reg.c 58.2 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44
#include "nl80211.h"
45

46
/* Receipt of information from last regulatory request */
47
static struct regulatory_request *last_request;
48

49 50
/* To trigger userspace events */
static struct platform_device *reg_pdev;
51

52 53 54 55
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
56 57
};

58 59
/*
 * Central wireless core regulatory domains, we only need two,
60
 * the current one and a world regulatory domain in case we have no
61 62
 * information to give us an alpha2
 */
63
const struct ieee80211_regdomain *cfg80211_regdomain;
64

65 66
/*
 * We use this as a place for the rd structure built from the
67
 * last parsed country IE to rest until CRDA gets back to us with
68 69
 * what it thinks should apply for the same country
 */
70 71
static const struct ieee80211_regdomain *country_ie_regdomain;

72
/* Used to queue up regulatory hints */
73 74 75
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

76 77 78 79 80 81 82 83 84 85 86 87
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

88 89
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
90
	.n_reg_rules = 5,
91 92
	.alpha2 =  "00",
	.reg_rules = {
93 94
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
95 96 97
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
98 99
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
100 101 102 103 104 105 106
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
107
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
108 109
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
110 111 112 113

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
114
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
115 116
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
117 118 119
	}
};

120 121
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
122 123 124 125 126 127

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

128 129
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
130
 * We make emphasis we are using the exact same frequencies
131 132
 * as before
 */
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
171 172 173 174
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

211
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
212 213 214 215 216
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
217 218
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
219
{
220
	return false;
221
}
222 223
#endif

224 225
static void reset_regdomains(void)
{
226 227 228 229 230 231 232 233 234 235 236 237
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
238

239
	cfg80211_world_regdom = &world_regdom;
240 241 242
	cfg80211_regdomain = NULL;
}

243 244 245 246
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
247
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
248
{
249
	BUG_ON(!last_request);
250 251 252 253 254 255 256

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

257
bool is_world_regdom(const char *alpha2)
258 259 260 261 262 263 264
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
265

266
static bool is_alpha2_set(const char *alpha2)
267 268 269 270 271 272 273
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
274

275 276 277 278 279 280 281
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
282

283
static bool is_unknown_alpha2(const char *alpha2)
284 285 286
{
	if (!alpha2)
		return false;
287 288 289 290
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
291 292 293 294
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
295

296 297 298 299
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
300 301
	/*
	 * Special case where regulatory domain is the
302
	 * result of an intersection between two regulatory domain
303 304
	 * structures
	 */
305 306 307 308 309
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

310
static bool is_an_alpha2(const char *alpha2)
311 312 313 314 315 316 317
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
318

319
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
320 321 322 323 324 325 326 327 328
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

329
static bool regdom_changes(const char *alpha2)
330
{
331 332
	assert_cfg80211_lock();

333 334 335 336 337 338 339
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

359 360 361 362
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
385
bool reg_is_valid_request(const char *alpha2)
386
{
387 388 389 390
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
391
}
392

393
/* Sanity check on a regulatory rule */
394
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
395
{
396
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397 398
	u32 freq_diff;

399
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400 401 402 403 404 405 406
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

407 408
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
409 410 411 412 413
		return false;

	return true;
}

414
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
415
{
416
	const struct ieee80211_reg_rule *reg_rule = NULL;
417
	unsigned int i;
418

419 420
	if (!rd->n_reg_rules)
		return false;
421

422 423 424
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

425 426 427 428 429 430 431
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

474 475
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
476 477
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
478 479
 * with our userspace regulatory agent to get lower bounds.
 */
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

524 525
	/*
	 * We need to build a reg rule for each triplet, but first we must
526
	 * calculate the number of reg rules we will need. We will need one
527 528
	 * for each channel subband
	 */
529
	while (country_ie_len >= 3) {
530
		int end_channel = 0;
531 532 533 534 535 536 537 538 539 540 541
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

559
		cur_channel = triplet->chans.first_channel;
560
		cur_sub_max_channel = end_channel;
561 562 563 564 565

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

566 567
		/*
		 * Do not allow overlapping channels. Also channels
568
		 * passed in each subband must be monotonically
569 570
		 * increasing
		 */
571 572 573 574 575 576 577
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

578 579
		/*
		 * When dot11RegulatoryClassesRequired is supported
580 581
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
582 583
		 * don't support them
		 */
584 585 586 587 588 589 590 591 592 593
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

594 595 596 597
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
618
		int end_channel = 0;
619 620 621 622 623 624
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

625 626 627 628
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
629 630 631 632 633 634 635 636 637 638 639 640 641
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

