347 348 349

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
350 351
	const struct ieee80211_regdomain *curdom, *regdom = NULL;
	int i;
352 353

	mutex_lock(&cfg80211_mutex);
354

355
	mutex_lock(&reg_regdb_search_mutex);
356 357 358 359 360 361 362 363 364 365
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
366
				regdom = reg_copy_regd(curdom);
367 368 369 370 371 372
				break;
			}
		}

		kfree(request);
	}
373
	mutex_unlock(&reg_regdb_search_mutex);
374

375
	if (!IS_ERR_OR_NULL(regdom))
376 377 378
		set_regdom(regdom);

	mutex_unlock(&cfg80211_mutex);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

396
	mutex_lock(&reg_regdb_search_mutex);
397
	list_add_tail(&request->list, &reg_regdb_search_list);
398
	mutex_unlock(&reg_regdb_search_mutex);
399 400 401

	schedule_work(&reg_regdb_work);
}
402 403 404 405 406 407 408

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
409
#else
410
static inline void reg_regdb_size_check(void) {}
411 412 413
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

414 415
/*
 * This lets us keep regulatory code which is updated on a regulatory
416 417
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
418
 */
419 420 421
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
422
		pr_info("Calling CRDA for country: %c%c\n",
423 424
			alpha2[0], alpha2[1]);
	else
425
		pr_info("Calling CRDA to update world regulatory domain\n");
426

427 428 429
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

430
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
431 432 433
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
434
bool reg_is_valid_request(const char *alpha2)
435
{
436 437
	assert_cfg80211_lock();

438 439 440 441
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
442
}
443

444
/* Sanity check on a regulatory rule */
445
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
446
{
447
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
448 449
	u32 freq_diff;

450
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
451 452 453 454 455 456 457
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

458 459
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
460 461 462 463 464
		return false;

	return true;
}

465
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
466
{
467
	const struct ieee80211_reg_rule *reg_rule = NULL;
468
	unsigned int i;
469

470 471
	if (!rd->n_reg_rules)
		return false;
472

473 474 475
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

476 477 478 479 480 481 482
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
483 484
}

485 486 487
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
488
{
489 490 491 492 493 494 495 496 497 498
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
499
}
500

501 502 503 504 505 506 507
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
508 509 510 511 512
 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
 * however it is safe for now to assume that a frequency rule should not be
 * part of a frequency's band if the start freq or end freq are off by more
 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
 * 60 GHz band.
513 514 515 516 517 518 519
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
520 521 522 523 524 525 526 527
	/*
	 * From 802.11ad: directional multi-gigabit (DMG):
	 * Pertaining to operation in a frequency band containing a channel
	 * with the Channel starting frequency above 45 GHz.
	 */
	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
528
		return true;
529
	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
530 531 532 533 534
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

535 536 537 538
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
606
	struct ieee80211_reg_rule dummy_rule;
607 608 609 610

	if (!rd1 || !rd2)
		return NULL;

611 612
	/*
	 * First we get a count of the rules we'll need, then we actually
613 614 615
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
616 617
	 * All rules that do check out OK are valid.
	 */
618 619 620 621 622

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
623
			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
624 625 626 627 628 629 630 631
				num_rules++;
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
632
		       num_rules * sizeof(struct ieee80211_reg_rule);
633 634 635 636 637

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

638
	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
639
		rule1 = &rd1->reg_rules[x];
640
		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
641
			rule2 = &rd2->reg_rules[y];
642 643
			/*
			 * This time around instead of using the stack lets
644
			 * write to the target rule directly saving ourselves
645 646
			 * a memcpy()
			 */
647 648 649
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
650 651 652 653
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

672 673 674 675
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
676 677 678 679 680 681 682 683 684
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
685 686
	if (rd_flags & NL80211_RRF_NO_OFDM)
		channel_flags |= IEEE80211_CHAN_NO_OFDM;
687 688 689
	return channel_flags;
}

690 691
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
692
			      u32 desired_bw_khz,
693 694
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
695 696
{
	int i;
697
	bool band_rule_found = false;
698
	const struct ieee80211_regdomain *regd;
699 700 701 702
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
703

704
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
705

706 707 708 709
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
710 711
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
712
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
713 714 715 716
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
717 718
		return -EINVAL;

