reg.c 59.6 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46
/* Receipt of information from last regulatory request */
47
static struct regulatory_request *last_request;
48

49 50
/* To trigger userspace events */
static struct platform_device *reg_pdev;
51

52 53
/*
 * Central wireless core regulatory domains, we only need two,
54
 * the current one and a world regulatory domain in case we have no
55 56
 * information to give us an alpha2
 */
57
const struct ieee80211_regdomain *cfg80211_regdomain;
58

59 60
/*
 * We use this as a place for the rd structure built from the
61
 * last parsed country IE to rest until CRDA gets back to us with
62 63
 * what it thinks should apply for the same country
 */
64 65
static const struct ieee80211_regdomain *country_ie_regdomain;

66 67 68 69 70 71 72 73 74 75
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

76
/* Used to queue up regulatory hints */
77 78 79
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

80 81 82 83 84 85 86 87 88 89 90 91
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

92 93
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
94
	.n_reg_rules = 5,
95 96
	.alpha2 =  "00",
	.reg_rules = {
97 98
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
99 100 101
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
102 103
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
104 105 106 107 108 109 110
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
111
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
112 113
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
114 115 116 117

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
118
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
119 120
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
121 122 123
	}
};

124 125
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
126

127 128
static char *ieee80211_regdom = "00";

129 130 131 132 133
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
134 135 136 137 138 139 140 141 142 143
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
144

145
	cfg80211_world_regdom = &world_regdom;
146 147 148
	cfg80211_regdomain = NULL;
}

149 150 151 152
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
153
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
154
{
155
	BUG_ON(!last_request);
156 157 158 159 160 161 162

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

163
bool is_world_regdom(const char *alpha2)
164 165 166 167 168 169 170
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
171

172
static bool is_alpha2_set(const char *alpha2)
173 174 175 176 177 178 179
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
180

181 182 183 184 185 186 187
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
188

189
static bool is_unknown_alpha2(const char *alpha2)
190 191 192
{
	if (!alpha2)
		return false;
193 194 195 196
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
197 198 199 200
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
201

202 203 204 205
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
206 207
	/*
	 * Special case where regulatory domain is the
208
	 * result of an intersection between two regulatory domain
209 210
	 * structures
	 */
211 212 213 214 215
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

216
static bool is_an_alpha2(const char *alpha2)
217 218 219 220 221 222 223
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
224

225
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 227 228 229 230 231 232 233 234
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

235
static bool regdom_changes(const char *alpha2)
236
{
237 238
	assert_cfg80211_lock();

239 240 241 242 243 244 245
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
static DEFINE_SPINLOCK(reg_regdb_search_lock);

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

	spin_lock(&reg_regdb_search_lock);
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				spin_unlock(&reg_regdb_search_lock);
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				spin_lock(&reg_regdb_search_lock);
				break;
			}
		}

		kfree(request);
	}
	spin_unlock(&reg_regdb_search_lock);
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

	spin_lock(&reg_regdb_search_lock);
	list_add_tail(&request->list, &reg_regdb_search_list);
	spin_unlock(&reg_regdb_search_lock);

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

376 377 378
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

379 380 381 382 383 384 385
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
386
bool reg_is_valid_request(const char *alpha2)
387
{
388 389
	assert_cfg80211_lock();

390 391 392 393
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
394
}
395

396
/* Sanity check on a regulatory rule */
397
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398
{
399
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 401
	u32 freq_diff;

402
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 404 405 406 407 408 409
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

410 411
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
412 413 414 415 416
		return false;

	return true;
}

417
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418
{
419
	const struct ieee80211_reg_rule *reg_rule = NULL;
420
	unsigned int i;
421

422 423
	if (!rd->n_reg_rules)
		return false;
424

425 426 427
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

428 429 430 431 432 433 434
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
435 436
}

437 438 439
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
440
{
441 442 443 444 445 446 447 448 449 450
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
451
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
480 481
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
482 483
 * with our userspace regulatory agent to get lower bounds.
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

