reg.c 59.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52 53
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
54
#else
55
#define REG_DBG_PRINT(args...)
56 57
#endif

58 59 60 61 62 63 64 65 66
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

67
/* Receipt of information from last regulatory request */
68
static struct regulatory_request *last_request = &core_request_world;
69

70 71
/* To trigger userspace events */
static struct platform_device *reg_pdev;
72

73 74 75 76
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

77 78
/*
 * Central wireless core regulatory domains, we only need two,
79
 * the current one and a world regulatory domain in case we have no
80 81
 * information to give us an alpha2
 */
82
const struct ieee80211_regdomain *cfg80211_regdomain;
83

84 85 86 87 88 89
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
90
static DEFINE_MUTEX(reg_mutex);
91 92 93 94 95

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
96

97
/* Used to queue up regulatory hints */
98 99 100
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

101 102 103 104 105 106 107 108 109 110 111 112
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

113 114 115
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

116 117 118
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

119 120
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
121
	.n_reg_rules = 5,
122 123
	.alpha2 =  "00",
	.reg_rules = {
124 125
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
126 127 128
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
129 130
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
131 132 133 134 135 136 137
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
138
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
139 140
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
141 142 143 144

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
145
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
146 147
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
148 149 150
	}
};

151 152
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
153

154
static char *ieee80211_regdom = "00";
155
static char user_alpha2[2];
156

157 158 159
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

160
static void reset_regdomains(bool full_reset)
161
{
162 163 164 165 166 167 168 169 170 171
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
172

173
	cfg80211_world_regdom = &world_regdom;
174
	cfg80211_regdomain = NULL;
175 176 177 178 179 180 181

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
182 183
}

184 185 186 187
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
188
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
189
{
190
	BUG_ON(!last_request);
191

192
	reset_regdomains(false);
193 194 195 196 197

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

198
bool is_world_regdom(const char *alpha2)
199 200 201 202 203 204 205
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
206

207
static bool is_alpha2_set(const char *alpha2)
208 209 210 211 212 213 214
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
215

216
static bool is_unknown_alpha2(const char *alpha2)
217 218 219
{
	if (!alpha2)
		return false;
220 221 222 223
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
224 225 226 227
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
228

229 230 231 232
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
233 234
	/*
	 * Special case where regulatory domain is the
235
	 * result of an intersection between two regulatory domain
236 237
	 * structures
	 */
238 239 240 241 242
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

243
static bool is_an_alpha2(const char *alpha2)
244 245 246
{
	if (!alpha2)
		return false;
247
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
248 249 250
		return true;
	return false;
}
251

252
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
253 254 255 256 257 258 259 260 261
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

262
static bool regdom_changes(const char *alpha2)
263
{
264 265
	assert_cfg80211_lock();

266 267 268 269 270 271 272
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
325
static DEFINE_MUTEX(reg_regdb_search_mutex);
326 327 328 329 330 331 332

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

333
	mutex_lock(&reg_regdb_search_mutex);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
356
	mutex_unlock(&reg_regdb_search_mutex);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

374
	mutex_lock(&reg_regdb_search_mutex);
375
	list_add_tail(&request->list, &reg_regdb_search_list);
376
	mutex_unlock(&reg_regdb_search_mutex);
377 378 379 380 381 382 383

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

384 385
/*
 * This lets us keep regulatory code which is updated on a regulatory
386 387
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
388
 */
389 390 391
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
392
		pr_info("Calling CRDA for country: %c%c\n",
393 394
			alpha2[0], alpha2[1]);
	else
395
		pr_info("Calling CRDA to update world regulatory domain\n");
396

397 398 399
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

400
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
401 402 403
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
404
bool reg_is_valid_request(const char *alpha2)
405
{
406 407
	assert_cfg80211_lock();

408 409 410 411
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
412
}
413

414
/* Sanity check on a regulatory rule */
415
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
416
{
417
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
418 419
	u32 freq_diff;

420
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
421 422 423 424 425 426 427
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

428 429
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
430 431 432 433 434
		return false;

	return true;
}

435
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
436
{
437
	const struct ieee80211_reg_rule *reg_rule = NULL;
438
	unsigned int i;
439

440 441
	if (!rd->n_reg_rules)
		return false;
442

443 444 445
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

446 447 448 449 450 451 452
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
453 454
}

455 456 457
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
458
{
459 460 461 462 463 464 465 466 467 468
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
469
}
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