719
	for (i = 0; i < regd->n_reg_rules; i++) {
720 721 722
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

723
		rr = &regd->reg_rules[i];
724
		fr = &rr->freq_range;
725

726 727
		/*
		 * We only need to know if one frequency rule was
728
		 * was in center_freq's band, that's enough, so lets
729 730
		 * not overwrite it once found
		 */
731 732 733
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

734 735 736
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
737

738
		if (band_rule_found && bw_fits) {
739
			*reg_rule = rr;
740
			return 0;
741 742 743
		}
	}

744 745 746
	if (!band_rule_found)
		return -ERANGE;

747
	return -EINVAL;
748 749
}

750 751 752 753
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
754
{
755
	assert_cfg80211_lock();
756 757 758 759 760
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
761
}
762
EXPORT_SYMBOL(freq_reg_info);
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

798
	REG_DBG_PRINT("Updating information on frequency %d MHz "
799
		      "for a %d MHz width channel with regulatory rule:\n",
800 801 802
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

803
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
804 805
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
806
		      freq_range->max_bandwidth_khz,
807 808 809 810 811 812 813 814 815 816
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
817 818
#endif

819 820 821 822 823 824 825 826 827
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
828 829 830
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
831
			   unsigned int chan_idx)
832 833
{
	int r;
834 835
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
836 837
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
838
	const struct ieee80211_freq_range *freq_range = NULL;
839 840
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
841
	struct wiphy *request_wiphy = NULL;
842

843 844
	assert_cfg80211_lock();

845 846
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

847 848 849 850 851
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
852

853 854 855 856
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
857

858 859 860
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
861
		 * received regulatory rule unless the hint is coming
862 863 864 865 866 867 868 869 870 871 872
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

873
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
874
		chan->flags = IEEE80211_CHAN_DISABLED;
875
		return;
876
	}
877

878 879
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

880
	power_rule = &reg_rule->power_rule;
881 882 883 884
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
885

886
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
887
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
888
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
889
		/*
L
Lucas De Marchi 已提交
890
		 * This guarantees the driver's requested regulatory domain
891
		 * will always be used as a base for further regulatory
892 893
		 * settings
		 */
894
		chan->flags = chan->orig_flags =
895
			map_regdom_flags(reg_rule->flags) | bw_flags;
896 897
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
898
		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
899 900 901 902
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

903
	chan->beacon_found = false;
904
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
905
	chan->max_antenna_gain = min(chan->orig_mag,
906
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
907
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
			chan->max_power = chan->max_reg_power;
		else
			chan->max_power = min(chan->orig_mpwr,
					      chan->max_reg_power);
	} else
		chan->max_power = chan->max_reg_power;
923 924
}

925 926 927
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
928
{
929 930 931 932 933
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
934 935

	for (i = 0; i < sband->n_channels; i++)
936
		handle_channel(wiphy, initiator, band, i);
937 938
}

939 940 941 942 943 944 945 946 947 948 949
static bool reg_request_cell_base(struct regulatory_request *request)
{
	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
		return false;
	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
		return false;
	return true;
}

bool reg_last_request_cell_base(void)
{
950
	bool val;
951 952 953
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);
954
	val = reg_request_cell_base(last_request);
955
	mutex_unlock(&reg_mutex);
956
	return val;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
}

#ifdef CONFIG_CFG80211_CERTIFICATION_ONUS

/* Core specific check */
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	if (!reg_num_devs_support_basehint)
		return -EOPNOTSUPP;

	if (reg_request_cell_base(last_request)) {
		if (!regdom_changes(pending_request->alpha2))
			return -EALREADY;
		return 0;
	}
	return 0;
}

/* Device specific check */
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
		return true;
	return false;
}
#else
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	return -EOPNOTSUPP;
}
static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	return true;
}
#endif


994 995
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
996
{
997
	if (!last_request) {
998
		REG_DBG_PRINT("Ignoring regulatory request %s since "
999 1000
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
1001
		return true;
1002 1003
	}

1004
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1005
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1006
		REG_DBG_PRINT("Ignoring regulatory request %s "
1007
			      "since the driver uses its own custom "
1008
			      "regulatory domain\n",
1009
			      reg_initiator_name(initiator));
1010
		return true;
1011 1012
	}