528 529
	/*
	 * We need to build a reg rule for each triplet, but first we must
530
	 * calculate the number of reg rules we will need. We will need one
531 532
	 * for each channel subband
	 */
533
	while (country_ie_len >= 3) {
534
		int end_channel = 0;
535 536 537 538 539 540 541 542 543 544 545
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

563
		cur_channel = triplet->chans.first_channel;
564
		cur_sub_max_channel = end_channel;
565 566 567 568 569

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

570 571
		/*
		 * Do not allow overlapping channels. Also channels
572
		 * passed in each subband must be monotonically
573 574
		 * increasing
		 */
575 576 577 578 579 580 581
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

582 583
		/*
		 * When dot11RegulatoryClassesRequired is supported
584 585
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
586 587
		 * don't support them
		 */
588 589 590 591 592 593 594 595 596 597
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

598 599 600 601
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
622
		int end_channel = 0;
623 624 625 626 627 628
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

629 630 631 632
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
633 634 635 636 637 638 639 640 641 642 643 644 645
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

646 647 648 649 650 651 652 653
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

654 655
		/*
		 * The +10 is since the regulatory domain expects
656 657
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
658 659
		 * the channels passed
		 */
660 661 662 663 664
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665
				end_channel) + 10);
666

667 668 669 670 671
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


687 688 689 690
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

768 769
	/*
	 * First we get a count of the rules we'll need, then we actually
770 771 772
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
773 774
	 * All rules that do check out OK are valid.
	 */
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
802 803
			/*
			 * This time around instead of using the stack lets
804
			 * write to the target rule directly saving ourselves
805 806
			 * a memcpy()
			 */
807 808 809
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
810 811 812 813
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

832 833 834 835
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
836 837 838 839 840 841 842 843 844 845 846 847
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

848 849
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
850
			      u32 desired_bw_khz,
851 852
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
853 854
{
	int i;
855
	bool band_rule_found = false;
856
	const struct ieee80211_regdomain *regd;
857 858 859 860
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
861

862
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
863

864 865 866 867
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
868 869
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
870 871 872 873
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
874 875
		return -EINVAL;

876
	for (i = 0; i < regd->n_reg_rules; i++) {
877 878 879 880
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

881
		rr = &regd->reg_rules[i];
882 883
		fr = &rr->freq_range;
		pr = &rr->power_rule;
884

885 886
		/*
		 * We only need to know if one frequency rule was
887
		 * was in center_freq's band, that's enough, so lets
888 889
		 * not overwrite it once found
		 */
890 891 892
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

893 894 895
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
896

897
		if (band_rule_found && bw_fits) {
898
			*reg_rule = rr;
899
			return 0;
900 901 902
		}
	}

903 904 905
	if (!band_rule_found)
		return -ERANGE;

906
	return -EINVAL;
907
}
908
EXPORT_SYMBOL(freq_reg_info);
909

910 911 912 913
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
914
{
915
	assert_cfg80211_lock();
916 917 918 919 920
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
921
}
922

923 924 925 926 927 928 929 930 931
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
932 933
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
934 935
{
	int r;
936 937
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
938 939
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
940
	const struct ieee80211_freq_range *freq_range = NULL;
941 942
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
943
	struct wiphy *request_wiphy = NULL;
944

945 946
	assert_cfg80211_lock();

947 948
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

949 950 951 952 953
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
954

955 956 957 958
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
959 960

	if (r) {
961 962
		/*
		 * This means no regulatory rule was found in the country IE
963 964 965 966 967 968 969 970 971 972
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
973 974
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
975 976 977 978 979 980 981
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
982 983 984 985
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
986
#ifdef CONFIG_CFG80211_REG_DEBUG
987 988
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
989 990 991 992 993 994 995 996
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
997 998 999
		return;
	}

1000
	power_rule = &reg_rule->power_rule;
1001 1002 1003 1004
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1005

1006
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1007
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1008
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1009 1010
		/*
		 * This gaurantees the driver's requested regulatory domain
1011
		 * will always be used as a base for further regulatory
1012 1013
		 * settings
		 */
1014
		chan->flags = chan->orig_flags =
1015
			map_regdom_flags(reg_rule->flags) | bw_flags;
1016 1017 1018 1019 1020 1021 1022
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1023
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1024
	chan->max_antenna_gain = min(chan->orig_mag,
1025
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1026
	if (chan->orig_mpwr)
1027 1028
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1029
	else
1030
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1031 1032
}