496 497 498 499
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

577 578
	/*
	 * First we get a count of the rules we'll need, then we actually
579 580 581
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
582 583
	 * All rules that do check out OK are valid.
	 */
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
611 612
			/*
			 * This time around instead of using the stack lets
613
			 * write to the target rule directly saving ourselves
614 615
			 * a memcpy()
			 */
616 617 618
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
619 620 621 622
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

641 642 643 644
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
645 646 647 648 649 650 651 652 653 654 655 656
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

657 658
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
659
			      u32 desired_bw_khz,
660 661
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
662 663
{
	int i;
664
	bool band_rule_found = false;
665
	const struct ieee80211_regdomain *regd;
666 667 668 669
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
670

671
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
672

673 674 675 676
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
677 678
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
679
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
680 681 682 683
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
684 685
		return -EINVAL;

686
	for (i = 0; i < regd->n_reg_rules; i++) {
687 688 689
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

690
		rr = &regd->reg_rules[i];
691
		fr = &rr->freq_range;
692

693 694
		/*
		 * We only need to know if one frequency rule was
695
		 * was in center_freq's band, that's enough, so lets
696 697
		 * not overwrite it once found
		 */
698 699 700
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

701 702 703
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
704

705
		if (band_rule_found && bw_fits) {
706
			*reg_rule = rr;
707
			return 0;
708 709 710
		}
	}

711 712 713
	if (!band_rule_found)
		return -ERANGE;

714
	return -EINVAL;
715 716
}

717 718 719 720
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
721
{
722
	assert_cfg80211_lock();
723 724 725 726 727
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
728
}
729
EXPORT_SYMBOL(freq_reg_info);
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

765
	REG_DBG_PRINT("Updating information on frequency %d MHz "
766
		      "for a %d MHz width channel with regulatory rule:\n",
767 768 769
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

770
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
771 772
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
773
		      freq_range->max_bandwidth_khz,
774 775 776 777 778 779 780 781 782 783
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
784 785
#endif

786 787 788 789 790 791 792 793 794
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
795 796 797
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
798
			   unsigned int chan_idx)
799 800
{
	int r;
801 802
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
803 804
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
805
	const struct ieee80211_freq_range *freq_range = NULL;
806 807
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
808
	struct wiphy *request_wiphy = NULL;
809

810 811
	assert_cfg80211_lock();

812 813
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

814 815 816 817 818
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
819

820 821 822 823
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
824

825 826 827
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
828
		 * received regulatory rule unless the hint is coming
829 830 831 832 833 834 835 836 837 838 839
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

840
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
841
		chan->flags = IEEE80211_CHAN_DISABLED;
842
		return;
843
	}
844

845 846
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

847
	power_rule = &reg_rule->power_rule;
848 849 850 851
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
852

853
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
854
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
855
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
856
		/*
L
Lucas De Marchi 已提交
857
		 * This guarantees the driver's requested regulatory domain
858
		 * will always be used as a base for further regulatory
859 860
		 * settings
		 */
861
		chan->flags = chan->orig_flags =
862
			map_regdom_flags(reg_rule->flags) | bw_flags;
863 864 865 866 867 868 869
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

870
	chan->beacon_found = false;
871
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
872
	chan->max_antenna_gain = min(chan->orig_mag,
873
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
874
	if (chan->orig_mpwr)
875 876
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
877
	else
878
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
879 880
}

881 882 883
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
884
{
885 886 887 888 889
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
890 891

	for (i = 0; i < sband->n_channels; i++)
892
		handle_channel(wiphy, initiator, band, i);
893 894
}

895 896
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
897
{
898
	if (!last_request) {
899
		REG_DBG_PRINT("Ignoring regulatory request %s since "
900 901
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
902
		return true;
903 904
	}

905
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
906
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
907
		REG_DBG_PRINT("Ignoring regulatory request %s "
908
			      "since the driver uses its own custom "
909
			      "regulatory domain\n",
910
			      reg_initiator_name(initiator));
911
		return true;
912 913
	}

914 915 916 917
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
918
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
919
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
920
	    !is_world_regdom(last_request->alpha2)) {
921
		REG_DBG_PRINT("Ignoring regulatory request %s "
922
			      "since the driver requires its own regulatory "
923
			      "domain to be set first\n",
924
			      reg_initiator_name(initiator));
925
		return true;
926 927
	}