1013 1014 1015 1016
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1017
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1018
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019
	    !is_world_regdom(last_request->alpha2)) {
1020
		REG_DBG_PRINT("Ignoring regulatory request %s "
1021
			      "since the driver requires its own regulatory "
1022
			      "domain to be set first\n",
1023
			      reg_initiator_name(initiator));
1024
		return true;
1025 1026
	}

1027 1028 1029
	if (reg_request_cell_base(last_request))
		return reg_dev_ignore_cell_hint(wiphy);

1030 1031 1032
	return false;
}

1033 1034 1035 1036 1037 1038
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1039 1040
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1041 1042 1043 1044 1045 1046 1047 1048 1049

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1050 1051 1052 1053 1054
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1055
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1056 1057
		return;

1058 1059 1060
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1061
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1062
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1063
		channel_changed = true;
1064 1065
	}

1066
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1067
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1068
		channel_changed = true;
1069 1070
	}

1071 1072
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1124 1125
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1126
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1127 1128 1129 1130 1131 1132 1133
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1134 1135 1136 1137 1138 1139
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1140 1141 1142 1143 1144
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1195
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1196
	else
1197
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1198 1199

	if (is_ht40_not_allowed(channel_after))
1200
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1201
	else
1202
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1232 1233
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1234 1235
{
	enum ieee80211_band band;
1236

1237 1238
	assert_reg_lock();

1239
	if (ignore_reg_update(wiphy, initiator))
1240 1241
		return;

1242 1243
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1244
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1245
		if (wiphy->bands[band])
1246
			handle_band(wiphy, band, initiator);
1247
	}
1248

1249
	reg_process_beacons(wiphy);
1250
	reg_process_ht_flags(wiphy);
1251
	if (wiphy->reg_notifier)
1252
		wiphy->reg_notifier(wiphy, last_request);
1253 1254
}

1255 1256 1257
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1258
	struct wiphy *wiphy;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1273 1274
}

1275 1276 1277 1278 1279 1280
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1281 1282
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1283 1284
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1285
	const struct ieee80211_freq_range *freq_range = NULL;
1286 1287 1288
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1289
	assert_reg_lock();
1290

1291 1292 1293 1294
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1295 1296 1297 1298 1299
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1300 1301

	if (r) {
1302
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1303 1304 1305 1306
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1307 1308 1309 1310
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1311 1312
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1313
	power_rule = &reg_rule->power_rule;
1314 1315 1316 1317
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1318

1319
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1320
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1321 1322
	chan->max_reg_power = chan->max_power =
		(int) MBM_TO_DBM(power_rule->max_eirp);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1343
	unsigned int bands_set = 0;
1344

1345
	mutex_lock(&reg_mutex);
1346
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1347 1348 1349 1350
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1351
	}
1352
	mutex_unlock(&reg_mutex);
1353 1354 1355 1356 1357 1358

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1359
}
1360 1361
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1362 1363 1364 1365
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1366 1367
#define REG_INTERSECT	1

1368 1369
/* This has the logic which determines when a new request
 * should be ignored. */
1370 1371
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1372
{
1373
	struct wiphy *last_wiphy = NULL;
1374 1375 1376

	assert_cfg80211_lock();

1377 1378 1379 1380
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1381
	switch (pending_request->initiator) {
1382
	case NL80211_REGDOM_SET_BY_CORE:
1383
		return 0;
1384
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1385

1386 1387 1388 1389 1390 1391 1392
		if (reg_request_cell_base(last_request)) {
			/* Trust a Cell base station over the AP's country IE */
			if (regdom_changes(pending_request->alpha2))
				return -EOPNOTSUPP;
			return -EALREADY;
		}

1393 1394
		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1395
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1396
			return -EINVAL;
1397 1398
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1399
			if (last_wiphy != wiphy) {
1400 1401
				/*
				 * Two cards with two APs claiming different
1402
				 * Country IE alpha2s. We could
1403 1404 1405
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1406
				if (regdom_changes(pending_request->alpha2))
1407 1408 1409
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1410 1411 1412 1413
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1414
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1415 1416 1417
				return 0;
			return -EALREADY;
		}
1418
		return 0;
1419 1420
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1421
			if (regdom_changes(pending_request->alpha2))
1422
				return 0;
1423
			return -EALREADY;
1424
		}
1425 1426 1427 1428 1429 1430