1033
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1034
{
1035 1036 1037 1038 1039
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1040 1041

	for (i = 0; i < sband->n_channels; i++)
1042
		handle_channel(wiphy, band, i);
1043 1044
}

1045 1046
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1047 1048 1049
{
	if (!last_request)
		return true;
1050
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1051
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1052
		return true;
1053 1054 1055 1056
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1057
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1058
	    !is_world_regdom(last_request->alpha2))
1059 1060 1061 1062
		return true;
	return false;
}

1063
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1064
{
1065
	struct cfg80211_registered_device *rdev;
1066

1067 1068
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1069 1070
}

1071 1072 1073 1074 1075 1076
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1077 1078
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1079 1080 1081 1082 1083 1084 1085 1086 1087

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1088 1089 1090 1091 1092
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1093
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1094 1095
		return;

1096 1097 1098
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1099
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1100
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1101
		channel_changed = true;
1102 1103
	}

1104
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1105
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1106
		channel_changed = true;
1107 1108
	}

1109 1110
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1162 1163
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1164
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1165 1166 1167 1168 1169 1170 1171
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1172 1173 1174 1175 1176 1177
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1178 1179 1180 1181 1182
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1233
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1234
	else
1235
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1236 1237

	if (is_ht40_not_allowed(channel_after))
1238
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1239
	else
1240
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1270 1271
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1272 1273
{
	enum ieee80211_band band;
1274

1275
	if (ignore_reg_update(wiphy, initiator))
1276
		goto out;
1277
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1278
		if (wiphy->bands[band])
1279
			handle_band(wiphy, band);
1280
	}
1281 1282
out:
	reg_process_beacons(wiphy);
1283
	reg_process_ht_flags(wiphy);
1284
	if (wiphy->reg_notifier)
1285
		wiphy->reg_notifier(wiphy, last_request);
1286 1287
}

1288 1289 1290 1291 1292 1293
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1294 1295
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1296 1297
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1298
	const struct ieee80211_freq_range *freq_range = NULL;
1299 1300 1301
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1302
	assert_reg_lock();
1303

1304 1305 1306 1307
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1308 1309 1310 1311 1312
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1313 1314 1315 1316 1317 1318 1319

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1320 1321 1322 1323
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1324

1325
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1348
	unsigned int bands_set = 0;
1349

1350
	mutex_lock(&reg_mutex);
1351
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1352 1353 1354 1355
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1356
	}
1357
	mutex_unlock(&reg_mutex);
1358 1359 1360 1361 1362 1363

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1364
}
1365 1366
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1367 1368 1369 1370
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1371 1372
#define REG_INTERSECT	1

1373 1374
/* This has the logic which determines when a new request
 * should be ignored. */
1375 1376
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1377
{
1378
	struct wiphy *last_wiphy = NULL;
1379 1380 1381

	assert_cfg80211_lock();

1382 1383 1384 1385
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1386
	switch (pending_request->initiator) {
1387
	case NL80211_REGDOM_SET_BY_CORE:
1388
		return -EINVAL;
1389
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1390 1391 1392

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1393
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1394
			return -EINVAL;
1395 1396
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1397
			if (last_wiphy != wiphy) {
1398 1399
				/*
				 * Two cards with two APs claiming different
1400
				 * Country IE alpha2s. We could
1401 1402 1403
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1404
				if (regdom_changes(pending_request->alpha2))
1405 1406 1407
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1408 1409 1410 1411
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1412
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1413 1414 1415
				return 0;
			return -EALREADY;
		}
1416
		return REG_INTERSECT;
1417 1418
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1419
			if (regdom_changes(pending_request->alpha2))
1420
				return 0;
1421
			return -EALREADY;
1422
		}
1423 1424 1425 1426 1427 1428

