reg.c 61.1 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52
/*
 * Central wireless core regulatory domains, we only need two,
53
 * the current one and a world regulatory domain in case we have no
54 55
 * information to give us an alpha2
 */
56
const struct ieee80211_regdomain *cfg80211_regdomain;
57

58 59
/*
 * We use this as a place for the rd structure built from the
60
 * last parsed country IE to rest until CRDA gets back to us with
61 62
 * what it thinks should apply for the same country
 */
63 64
static const struct ieee80211_regdomain *country_ie_regdomain;

65
/* Used to queue up regulatory hints */
66 67 68
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

69 70 71 72 73 74 75 76 77 78 79 80
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

81 82
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
83
	.n_reg_rules = 5,
84 85
	.alpha2 =  "00",
	.reg_rules = {
86 87
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88 89 90
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
91 92
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
93 94 95 96 97 98 99
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
100
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
101 102
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
103 104 105 106

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
107
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
108 109
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
110 111 112
	}
};

113 114
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
115 116 117

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
118 119 120 121
#else
static char *ieee80211_regdom = "00";
#endif

122 123 124
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

125
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
126 127
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
128
 * We make emphasis we are using the exact same frequencies
129 130
 * as before
 */
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
169 170 171 172
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

209
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
210 211 212 213 214
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
215 216
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217
{
218
	return false;
219
}
220 221
#endif

222 223
static void reset_regdomains(void)
{
224 225 226 227 228 229 230 231 232 233 234 235
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
236

237
	cfg80211_world_regdom = &world_regdom;
238 239 240
	cfg80211_regdomain = NULL;
}

241 242 243 244
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
245
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
246
{
247
	BUG_ON(!last_request);
248 249 250 251 252 253 254

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

255
bool is_world_regdom(const char *alpha2)
256 257 258 259 260 261 262
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
263

264
static bool is_alpha2_set(const char *alpha2)
265 266 267 268 269 270 271
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
272

273 274 275 276 277 278 279
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
280

281
static bool is_unknown_alpha2(const char *alpha2)
282 283 284
{
	if (!alpha2)
		return false;
285 286 287 288
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
289 290 291 292
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
293

294 295 296 297
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
298 299
	/*
	 * Special case where regulatory domain is the
300
	 * result of an intersection between two regulatory domain
301 302
	 * structures
	 */
303 304 305 306 307
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

308
static bool is_an_alpha2(const char *alpha2)
309 310 311 312 313 314 315
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
316

317
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
318 319 320 321 322 323 324 325 326
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

327
static bool regdom_changes(const char *alpha2)
328
{
329 330
	assert_cfg80211_lock();

331 332 333 334 335 336 337
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
383
bool reg_is_valid_request(const char *alpha2)
384
{
385 386 387 388
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
389
}
390

391
/* Sanity check on a regulatory rule */
392
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
393
{
394
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
395 396
	u32 freq_diff;

397
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
398 399 400 401 402 403 404
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

405 406
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
407 408 409 410 411
		return false;

	return true;
}

412
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
413
{
414
	const struct ieee80211_reg_rule *reg_rule = NULL;
415
	unsigned int i;
416

417 418
	if (!rd->n_reg_rules)
		return false;
419

420 421 422
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

423 424 425 426 427 428 429
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
430 431
}

432 433 434
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
435
{
436 437 438 439 440 441 442 443 444 445
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
446
}
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

473 474
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
475 476
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
477 478
 * with our userspace regulatory agent to get lower bounds.
 */
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

523 524
	/*
	 * We need to build a reg rule for each triplet, but first we must
525
	 * calculate the number of reg rules we will need. We will need one
526 527
	 * for each channel subband
	 */
528
	while (country_ie_len >= 3) {
529
		int end_channel = 0;
530 531 532 533 534 535 536 537 538 539 540
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

558
		cur_channel = triplet->chans.first_channel;
559
		cur_sub_max_channel = end_channel;
560 561 562 563 564

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

565 566
		/*
		 * Do not allow overlapping channels. Also channels
567
		 * passed in each subband must be monotonically
568 569
		 * increasing
		 */
570 571 572 573 574 575 576
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

577 578
		/*
		 * When dot11RegulatoryClassesRequired is supported
579 580
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
581 582
		 * don't support them
		 */
583 584 585 586 587 588 589 590 591 592
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