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1431
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1432
		    !regdom_changes(pending_request->alpha2))
1433 1434
			return -EALREADY;

1435
		return REG_INTERSECT;
1436
	case NL80211_REGDOM_SET_BY_USER:
1437 1438 1439 1440 1441 1442
		if (reg_request_cell_base(pending_request))
			return reg_ignore_cell_hint(pending_request);

		if (reg_request_cell_base(last_request))
			return -EOPNOTSUPP;

1443
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1444
			return REG_INTERSECT;
1445 1446 1447 1448
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1449
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1450 1451
			  last_request->intersect)
			return -EOPNOTSUPP;
1452 1453 1454 1455
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1456 1457 1458
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1459
			if (regdom_changes(last_request->alpha2))
1460 1461 1462
				return -EAGAIN;
		}

1463
		if (!regdom_changes(pending_request->alpha2))
1464 1465
			return -EALREADY;

1466 1467 1468 1469 1470 1471
		return 0;
	}

	return -EINVAL;
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1483
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1484
		cancel_delayed_work(&reg_timeout);
1485

1486 1487 1488 1489
	if (need_more_processing)
		schedule_work(&reg_work);
}

1490 1491 1492 1493
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1494
 * @pending_request: the regulatory request currently being processed
1495 1496
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1497
 * what it believes should be the current regulatory domain.
1498 1499 1500 1501
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1502
 * Caller must hold &cfg80211_mutex and &reg_mutex
1503
 */
1504 1505
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1506
{
1507
	const struct ieee80211_regdomain *regd;
1508
	bool intersect = false;
1509 1510
	int r = 0;

1511 1512
	assert_cfg80211_lock();

1513
	r = ignore_request(wiphy, pending_request);
1514

1515
	if (r == REG_INTERSECT) {
1516 1517
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1518 1519
			regd = reg_copy_regd(cfg80211_regdomain);
			if (IS_ERR(regd)) {
1520
				kfree(pending_request);
1521
				return PTR_ERR(regd);
1522
			}
1523
			wiphy->regd = regd;
1524
		}
1525
		intersect = true;
1526
	} else if (r) {
1527 1528
		/*
		 * If the regulatory domain being requested by the
1529
		 * driver has already been set just copy it to the
1530 1531
		 * wiphy
		 */
1532
		if (r == -EALREADY &&
1533 1534
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1535 1536
			regd = reg_copy_regd(cfg80211_regdomain);
			if (IS_ERR(regd)) {
1537
				kfree(pending_request);
1538
				return PTR_ERR(regd);
1539
			}
1540
			r = -EALREADY;
1541
			wiphy->regd = regd;
1542 1543
			goto new_request;
		}
1544
		kfree(pending_request);
1545
		return r;
1546
	}
1547

1548
new_request:
1549 1550
	if (last_request != &core_request_world)
		kfree(last_request);
1551

1552 1553
	last_request = pending_request;
	last_request->intersect = intersect;
1554

1555
	pending_request = NULL;
1556

1557 1558 1559 1560 1561
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1562
	/* When r == REG_INTERSECT we do need to call CRDA */
1563 1564 1565 1566 1567 1568
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1569
		if (r == -EALREADY) {
1570
			nl80211_send_reg_change_event(last_request);
1571 1572
			reg_set_request_processed();
		}
1573
		return r;
1574
	}
1575

1576
	return call_crda(last_request->alpha2);
1577 1578
}

1579
/* This processes *all* regulatory hints */
1580 1581
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1582 1583 1584 1585 1586 1587 1588 1589 1590
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1591
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1592
	    !wiphy) {
1593
		kfree(reg_request);
1594
		return;
1595 1596
	}

1597
	r = __regulatory_hint(wiphy, reg_request);
1598
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1599
	if (r == -EALREADY && wiphy &&
1600
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1601
		wiphy_update_regulatory(wiphy, reg_initiator);
1602 1603 1604 1605 1606 1607 1608
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1609
	if (r != -EALREADY &&
1610
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1611
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1612 1613
}