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1429
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1430
		    !regdom_changes(pending_request->alpha2))
1431 1432
			return -EALREADY;

1433
		return REG_INTERSECT;
1434 1435
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1436
			return REG_INTERSECT;
1437 1438 1439 1440
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1441
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1442 1443
			  last_request->intersect)
			return -EOPNOTSUPP;
1444 1445 1446 1447
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1448 1449 1450
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1451
			if (regdom_changes(last_request->alpha2))
1452 1453 1454
				return -EAGAIN;
		}

1455
		if (!regdom_changes(pending_request->alpha2))
1456 1457
			return -EALREADY;

1458 1459 1460 1461 1462 1463
		return 0;
	}

	return -EINVAL;
}

1464 1465 1466 1467
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1468
 * @pending_request: the regulatory request currently being processed
1469 1470
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1471
 * what it believes should be the current regulatory domain.
1472 1473 1474 1475
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1476
 * Caller must hold &cfg80211_mutex and &reg_mutex
1477
 */
1478 1479
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1480
{
1481
	bool intersect = false;
1482 1483
	int r = 0;

1484 1485
	assert_cfg80211_lock();

1486
	r = ignore_request(wiphy, pending_request);
1487

1488
	if (r == REG_INTERSECT) {
1489 1490
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1491
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1492 1493
			if (r) {
				kfree(pending_request);
1494
				return r;
1495
			}
1496
		}
1497
		intersect = true;
1498
	} else if (r) {
1499 1500
		/*
		 * If the regulatory domain being requested by the
1501
		 * driver has already been set just copy it to the
1502 1503
		 * wiphy
		 */
1504
		if (r == -EALREADY &&
1505 1506
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1507
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1508 1509
			if (r) {
				kfree(pending_request);
1510
				return r;
1511
			}
1512 1513 1514
			r = -EALREADY;
			goto new_request;
		}
1515
		kfree(pending_request);
1516
		return r;
1517
	}
1518

1519
new_request:
1520
	kfree(last_request);
1521

1522 1523
	last_request = pending_request;
	last_request->intersect = intersect;
1524

1525
	pending_request = NULL;
1526 1527

	/* When r == REG_INTERSECT we do need to call CRDA */
1528 1529 1530 1531 1532 1533 1534 1535
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1536
		return r;
1537
	}
1538

1539
	return call_crda(last_request->alpha2);
1540 1541
}

1542
/* This processes *all* regulatory hints */
1543
static void reg_process_hint(struct regulatory_request *reg_request)
1544 1545 1546 1547 1548 1549 1550
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1551
	mutex_lock(&reg_mutex);
1552 1553 1554 1555

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1556
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1557
	    !wiphy) {
1558
		kfree(reg_request);
1559 1560 1561
		goto out;
	}

1562
	r = __regulatory_hint(wiphy, reg_request);
1563
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1564 1565
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1566 1567
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1568
	mutex_unlock(&reg_mutex);
1569 1570 1571
	mutex_unlock(&cfg80211_mutex);
}

1572
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1584 1585
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1586 1587 1588 1589 1590
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1591 1592 1593
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1594
	struct cfg80211_registered_device *rdev;
1595 1596
	struct reg_beacon *pending_beacon, *tmp;

1597 1598 1599 1600
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1617 1618
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1629 1630 1631
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1632
	reg_process_pending_beacon_hints();
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1660
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1661

1662
	queue_regulatory_request(request);
1663

1664 1665 1666 1667 1668 1669 1670
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1671
	return 0;
1672 1673
}

1674 1675
/* User hints */
int regulatory_hint_user(const char *alpha2)
1676
{
1677 1678
	struct regulatory_request *request;

1679
	BUG_ON(!alpha2);
1680

1681 1682 1683 1684 1685 1686 1687
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1688
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1714
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1715 1716 1717 1718

	queue_regulatory_request(request);

	return 0;
1719 1720 1721
}
EXPORT_SYMBOL(regulatory_hint);

1722
/* Caller must hold reg_mutex */
1723 1724 1725
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1726 1727
	struct wiphy *request_wiphy;