642 643 644 645 646 647 648 649
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

650 651
		/*
		 * The +10 is since the regulatory domain expects
652 653
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
654 655
		 * the channels passed
		 */
656 657 658 659 660
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
661
				end_channel) + 10);
662

663 664 665 666 667
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


683 684 685 686
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

764 765
	/*
	 * First we get a count of the rules we'll need, then we actually
766 767 768
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
769 770
	 * All rules that do check out OK are valid.
	 */
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
798 799
			/*
			 * This time around instead of using the stack lets
800
			 * write to the target rule directly saving ourselves
801 802
			 * a memcpy()
			 */
803 804 805
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
806 807 808 809
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

828 829 830 831
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
832 833 834 835 836 837 838 839 840 841 842 843
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

844 845 846 847 848
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
849 850
{
	int i;
851
	bool band_rule_found = false;
852
	const struct ieee80211_regdomain *regd;
853
	u32 max_bandwidth = 0;
854

855
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
856

857 858 859 860
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
861 862
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
863 864 865 866
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
867 868
		return -EINVAL;

869
	for (i = 0; i < regd->n_reg_rules; i++) {
870 871 872 873
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

874
		rr = &regd->reg_rules[i];
875 876
		fr = &rr->freq_range;
		pr = &rr->power_rule;
877

878 879
		/*
		 * We only need to know if one frequency rule was
880
		 * was in center_freq's band, that's enough, so lets
881 882
		 * not overwrite it once found
		 */
883 884 885
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

886
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
887

888 889 890
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
891 892 893 894
			break;
		}
	}

895 896 897
	if (!band_rule_found)
		return -ERANGE;

898 899
	return !max_bandwidth;
}
900
EXPORT_SYMBOL(freq_reg_info);
901

902
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
903 904 905 906 907
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
908

909 910
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
911 912
{
	int r;
913
	u32 flags;
914 915 916
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
917 918
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
919
	struct wiphy *request_wiphy = NULL;
920

921 922
	assert_cfg80211_lock();

923 924
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

925 926 927 928 929
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
930

931
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
932 933 934
		&max_bandwidth, &reg_rule);

	if (r) {
935 936
		/*
		 * This means no regulatory rule was found in the country IE
937 938 939 940 941 942 943 944 945 946
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
947 948
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
949 950 951 952 953 954 955
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
956 957 958 959
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
960
#ifdef CONFIG_CFG80211_REG_DEBUG
961 962
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
963 964 965 966 967 968 969 970
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
971 972 973
		return;
	}

974 975
	power_rule = &reg_rule->power_rule;

976
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
977 978
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
979 980
		/*
		 * This gaurantees the driver's requested regulatory domain
981
		 * will always be used as a base for further regulatory
982 983
		 * settings
		 */
984 985 986 987 988 989 990 991 992 993
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

994
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
995
	chan->max_antenna_gain = min(chan->orig_mag,
996 997
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
998
	if (chan->orig_mpwr)
999 1000
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1001
	else
1002
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1003 1004
}

1005
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1006
{
1007 1008 1009 1010 1011
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1012 1013

	for (i = 0; i < sband->n_channels; i++)
1014
		handle_channel(wiphy, band, i);
1015 1016
}

1017 1018
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1019 1020 1021
{
	if (!last_request)
		return true;
1022
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1023
		  wiphy->custom_regulatory)
1024
		return true;
1025 1026 1027 1028
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1029 1030
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1031 1032 1033 1034
		return true;
	return false;
}

1035
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1036
{
1037
	struct cfg80211_registered_device *drv;
1038

1039
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1040
		wiphy_update_regulatory(&drv->wiphy, initiator);
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DEBUG_BEACON_FLAG(desc) \
	printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
		"frequency: %d MHz (Ch %d) on %s\n", \
		reg_beacon->chan.center_freq, \
		ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
		wiphy_name(wiphy));
#else
#define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
#endif
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
		REG_DEBUG_BEACON_FLAG("active scanning");
	}

	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
		REG_DEBUG_BEACON_FLAG("beaconing");
	}

	chan->beacon_found = true;
#undef REG_DEBUG_BEACON_FLAG
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1131
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1145 1146
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1147 1148
{
	enum ieee80211_band band;
1149

1150
	if (ignore_reg_update(wiphy, initiator))
1151
		goto out;
1152
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1153
		if (wiphy->bands[band])
1154
			handle_band(wiphy, band);
1155
	}
1156 1157
out:
	reg_process_beacons(wiphy);
1158
	if (wiphy->reg_notifier)
1159
		wiphy->reg_notifier(wiphy, last_request);
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1215 1216
	}
}
1217 1218
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1242