1614 1615 1616 1617 1618
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1619
static void reg_process_pending_hints(void)
1620
{
1621 1622
	struct regulatory_request *reg_request;

1623 1624 1625
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1626 1627 1628
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1629
			      "for it to be processed...\n");
1630 1631 1632
		goto out;
	}

1633 1634
	spin_lock(&reg_requests_lock);

1635
	if (list_empty(&reg_requests_list)) {
1636
		spin_unlock(&reg_requests_lock);
1637
		goto out;
1638
	}
1639 1640 1641 1642 1643 1644

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1645
	spin_unlock(&reg_requests_lock);
1646

1647
	reg_process_hint(reg_request, reg_request->initiator);
1648 1649

out:
1650 1651
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1652 1653
}

1654 1655 1656
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1657
	struct cfg80211_registered_device *rdev;
1658 1659
	struct reg_beacon *pending_beacon, *tmp;

1660 1661 1662 1663
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1680 1681
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1692 1693 1694
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1695
	reg_process_pending_beacon_hints();
1696 1697 1698 1699
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1700 1701 1702 1703 1704
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1705 1706 1707 1708 1709 1710 1711
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1712 1713 1714 1715
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1727
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1728

1729
	queue_regulatory_request(request);
1730

1731
	return 0;
1732 1733
}

1734
/* User hints */
1735 1736
int regulatory_hint_user(const char *alpha2,
			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1737
{
1738 1739
	struct regulatory_request *request;

1740
	BUG_ON(!alpha2);
1741

1742 1743 1744 1745 1746 1747 1748
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1749
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1750
	request->user_reg_hint_type = user_reg_hint_type;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1776
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1777 1778 1779 1780

	queue_regulatory_request(request);

	return 0;
1781 1782 1783
}
EXPORT_SYMBOL(regulatory_hint);

1784 1785 1786 1787
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1788
void regulatory_hint_11d(struct wiphy *wiphy,
1789
			 enum ieee80211_band band,
1790
			 const u8 *country_ie,
1791
			 u8 country_ie_len)
1792 1793 1794
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1795
	struct regulatory_request *request;
1796

1797
	mutex_lock(&reg_mutex);
1798

1799 1800
	if (unlikely(!last_request))
		goto out;
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1817
	/*
1818
	 * We will run this only upon a successful connection on cfg80211.
1819 1820
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1821
	 */
1822 1823
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 1825
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1826

1827 1828
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1829
		goto out;
1830 1831

	request->wiphy_idx = get_wiphy_idx(wiphy);
1832 1833
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1834
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1835 1836
	request->country_ie_env = env;

1837
	mutex_unlock(&reg_mutex);
1838

1839 1840 1841
	queue_regulatory_request(request);

	return;
1842

1843
out:
1844
	mutex_unlock(&reg_mutex);
1845
}
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1857
			REG_DBG_PRINT("Restoring regulatory settings "
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1868
				REG_DBG_PRINT("Keeping preference on "
1869 1870 1871 1872 1873 1874 1875
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1876
			REG_DBG_PRINT("Restoring regulatory settings "
1877 1878 1879 1880 1881 1882 1883
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1884
		REG_DBG_PRINT("Keeping preference on "
1885 1886 1887 1888 1889 1890
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1891
		REG_DBG_PRINT("Restoring regulatory settings\n");
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
1910
			chan->beacon_found = false;
1911 1912 1913 1914
		}
	}
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1933
	char world_alpha2[2];
1934
	struct reg_beacon *reg_beacon, *btmp;
1935 1936
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1937
	struct cfg80211_registered_device *rdev;
1938 1939 1940 1941

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1942
	reset_regdomains(true);
1943 1944
	restore_alpha2(alpha2, reset_user);

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
1958
			list_move_tail(&reg_request->list, &tmp_reg_req_list);
1959 1960 1961 1962
		}
	}
	spin_unlock(&reg_requests_lock);

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1984 1985
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1986

1987 1988 1989 1990 1991
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1992 1993 1994
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1995
	regulatory_hint_core(world_alpha2);
1996 1997 1998 1999 2000 2001 2002