928 929 930
	return false;
}

931 932 933 934 935 936
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
937 938
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
939 940 941 942 943 944 945 946 947

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

948 949 950 951 952
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
953
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
954 955
		return;

956 957 958
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

959
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
960
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
961
		channel_changed = true;
962 963
	}

964
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
965
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
966
		channel_changed = true;
967 968
	}

969 970
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1022 1023
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1024
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1025 1026 1027 1028 1029 1030 1031
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1032 1033 1034 1035 1036 1037
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1038 1039 1040 1041 1042
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1093
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1094
	else
1095
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1096 1097

	if (is_ht40_not_allowed(channel_after))
1098
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1099
	else
1100
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1130 1131
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1132 1133
{
	enum ieee80211_band band;
1134

1135 1136
	assert_reg_lock();

1137
	if (ignore_reg_update(wiphy, initiator))
1138 1139
		return;

1140
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1141
		if (wiphy->bands[band])
1142
			handle_band(wiphy, band, initiator);
1143
	}
1144

1145
	reg_process_beacons(wiphy);
1146
	reg_process_ht_flags(wiphy);
1147
	if (wiphy->reg_notifier)
1148
		wiphy->reg_notifier(wiphy, last_request);
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1159 1160 1161 1162 1163 1164 1165 1166
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;

	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
}

1167 1168 1169 1170 1171 1172
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1173 1174
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1175 1176
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1177
	const struct ieee80211_freq_range *freq_range = NULL;
1178 1179 1180
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1181
	assert_reg_lock();
1182

1183 1184 1185 1186
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1187 1188 1189 1190 1191
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1192 1193

	if (r) {
1194
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1195 1196 1197 1198
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1199 1200 1201 1202
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1203 1204
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1205
	power_rule = &reg_rule->power_rule;
1206 1207 1208 1209
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1210

1211
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1234
	unsigned int bands_set = 0;
1235

1236
	mutex_lock(&reg_mutex);
1237
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1238 1239 1240 1241
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1242
	}
1243
	mutex_unlock(&reg_mutex);
1244 1245 1246 1247 1248 1249

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1250
}
1251 1252
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1253 1254 1255 1256
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1257 1258
#define REG_INTERSECT	1

1259 1260
/* This has the logic which determines when a new request
 * should be ignored. */
1261 1262
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1263
{
1264
	struct wiphy *last_wiphy = NULL;
1265 1266 1267

	assert_cfg80211_lock();

1268 1269 1270 1271
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1272
	switch (pending_request->initiator) {
1273
	case NL80211_REGDOM_SET_BY_CORE:
1274
		return 0;
1275
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1276 1277 1278

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1279
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1280
			return -EINVAL;
1281 1282
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1283
			if (last_wiphy != wiphy) {
1284 1285
				/*
				 * Two cards with two APs claiming different
1286
				 * Country IE alpha2s. We could
1287 1288 1289
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1290
				if (regdom_changes(pending_request->alpha2))
1291 1292 1293
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1294 1295 1296 1297
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1298
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1299 1300 1301
				return 0;
			return -EALREADY;
		}
1302
		return 0;
1303 1304
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1305
			if (regdom_changes(pending_request->alpha2))
1306
				return 0;
1307
			return -EALREADY;
1308
		}
1309 1310 1311 1312 1313 1314

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1315
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1316
		    !regdom_changes(pending_request->alpha2))
1317 1318
			return -EALREADY;

1319
		return REG_INTERSECT;
1320 1321
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1322
			return REG_INTERSECT;
1323 1324 1325 1326
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1327
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1328 1329
			  last_request->intersect)
			return -EOPNOTSUPP;
1330 1331 1332 1333
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1334 1335 1336
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1337
			if (regdom_changes(last_request->alpha2))
1338 1339 1340
				return -EAGAIN;
		}

1341
		if (!regdom_changes(pending_request->alpha2))
1342 1343
			return -EALREADY;

1344 1345 1346 1347 1348 1349
		return 0;
	}

	return -EINVAL;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1361 1362 1363
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1364 1365 1366 1367
	if (need_more_processing)
		schedule_work(&reg_work);
}

1368 1369 1370 1371
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1372
 * @pending_request: the regulatory request currently being processed
1373 1374
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1375
 * what it believes should be the current regulatory domain.
1376 1377 1378 1379
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1380
 * Caller must hold &cfg80211_mutex and &reg_mutex
1381
 */
1382 1383
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1384
{
1385
	bool intersect = false;
1386 1387
	int r = 0;