1728
	assert_reg_lock();
1729

1730 1731 1732 1733
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1734 1735 1736
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1737
		return false;
1738 1739

	if (likely(request_wiphy != wiphy))
1740
		return !country_ie_integrity_changes(country_ie_checksum);
1741 1742
	/*
	 * We should not have let these through at this point, they
1743
	 * should have been picked up earlier by the first alpha2 check
1744 1745
	 * on the device
	 */
1746 1747 1748 1749 1750
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

1751 1752 1753 1754
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1755 1756 1757 1758 1759 1760 1761 1762
void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1763
	struct regulatory_request *request;
1764

1765
	mutex_lock(&reg_mutex);
1766

1767 1768
	if (unlikely(!last_request))
		goto out;
1769

1770 1771 1772 1773 1774 1775 1776
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1777 1778
	/*
	 * Pending country IE processing, this can happen after we
1779
	 * call CRDA and wait for a response if a beacon was received before
1780 1781
	 * we were able to process the last regulatory_hint_11d() call
	 */
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1793
	/*
1794
	 * We will run this only upon a successful connection on cfg80211.
1795 1796
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1797
	 */
1798 1799
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1800 1801
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1802 1803 1804 1805 1806

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1807 1808
	/*
	 * This will not happen right now but we leave it here for the
1809 1810
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1811 1812 1813 1814 1815 1816
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1817
		goto free_rd_out;
1818

1819 1820 1821 1822
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1823 1824 1825 1826
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1827 1828
	country_ie_regdomain = rd;

1829 1830 1831
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1832
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1833 1834 1835
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

1836
	mutex_unlock(&reg_mutex);
1837

1838 1839 1840
	queue_regulatory_request(request);

	return;
1841 1842 1843

free_rd_out:
	kfree(rd);
1844
out:
1845
	mutex_unlock(&reg_mutex);
1846
}
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1897
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1898 1899
{
	unsigned int i;
1900 1901 1902
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1903

1904
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1905 1906 1907 1908 1909 1910 1911
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1912 1913 1914 1915
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1916
		if (power_rule->max_antenna_gain)
1917
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1918 1919 1920 1921 1922 1923 1924
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1925
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1926 1927 1928 1929 1930 1931 1932 1933
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1934
static void print_regdomain(const struct ieee80211_regdomain *rd)
1935 1936
{

1937 1938
	if (is_intersected_alpha2(rd->alpha2)) {

1939 1940
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1941 1942
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1943
				last_request->wiphy_idx);
1944
			if (rdev) {
1945 1946
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1947 1948
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1949 1950 1951 1952 1953
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1954
					"domain intersected: \n");
1955
	} else if (is_world_regdom(rd->alpha2))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1971
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1972 1973 1974 1975 1976 1977
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1991
		print_regdomain_info(intersected_rd);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2005
/* Takes ownership of rd only if it doesn't fail */
2006
static int __set_regdom(const struct ieee80211_regdomain *rd)
2007
{
2008
	const struct ieee80211_regdomain *intersected_rd = NULL;
2009
	struct cfg80211_registered_device *rdev = NULL;
2010
	struct wiphy *request_wiphy;
2011 2012 2013
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2014
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2015 2016 2017 2018 2019 2020 2021 2022 2023
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2024
	if (!last_request)
2025 2026
		return -EINVAL;

2027 2028
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2029
	 * rd is non static (it means CRDA was present and was used last)
2030 2031
	 * and the pending request came in from a country IE
	 */
2032
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2033 2034 2035 2036
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2037
		if (!regdom_changes(rd->alpha2))
2038 2039 2040
			return -EINVAL;
	}

2041 2042
	/*
	 * Now lets set the regulatory domain, update all driver channels
2043 2044
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2045 2046
	 * internal EEPROM data
	 */
2047

2048
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2049 2050
		return -EINVAL;

2051 2052 2053 2054 2055
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2056 2057
	}

2058 2059
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2060
	if (!last_request->intersect) {
2061 2062
		int r;

2063
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2064 2065 2066 2067 2068
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2069 2070 2071 2072
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2073