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
2003
		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
2017
		list_move_tail(&reg_request->list, &reg_requests_list);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
2028 2029 2030

void regulatory_hint_disconnect(void)
{
2031
	REG_DBG_PRINT("All devices are disconnected, going to "
2032 2033 2034 2035
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2036 2037
static bool freq_is_chan_12_13_14(u16 freq)
{
2038 2039 2040
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2061
	REG_DBG_PRINT("Found new beacon on "
2062 2063 2064 2065 2066
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2084
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2085 2086
{
	unsigned int i;
2087 2088 2089
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2090

2091
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2092 2093 2094 2095 2096 2097

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2098 2099 2100 2101
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2102
		if (power_rule->max_antenna_gain)
2103
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2104 2105 2106 2107 2108 2109
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2110
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2111 2112 2113 2114 2115 2116 2117
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2154
static void print_regdomain(const struct ieee80211_regdomain *rd)
2155 2156
{

2157 2158
	if (is_intersected_alpha2(rd->alpha2)) {

2159 2160
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2161 2162
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2163
				last_request->wiphy_idx);
2164
			if (rdev) {
2165
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2166 2167
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2168
			} else
2169
				pr_info("Current regulatory domain intersected:\n");
2170
		} else
2171
			pr_info("Current regulatory domain intersected:\n");
2172
	} else if (is_world_regdom(rd->alpha2))
2173
		pr_info("World regulatory domain updated:\n");
2174 2175
	else {
		if (is_unknown_alpha2(rd->alpha2))
2176
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		else {
			if (reg_request_cell_base(last_request))
				pr_info("Regulatory domain changed "
					"to country: %c%c by Cell Station\n",
					rd->alpha2[0], rd->alpha2[1]);
			else
				pr_info("Regulatory domain changed "
					"to country: %c%c\n",
					rd->alpha2[0], rd->alpha2[1]);
		}
2187
	}
2188
	print_dfs_region(rd->dfs_region);
2189 2190 2191
	print_rd_rules(rd);
}

2192
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2193
{
2194
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2195 2196 2197
	print_rd_rules(rd);
}

2198
/* Takes ownership of rd only if it doesn't fail */
2199
static int __set_regdom(const struct ieee80211_regdomain *rd)
2200
{
2201
	const struct ieee80211_regdomain *regd;
2202
	const struct ieee80211_regdomain *intersected_rd = NULL;
2203
	struct wiphy *request_wiphy;
2204 2205 2206
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2207
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2208 2209 2210 2211 2212 2213 2214 2215 2216
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2217
	if (!last_request)
2218 2219
		return -EINVAL;

2220 2221
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2222
	 * rd is non static (it means CRDA was present and was used last)
2223 2224
	 * and the pending request came in from a country IE
	 */
2225
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2226 2227 2228 2229
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2230
		if (!regdom_changes(rd->alpha2))
2231
			return -EALREADY;
2232 2233
	}

2234 2235
	/*
	 * Now lets set the regulatory domain, update all driver channels
2236 2237
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2238 2239
	 * internal EEPROM data
	 */
2240

2241
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2242 2243
		return -EINVAL;

2244
	if (!is_valid_rd(rd)) {
2245
		pr_err("Invalid regulatory domain detected:\n");
2246 2247
		print_regdomain_info(rd);
		return -EINVAL;
2248 2249
	}

2250
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2251 2252 2253 2254
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2255 2256
		return -ENODEV;
	}
2257

2258
	if (!last_request->intersect) {
2259
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2260
			reset_regdomains(false);
2261 2262 2263 2264
			cfg80211_regdomain = rd;
			return 0;
		}

2265 2266 2267 2268
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2269

2270 2271 2272 2273 2274 2275
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2276

2277 2278 2279
		regd = reg_copy_regd(rd);
		if (IS_ERR(regd))
			return PTR_ERR(regd);
2280

2281
		request_wiphy->regd = regd;
2282
		reset_regdomains(false);
2283 2284 2285 2286 2287 2288
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2289
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2290

2291 2292 2293
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2294

2295 2296
		/*
		 * We can trash what CRDA provided now.
2297
		 * However if a driver requested this specific regulatory
2298 2299
		 * domain we keep it for its private use
		 */
2300
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2301
			request_wiphy->regd = rd;
2302 2303 2304
		else
			kfree(rd);