1388 1389
	assert_cfg80211_lock();

1390
	r = ignore_request(wiphy, pending_request);
1391

1392
	if (r == REG_INTERSECT) {
1393 1394
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1395
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1396 1397
			if (r) {
				kfree(pending_request);
1398
				return r;
1399
			}
1400
		}
1401
		intersect = true;
1402
	} else if (r) {
1403 1404
		/*
		 * If the regulatory domain being requested by the
1405
		 * driver has already been set just copy it to the
1406 1407
		 * wiphy
		 */
1408
		if (r == -EALREADY &&
1409 1410
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1411
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1412 1413
			if (r) {
				kfree(pending_request);
1414
				return r;
1415
			}
1416 1417 1418
			r = -EALREADY;
			goto new_request;
		}
1419
		kfree(pending_request);
1420
		return r;
1421
	}
1422

1423
new_request:
1424 1425
	if (last_request != &core_request_world)
		kfree(last_request);
1426

1427 1428
	last_request = pending_request;
	last_request->intersect = intersect;
1429

1430
	pending_request = NULL;
1431

1432 1433 1434 1435 1436
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1437
	/* When r == REG_INTERSECT we do need to call CRDA */
1438 1439 1440 1441 1442 1443
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1444
		if (r == -EALREADY) {
1445
			nl80211_send_reg_change_event(last_request);
1446 1447
			reg_set_request_processed();
		}
1448
		return r;
1449
	}
1450

1451
	return call_crda(last_request->alpha2);
1452 1453
}

1454
/* This processes *all* regulatory hints */
1455
static void reg_process_hint(struct regulatory_request *reg_request)
1456 1457 1458
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1459
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1460 1461 1462 1463 1464 1465

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1466
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1467
	    !wiphy) {
1468
		kfree(reg_request);
1469
		return;
1470 1471
	}

1472
	r = __regulatory_hint(wiphy, reg_request);
1473
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1474
	if (r == -EALREADY && wiphy &&
1475
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1476
		wiphy_update_regulatory(wiphy, initiator);
1477 1478 1479 1480 1481 1482 1483
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1484 1485
	if (r != -EALREADY &&
	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1486
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1487 1488
}

1489 1490 1491 1492 1493
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1494
static void reg_process_pending_hints(void)
1495
{
1496 1497
	struct regulatory_request *reg_request;

1498 1499 1500
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1501 1502 1503
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1504
			      "for it to be processed...\n");
1505 1506 1507
		goto out;
	}

1508 1509
	spin_lock(&reg_requests_lock);

1510
	if (list_empty(&reg_requests_list)) {
1511
		spin_unlock(&reg_requests_lock);
1512
		goto out;
1513
	}
1514 1515 1516 1517 1518 1519

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1520
	spin_unlock(&reg_requests_lock);
1521

1522 1523 1524
	reg_process_hint(reg_request);

out:
1525 1526
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1527 1528
}

1529 1530 1531
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1532
	struct cfg80211_registered_device *rdev;
1533 1534
	struct reg_beacon *pending_beacon, *tmp;

1535 1536 1537 1538
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1555 1556
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1567 1568 1569
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1570
	reg_process_pending_beacon_hints();
1571 1572 1573 1574
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1575 1576 1577 1578 1579
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1580 1581 1582 1583 1584 1585 1586
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1587 1588 1589 1590
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1602
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1603

1604
	queue_regulatory_request(request);
1605

1606
	return 0;
1607 1608
}

1609 1610
/* User hints */
int regulatory_hint_user(const char *alpha2)
1611
{
1612 1613
	struct regulatory_request *request;

1614
	BUG_ON(!alpha2);
1615

1616 1617 1618 1619 1620 1621 1622
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1623
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1649
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1650 1651 1652 1653

	queue_regulatory_request(request);

	return 0;
1654 1655 1656
}
EXPORT_SYMBOL(regulatory_hint);

1657 1658 1659 1660
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1661
void regulatory_hint_11d(struct wiphy *wiphy,
1662 1663 1664
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1665 1666 1667
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1668
	struct regulatory_request *request;
1669

1670
	mutex_lock(&reg_mutex);
1671

1672 1673
	if (unlikely(!last_request))
		goto out;
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1690
	/*
1691
	 * We will run this only upon a successful connection on cfg80211.
1692 1693
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1694
	 */
1695 1696
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1697 1698
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1699