1243 1244 1245 1246
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1247 1248
#define REG_INTERSECT	1

1249 1250
/* This has the logic which determines when a new request
 * should be ignored. */
1251 1252
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1253
{
1254
	struct wiphy *last_wiphy = NULL;
1255 1256 1257

	assert_cfg80211_lock();

1258 1259 1260 1261
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1262
	switch (pending_request->initiator) {
1263
	case NL80211_REGDOM_SET_BY_CORE:
1264
		return -EINVAL;
1265
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1266 1267 1268

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1269
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1270
			return -EINVAL;
1271 1272
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1273
			if (last_wiphy != wiphy) {
1274 1275 1276 1277 1278 1279
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1280
				if (regdom_changes(pending_request->alpha2))
1281 1282 1283
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1284 1285 1286 1287
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1288
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1289 1290 1291
				return 0;
			return -EALREADY;
		}
1292
		return REG_INTERSECT;
1293 1294
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1295 1296
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1297
			if (regdom_changes(pending_request->alpha2))
1298
				return 0;
1299
			return -EALREADY;
1300
		}
1301 1302 1303 1304 1305 1306

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1307
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1308
		    !regdom_changes(pending_request->alpha2))
1309 1310
			return -EALREADY;

1311
		return REG_INTERSECT;
1312 1313
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1314
			return REG_INTERSECT;
1315 1316 1317 1318
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1319
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1320 1321
			  last_request->intersect)
			return -EOPNOTSUPP;
1322 1323 1324 1325
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1326 1327 1328
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1329
			if (regdom_changes(last_request->alpha2))
1330 1331 1332
				return -EAGAIN;
		}

1333
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1334
		    !regdom_changes(pending_request->alpha2))
1335 1336
			return -EALREADY;

1337 1338 1339 1340 1341 1342
		return 0;
	}

	return -EINVAL;
}

1343 1344 1345 1346
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1347
 * @pending_request: the regulatory request currently being processed
1348 1349
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1350
 * what it believes should be the current regulatory domain.
1351 1352 1353 1354 1355 1356
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1357 1358
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1359
{
1360
	bool intersect = false;
1361 1362
	int r = 0;

1363 1364
	assert_cfg80211_lock();

1365
	r = ignore_request(wiphy, pending_request);
1366

1367
	if (r == REG_INTERSECT) {
1368 1369
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1370
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371 1372
			if (r) {
				kfree(pending_request);
1373
				return r;
1374
			}
1375
		}
1376
		intersect = true;
1377
	} else if (r) {
1378 1379
		/*
		 * If the regulatory domain being requested by the
1380
		 * driver has already been set just copy it to the
1381 1382
		 * wiphy
		 */
1383
		if (r == -EALREADY &&
1384 1385
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1386
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387 1388
			if (r) {
				kfree(pending_request);
1389
				return r;
1390
			}
1391 1392 1393
			r = -EALREADY;
			goto new_request;
		}
1394
		kfree(pending_request);
1395
		return r;
1396
	}
1397

1398
new_request:
1399
	kfree(last_request);
1400

1401 1402
	last_request = pending_request;
	last_request->intersect = intersect;
1403

1404
	pending_request = NULL;
1405 1406

	/* When r == REG_INTERSECT we do need to call CRDA */
1407 1408 1409 1410 1411 1412 1413 1414
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1415
		return r;
1416
	}
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
	 * AND if CRDA is NOT present nothing will happen, if someone
	 * wants to bother with 11d with OLD_REG you can add a timer.
	 * If after x amount of time nothing happens you can call:
	 *
	 * return set_regdom(country_ie_regdomain);
	 *
	 * to intersect with the static rd
	 */
1428
	return call_crda(last_request->alpha2);
1429 1430
}

1431
/* This currently only processes user and driver regulatory hints */
1432
static void reg_process_hint(struct regulatory_request *reg_request)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1444
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1445
	    !wiphy) {
1446
		kfree(reg_request);
1447 1448 1449
		goto out;
	}

1450
	r = __regulatory_hint(wiphy, reg_request);
1451 1452 1453 1454 1455 1456 1457
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1458
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1470 1471
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1472 1473 1474 1475 1476
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1511 1512 1513
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1514
	reg_process_pending_beacon_hints();
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1542
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1543

1544
	queue_regulatory_request(request);
1545

1546
	return 0;
1547 1548
}

1549 1550
/* User hints */
int regulatory_hint_user(const char *alpha2)
1551
{
1552 1553
	struct regulatory_request *request;