2305 2306
		rd = NULL;

2307
		reset_regdomains(false);
2308 2309 2310
		cfg80211_regdomain = intersected_rd;

		return 0;
2311 2312
	}

A
Alan Cox 已提交
2313
	return -EINVAL;
2314 2315 2316
}


2317 2318
/*
 * Use this call to set the current regulatory domain. Conflicts with
2319
 * multiple drivers can be ironed out later. Caller must've already
2320 2321
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2322
int set_regdom(const struct ieee80211_regdomain *rd)
2323 2324 2325
{
	int r;

2326 2327
	assert_cfg80211_lock();

2328 2329
	mutex_lock(&reg_mutex);

2330 2331
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2332
	if (r) {
2333 2334 2335
		if (r == -EALREADY)
			reg_set_request_processed();

2336
		kfree(rd);
2337
		mutex_unlock(&reg_mutex);
2338
		return r;
2339
	}
2340 2341

	/* This would make this whole thing pointless */
2342 2343
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2344 2345

	/* update all wiphys now with the new established regulatory domain */
2346
	update_all_wiphy_regulatory(last_request->initiator);
2347

2348
	print_regdomain(cfg80211_regdomain);
2349

2350 2351
	nl80211_send_reg_change_event(last_request);

2352 2353
	reg_set_request_processed();

2354 2355
	mutex_unlock(&reg_mutex);

2356 2357 2358
	return r;
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2378 2379 2380 2381 2382 2383 2384 2385 2386
void wiphy_regulatory_register(struct wiphy *wiphy)
{
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);

	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint++;

2387
	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2388

2389
	mutex_unlock(&reg_mutex);
2390 2391
}

2392
/* Caller must hold cfg80211_mutex */
2393
void wiphy_regulatory_deregister(struct wiphy *wiphy)
2394
{
2395
	struct wiphy *request_wiphy = NULL;
2396

2397 2398
	assert_cfg80211_lock();

2399 2400
	mutex_lock(&reg_mutex);

2401 2402 2403
	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint--;

2404 2405
	kfree(wiphy->regd);

2406 2407
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2408

2409
	if (!request_wiphy || request_wiphy != wiphy)
2410
		goto out;
2411

2412
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2413
	last_request->country_ie_env = ENVIRON_ANY;
2414 2415
out:
	mutex_unlock(&reg_mutex);
2416 2417
}

2418 2419 2420
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2421
		      "restoring regulatory settings\n");
2422 2423 2424
	restore_regulatory_settings(true);
}

2425
int __init regulatory_init(void)
2426
{
2427
	int err = 0;
2428

2429 2430 2431
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2432

2433 2434
	reg_pdev->dev.type = &reg_device_type;

2435
	spin_lock_init(&reg_requests_lock);
2436
	spin_lock_init(&reg_pending_beacons_lock);
2437

2438 2439
	reg_regdb_size_check();

2440
	cfg80211_regdomain = cfg80211_world_regdom;
2441

2442 2443 2444
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2445 2446
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2447
	if (err) {
2448 2449 2450 2451 2452 2453 2454 2455 2456
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2457
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2458 2459 2460
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2461
#endif
2462
	}
2463

2464 2465 2466 2467 2468
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
2469 2470
		regulatory_hint_user(ieee80211_regdom,
				     NL80211_USER_REG_HINT_USER);
2471

2472 2473 2474
	return 0;
}

2475
void /* __init_or_exit */ regulatory_exit(void)
2476
{
2477
	struct regulatory_request *reg_request, *tmp;
2478
	struct reg_beacon *reg_beacon, *btmp;
2479 2480

	cancel_work_sync(&reg_work);
2481
	cancel_delayed_work_sync(&reg_timeout);
2482

2483
	mutex_lock(&cfg80211_mutex);
2484
	mutex_lock(&reg_mutex);
2485

2486
	reset_regdomains(true);
2487

2488
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2489

2490
	platform_device_unregister(reg_pdev);
2491

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2520
	mutex_unlock(&reg_mutex);
2521
	mutex_unlock(&cfg80211_mutex);
2522
}