1700 1701
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1702
		goto out;
1703 1704

	request->wiphy_idx = get_wiphy_idx(wiphy);
1705 1706
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1707
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1708 1709
	request->country_ie_env = env;

1710
	mutex_unlock(&reg_mutex);
1711

1712 1713 1714
	queue_regulatory_request(request);

	return;
1715

1716
out:
1717
	mutex_unlock(&reg_mutex);
1718
}
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1730
			REG_DBG_PRINT("Restoring regulatory settings "
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1741
				REG_DBG_PRINT("Keeping preference on "
1742 1743 1744 1745 1746 1747 1748
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1749
			REG_DBG_PRINT("Restoring regulatory settings "
1750 1751 1752 1753 1754 1755 1756
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1757
		REG_DBG_PRINT("Keeping preference on "
1758 1759 1760 1761 1762 1763
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1764
		REG_DBG_PRINT("Restoring regulatory settings\n");
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1786 1787
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1788 1789 1790 1791

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1792
	reset_regdomains(true);
1793 1794
	restore_alpha2(alpha2, reset_user);

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1873 1874 1875

void regulatory_hint_disconnect(void)
{
1876
	REG_DBG_PRINT("All devices are disconnected, going to "
1877 1878 1879 1880
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1881 1882
static bool freq_is_chan_12_13_14(u16 freq)
{
1883 1884 1885
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1906
	REG_DBG_PRINT("Found new beacon on "
1907 1908 1909 1910 1911
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1929
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1930 1931
{
	unsigned int i;
1932 1933 1934
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1935

1936
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1937 1938 1939 1940 1941 1942

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1943 1944 1945 1946
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1947
		if (power_rule->max_antenna_gain)
1948
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1949 1950 1951 1952 1953 1954
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1955
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1956 1957 1958 1959 1960 1961 1962
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1963
static void print_regdomain(const struct ieee80211_regdomain *rd)
1964 1965
{

1966 1967
	if (is_intersected_alpha2(rd->alpha2)) {

1968 1969
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970 1971
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1972
				last_request->wiphy_idx);
1973
			if (rdev) {
1974
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1975 1976
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1977
			} else
1978
				pr_info("Current regulatory domain intersected:\n");
1979
		} else
1980
			pr_info("Current regulatory domain intersected:\n");
1981
	} else if (is_world_regdom(rd->alpha2))
1982
		pr_info("World regulatory domain updated:\n");
1983 1984
	else {
		if (is_unknown_alpha2(rd->alpha2))
1985
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1986
		else
1987
			pr_info("Regulatory domain changed to country: %c%c\n",
1988 1989 1990 1991 1992
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1993
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1994
{
1995
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1996 1997 1998
	print_rd_rules(rd);
}

1999
/* Takes ownership of rd only if it doesn't fail */
2000
static int __set_regdom(const struct ieee80211_regdomain *rd)
2001
{
2002
	const struct ieee80211_regdomain *intersected_rd = NULL;
2003
	struct cfg80211_registered_device *rdev = NULL;
2004
	struct wiphy *request_wiphy;
2005 2006 2007
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2008
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2009 2010 2011 2012 2013 2014 2015 2016 2017
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2018
	if (!last_request)
2019 2020
		return -EINVAL;

2021 2022
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2023
	 * rd is non static (it means CRDA was present and was used last)
2024 2025
	 * and the pending request came in from a country IE
	 */
2026
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2027 2028 2029 2030
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2031
		if (!regdom_changes(rd->alpha2))
2032 2033 2034
			return -EINVAL;
	}

2035 2036
	/*
	 * Now lets set the regulatory domain, update all driver channels
2037 2038
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2039 2040
	 * internal EEPROM data
	 */
2041

2042
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2043 2044
		return -EINVAL;

2045
	if (!is_valid_rd(rd)) {
2046
		pr_err("Invalid regulatory domain detected:\n");
2047 2048
		print_regdomain_info(rd);
		return -EINVAL;
2049 2050
	}

2051
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2052 2053 2054 2055
	if (!request_wiphy) {
		reg_set_request_processed();
		return -ENODEV;
	}
2056

2057
	if (!last_request->intersect) {
2058 2059
		int r;

2060
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2061
			reset_regdomains(false);
2062 2063 2064 2065
			cfg80211_regdomain = rd;
			return 0;
		}

2066 2067 2068 2069
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2070

2071 2072 2073 2074 2075 2076
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2077