1554
	BUG_ON(!alpha2);
1555

1556 1557 1558 1559 1560 1561 1562
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1563
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1589
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1590 1591 1592 1593

	queue_regulatory_request(request);

	return 0;
1594 1595 1596
}
EXPORT_SYMBOL(regulatory_hint);

1597 1598 1599
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1600 1601
	struct wiphy *request_wiphy;

1602 1603
	assert_cfg80211_lock();

1604 1605 1606
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1607
		return false;
1608 1609

	if (likely(request_wiphy != wiphy))
1610
		return !country_ie_integrity_changes(country_ie_checksum);
1611 1612
	/*
	 * We should not have let these through at this point, they
1613
	 * should have been picked up earlier by the first alpha2 check
1614 1615
	 * on the device
	 */
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1629
	struct regulatory_request *request;
1630

1631
	mutex_lock(&cfg80211_mutex);
1632

1633 1634 1635 1636 1637
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1638 1639 1640 1641 1642 1643 1644
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1645 1646
	/*
	 * Pending country IE processing, this can happen after we
1647
	 * call CRDA and wait for a response if a beacon was received before
1648 1649
	 * we were able to process the last regulatory_hint_11d() call
	 */
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1661 1662
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1663
	 * we optimize an early check to exit out early if we don't have to
1664 1665
	 * do anything
	 */
1666
	if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1667 1668
		struct cfg80211_registered_device *drv_last_ie;

1669 1670
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1671

1672 1673 1674 1675
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1676
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1677 1678 1679 1680
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1681 1682 1683 1684 1685
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1686 1687
			/*
			 * the wiphy moved on to another BSSID or the AP
1688 1689 1690
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1691 1692
			 * AP with different settings
			 */
1693 1694
			goto out;
		} else {
1695 1696 1697 1698
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1713 1714
	/*
	 * This will not happen right now but we leave it here for the
1715 1716
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1717 1718 1719 1720 1721 1722
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1723
		goto free_rd_out;
1724

1725 1726 1727 1728
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1729 1730 1731 1732
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1733 1734
	country_ie_regdomain = rd;

1735 1736 1737
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1738
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1739 1740 1741 1742
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1743

1744 1745 1746
	queue_regulatory_request(request);

	return;
1747 1748 1749

free_rd_out:
	kfree(rd);
1750
out:
1751
	mutex_unlock(&cfg80211_mutex);
1752 1753
}
EXPORT_SYMBOL(regulatory_hint_11d);
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1804
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1805 1806
{
	unsigned int i;
1807 1808 1809
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1810 1811 1812 1813 1814 1815 1816 1817 1818

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1819 1820 1821 1822
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1841
static void print_regdomain(const struct ieee80211_regdomain *rd)
1842 1843
{

1844 1845
	if (is_intersected_alpha2(rd->alpha2)) {

1846 1847
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1848 1849 1850 1851
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1852 1853 1854 1855 1856 1857 1858 1859 1860
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1861
					"domain intersected: \n");
1862
	} else if (is_world_regdom(rd->alpha2))
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1878
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1879 1880 1881 1882 1883 1884
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1898
		print_regdomain_info(intersected_rd);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1912
/* Takes ownership of rd only if it doesn't fail */
1913
static int __set_regdom(const struct ieee80211_regdomain *rd)
1914
{
1915
	const struct ieee80211_regdomain *intersected_rd = NULL;
1916
	struct cfg80211_registered_device *drv = NULL;
1917
	struct wiphy *request_wiphy;
1918 1919 1920
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1921
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1922 1923 1924 1925 1926 1927 1928 1929 1930
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1931
	if (!last_request)
1932 1933
		return -EINVAL;

1934 1935
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1936
	 * rd is non static (it means CRDA was present and was used last)
1937 1938
	 * and the pending request came in from a country IE
	 */
1939
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1940 1941 1942 1943
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1944
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1945
		    !regdom_changes(rd->alpha2))
1946 1947 1948
			return -EINVAL;
	}

1949 1950
	/*
	 * Now lets set the regulatory domain, update all driver channels
1951 1952
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1953 1954
	 * internal EEPROM data
	 */
1955

1956
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1957 1958
		return -EINVAL;

1959 1960 1961 1962 1963
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1964 1965
	}

1966 1967
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1968
	if (!last_request->intersect) {
1969 1970
		int r;

1971
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1972 1973 1974 1975 1976
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1977 1978 1979 1980
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1981