2074 2075 2076 2077 2078 2079
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2080

2081
		r = reg_copy_regd(&request_wiphy->regd, rd);
2082 2083 2084
		if (r)
			return r;

2085 2086 2087 2088 2089 2090 2091
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2092
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2093

2094 2095 2096
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2097

2098 2099
		/*
		 * We can trash what CRDA provided now.
2100
		 * However if a driver requested this specific regulatory
2101 2102
		 * domain we keep it for its private use
		 */
2103
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2104
			request_wiphy->regd = rd;
2105 2106 2107
		else
			kfree(rd);

2108 2109 2110 2111 2112 2113
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2114 2115
	}

2116 2117 2118 2119 2120
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2121 2122 2123 2124 2125 2126 2127
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2128
	BUG_ON(rd == country_ie_regdomain);
2129

2130 2131 2132 2133
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2134

2135
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2136

2137 2138 2139
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2140

2141 2142
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2143 2144 2145 2146

	if (!intersected_rd)
		return -EINVAL;

2147
	rdev = wiphy_to_dev(request_wiphy);
2148

2149 2150 2151
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2152 2153 2154 2155 2156 2157

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2158
	reset_regdomains();
2159
	cfg80211_regdomain = intersected_rd;
2160 2161 2162 2163 2164

	return 0;
}


2165 2166
/*
 * Use this call to set the current regulatory domain. Conflicts with
2167
 * multiple drivers can be ironed out later. Caller must've already
2168 2169
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2170
int set_regdom(const struct ieee80211_regdomain *rd)
2171 2172 2173
{
	int r;

2174 2175
	assert_cfg80211_lock();

2176 2177
	mutex_lock(&reg_mutex);

2178 2179
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2180 2181
	if (r) {
		kfree(rd);
2182
		mutex_unlock(&reg_mutex);
2183
		return r;
2184
	}
2185 2186

	/* This would make this whole thing pointless */
2187 2188
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2189 2190

	/* update all wiphys now with the new established regulatory domain */
2191
	update_all_wiphy_regulatory(last_request->initiator);
2192

2193
	print_regdomain(cfg80211_regdomain);
2194

2195 2196
	nl80211_send_reg_change_event(last_request);

2197 2198
	mutex_unlock(&reg_mutex);

2199 2200 2201
	return r;
}

2202
/* Caller must hold cfg80211_mutex */
2203 2204
void reg_device_remove(struct wiphy *wiphy)
{
2205
	struct wiphy *request_wiphy = NULL;
2206

2207 2208
	assert_cfg80211_lock();

2209 2210
	mutex_lock(&reg_mutex);

2211 2212
	kfree(wiphy->regd);

2213 2214
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2215

2216
	if (!request_wiphy || request_wiphy != wiphy)
2217
		goto out;
2218

2219
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2220
	last_request->country_ie_env = ENVIRON_ANY;
2221 2222
out:
	mutex_unlock(&reg_mutex);
2223 2224
}

2225 2226
int regulatory_init(void)
{
2227
	int err = 0;
2228

2229 2230 2231
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2232

2233
	spin_lock_init(&reg_requests_lock);
2234
	spin_lock_init(&reg_pending_beacons_lock);
2235

2236
	cfg80211_regdomain = cfg80211_world_regdom;
2237

2238 2239
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2240
	if (err) {
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2255
#endif
2256
	}
2257

2258 2259 2260 2261 2262 2263 2264
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2265 2266 2267 2268 2269
	return 0;
}

void regulatory_exit(void)
{
2270
	struct regulatory_request *reg_request, *tmp;
2271
	struct reg_beacon *reg_beacon, *btmp;
2272 2273 2274

	cancel_work_sync(&reg_work);

2275
	mutex_lock(&cfg80211_mutex);
2276
	mutex_lock(&reg_mutex);
2277

2278
	reset_regdomains();
2279

2280 2281 2282
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2283 2284
	kfree(last_request);

2285
	platform_device_unregister(reg_pdev);
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2315
	mutex_unlock(&reg_mutex);
2316
	mutex_unlock(&cfg80211_mutex);
2317
}