2078
		r = reg_copy_regd(&request_wiphy->regd, rd);
2079 2080 2081
		if (r)
			return r;

2082
		reset_regdomains(false);
2083 2084 2085 2086 2087 2088
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2089
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2090

2091 2092 2093
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2094

2095 2096
		/*
		 * We can trash what CRDA provided now.
2097
		 * However if a driver requested this specific regulatory
2098 2099
		 * domain we keep it for its private use
		 */
2100
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2101
			request_wiphy->regd = rd;
2102 2103 2104
		else
			kfree(rd);

2105 2106
		rd = NULL;

2107
		reset_regdomains(false);
2108 2109 2110
		cfg80211_regdomain = intersected_rd;

		return 0;
2111 2112
	}

2113 2114 2115
	if (!intersected_rd)
		return -EINVAL;

2116
	rdev = wiphy_to_dev(request_wiphy);
2117

2118 2119 2120
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2121 2122 2123 2124 2125 2126

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2127
	reset_regdomains(false);
2128
	cfg80211_regdomain = intersected_rd;
2129 2130 2131 2132 2133

	return 0;
}


2134 2135
/*
 * Use this call to set the current regulatory domain. Conflicts with
2136
 * multiple drivers can be ironed out later. Caller must've already
2137 2138
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2139
int set_regdom(const struct ieee80211_regdomain *rd)
2140 2141 2142
{
	int r;

2143 2144
	assert_cfg80211_lock();

2145 2146
	mutex_lock(&reg_mutex);

2147 2148
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2149 2150
	if (r) {
		kfree(rd);
2151
		mutex_unlock(&reg_mutex);
2152
		return r;
2153
	}
2154 2155

	/* This would make this whole thing pointless */
2156 2157
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2158 2159

	/* update all wiphys now with the new established regulatory domain */
2160
	update_all_wiphy_regulatory(last_request->initiator);
2161

2162
	print_regdomain(cfg80211_regdomain);
2163

2164 2165
	nl80211_send_reg_change_event(last_request);

2166 2167
	reg_set_request_processed();

2168 2169
	mutex_unlock(&reg_mutex);

2170 2171 2172
	return r;
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2192
/* Caller must hold cfg80211_mutex */
2193 2194
void reg_device_remove(struct wiphy *wiphy)
{
2195
	struct wiphy *request_wiphy = NULL;
2196

2197 2198
	assert_cfg80211_lock();

2199 2200
	mutex_lock(&reg_mutex);

2201 2202
	kfree(wiphy->regd);

2203 2204
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2205

2206
	if (!request_wiphy || request_wiphy != wiphy)
2207
		goto out;
2208

2209
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2210
	last_request->country_ie_env = ENVIRON_ANY;
2211 2212
out:
	mutex_unlock(&reg_mutex);
2213 2214
}

2215 2216 2217
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2218
		      "restoring regulatory settings\n");
2219 2220 2221
	restore_regulatory_settings(true);
}

2222
int __init regulatory_init(void)
2223
{
2224
	int err = 0;
2225

2226 2227 2228
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2229

2230 2231
	reg_pdev->dev.type = &reg_device_type;

2232
	spin_lock_init(&reg_requests_lock);
2233
	spin_lock_init(&reg_pending_beacons_lock);
2234

2235
	cfg80211_regdomain = cfg80211_world_regdom;
2236

2237 2238 2239
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2240 2241
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2242
	if (err) {
2243 2244 2245 2246 2247 2248 2249 2250 2251
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2252
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2253 2254 2255
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2256
#endif
2257
	}
2258

2259 2260 2261 2262 2263 2264 2265
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2266 2267 2268
	return 0;
}

2269
void /* __init_or_exit */ regulatory_exit(void)
2270
{
2271
	struct regulatory_request *reg_request, *tmp;
2272
	struct reg_beacon *reg_beacon, *btmp;
2273 2274

	cancel_work_sync(&reg_work);
2275
	cancel_delayed_work_sync(&reg_timeout);
2276

2277
	mutex_lock(&cfg80211_mutex);
2278
	mutex_lock(&reg_mutex);
2279

2280
	reset_regdomains(true);
2281

2282 2283
	dev_set_uevent_suppress(&reg_pdev->dev, true);

2284
	platform_device_unregister(reg_pdev);
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2314
	mutex_unlock(&reg_mutex);
2315
	mutex_unlock(&cfg80211_mutex);
2316
}