1982
		BUG_ON(request_wiphy->regd);
1983

1984
		r = reg_copy_regd(&request_wiphy->regd, rd);
1985 1986 1987
		if (r)
			return r;

1988 1989 1990 1991 1992 1993 1994
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1995
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1996

1997 1998 1999
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2000

2001 2002
		/*
		 * We can trash what CRDA provided now.
2003
		 * However if a driver requested this specific regulatory
2004 2005
		 * domain we keep it for its private use
		 */
2006
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2007
			request_wiphy->regd = rd;
2008 2009 2010
		else
			kfree(rd);

2011 2012 2013 2014 2015 2016
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2017 2018
	}

2019 2020 2021 2022 2023 2024 2025 2026
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);

	if (rd != country_ie_regdomain) {
2027 2028 2029 2030
		/*
		 * Intersect what CRDA returned and our what we
		 * had built from the Country IE received
		 */
2031 2032 2033 2034 2035 2036 2037 2038 2039

		intersected_rd = regdom_intersect(rd, country_ie_regdomain);

		reg_country_ie_process_debug(rd, country_ie_regdomain,
			intersected_rd);

		kfree(country_ie_regdomain);
		country_ie_regdomain = NULL;
	} else {
2040 2041
		/*
		 * This would happen when CRDA was not present and
2042
		 * OLD_REGULATORY was enabled. We intersect our Country
2043 2044
		 * IE rd and what was set on cfg80211 originally
		 */
2045 2046 2047 2048 2049 2050
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
	}

	if (!intersected_rd)
		return -EINVAL;

2051
	drv = wiphy_to_dev(request_wiphy);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2062
	reset_regdomains();
2063
	cfg80211_regdomain = intersected_rd;
2064 2065 2066 2067 2068

	return 0;
}


2069 2070
/*
 * Use this call to set the current regulatory domain. Conflicts with
2071
 * multiple drivers can be ironed out later. Caller must've already
2072 2073
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2074
int set_regdom(const struct ieee80211_regdomain *rd)
2075 2076 2077
{
	int r;

2078 2079
	assert_cfg80211_lock();

2080 2081
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2082 2083
	if (r) {
		kfree(rd);
2084
		return r;
2085
	}
2086 2087

	/* This would make this whole thing pointless */
2088 2089
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2090 2091

	/* update all wiphys now with the new established regulatory domain */
2092
	update_all_wiphy_regulatory(last_request->initiator);
2093

2094
	print_regdomain(cfg80211_regdomain);
2095

2096 2097
	nl80211_send_reg_change_event(last_request);

2098 2099 2100
	return r;
}

2101
/* Caller must hold cfg80211_mutex */
2102 2103
void reg_device_remove(struct wiphy *wiphy)
{
2104 2105
	struct wiphy *request_wiphy;

2106 2107
	assert_cfg80211_lock();

2108 2109
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2110
	kfree(wiphy->regd);
2111
	if (!last_request || !request_wiphy)
2112
		return;
2113
	if (request_wiphy != wiphy)
2114
		return;
2115
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2116 2117 2118
	last_request->country_ie_env = ENVIRON_ANY;
}

2119 2120
int regulatory_init(void)
{
2121
	int err = 0;
2122

2123 2124 2125
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2126

2127
	spin_lock_init(&reg_requests_lock);
2128
	spin_lock_init(&reg_pending_beacons_lock);
2129

2130
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2131
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2132

2133
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2134
	print_regdomain_info(cfg80211_regdomain);
2135 2136
	/*
	 * The old code still requests for a new regdomain and if
2137
	 * you have CRDA you get it updated, otherwise you get
2138 2139 2140 2141 2142 2143
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2144
	 */
2145
	err = regulatory_hint_core(ieee80211_regdom);
2146
#else
2147
	cfg80211_regdomain = cfg80211_world_regdom;
2148

2149
	err = regulatory_hint_core("00");
2150
#endif
2151
	if (err) {
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2166
#endif
2167
	}
2168

2169 2170 2171 2172 2173
	return 0;
}

void regulatory_exit(void)
{
2174
	struct regulatory_request *reg_request, *tmp;
2175
	struct reg_beacon *reg_beacon, *btmp;
2176 2177 2178

	cancel_work_sync(&reg_work);

2179
	mutex_lock(&cfg80211_mutex);
2180

2181
	reset_regdomains();
2182

2183 2184 2185
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2186 2187
	kfree(last_request);

2188
	platform_device_unregister(reg_pdev);
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2218
	mutex_unlock(&cfg80211_mutex);
2219
}