593 594 595 596
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
617
		int end_channel = 0;
618 619 620 621 622 623
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

624 625 626 627
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
628 629 630 631 632 633 634 635 636 637 638 639 640
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

641 642 643 644 645 646 647 648
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

649 650
		/*
		 * The +10 is since the regulatory domain expects
651 652
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
653 654
		 * the channels passed
		 */
655 656 657 658 659
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
660
				end_channel) + 10);
661

662 663 664 665 666
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


682 683 684 685
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

763 764
	/*
	 * First we get a count of the rules we'll need, then we actually
765 766 767
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
768 769
	 * All rules that do check out OK are valid.
	 */
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
797 798
			/*
			 * This time around instead of using the stack lets
799
			 * write to the target rule directly saving ourselves
800 801
			 * a memcpy()
			 */
802 803 804
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
805 806 807 808
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

827 828 829 830
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
831 832 833 834 835 836 837 838 839 840 841 842
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

843 844
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
845
			      u32 desired_bw_khz,
846 847
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
848 849
{
	int i;
850
	bool band_rule_found = false;
851
	const struct ieee80211_regdomain *regd;
852 853 854 855
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
856

857
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
858

859 860 861 862
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
863 864
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
865 866 867 868
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
869 870
		return -EINVAL;

871
	for (i = 0; i < regd->n_reg_rules; i++) {
872 873 874 875
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

876
		rr = &regd->reg_rules[i];
877 878
		fr = &rr->freq_range;
		pr = &rr->power_rule;
879

880 881
		/*
		 * We only need to know if one frequency rule was
882
		 * was in center_freq's band, that's enough, so lets
883 884
		 * not overwrite it once found
		 */
885 886 887
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

888 889 890
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
891

892
		if (band_rule_found && bw_fits) {
893
			*reg_rule = rr;
894
			return 0;
895 896 897
		}
	}

898 899 900
	if (!band_rule_found)
		return -ERANGE;

901
	return -EINVAL;
902
}
903
EXPORT_SYMBOL(freq_reg_info);
904

905 906 907 908
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
909
{
910
	assert_cfg80211_lock();
911 912 913 914 915
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
916
}
917

918 919 920 921 922 923 924 925 926
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
927 928
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
929 930
{
	int r;
931 932
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
933 934
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
935
	const struct ieee80211_freq_range *freq_range = NULL;
936 937
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
938
	struct wiphy *request_wiphy = NULL;
939

940 941
	assert_cfg80211_lock();

942 943
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

944 945 946 947 948
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
949

950 951 952 953
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
954 955

	if (r) {
956 957
		/*
		 * This means no regulatory rule was found in the country IE
958 959 960 961 962 963 964 965 966 967
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
968 969
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
970 971 972 973 974 975 976
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
977 978 979 980
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
981
#ifdef CONFIG_CFG80211_REG_DEBUG
982 983
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
984 985 986 987 988 989 990 991
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
992 993 994
		return;
	}

995
	power_rule = &reg_rule->power_rule;
996 997 998 999
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1000

1001
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1002 1003
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
1004 1005
		/*
		 * This gaurantees the driver's requested regulatory domain
1006
		 * will always be used as a base for further regulatory
1007 1008
		 * settings
		 */
1009
		chan->flags = chan->orig_flags =
1010
			map_regdom_flags(reg_rule->flags) | bw_flags;
1011 1012
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1013
		chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1014 1015 1016 1017 1018
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1019
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1020
	chan->max_antenna_gain = min(chan->orig_mag,
1021
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1022
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1023
	if (chan->orig_mpwr)
1024 1025
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1026
	else
1027
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1028 1029
}

1030
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1031
{
1032 1033 1034 1035 1036
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1037 1038

	for (i = 0; i < sband->n_channels; i++)
1039
		handle_channel(wiphy, band, i);
1040 1041
}

1042 1043
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1044 1045 1046
{
	if (!last_request)
		return true;
1047
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1048
		  wiphy->custom_regulatory)
1049
		return true;
1050 1051 1052 1053
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1054 1055
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1056 1057 1058 1059
		return true;
	return false;
}

1060
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1061
{
1062
	struct cfg80211_registered_device *drv;
1063

1064
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1065
		wiphy_update_regulatory(&drv->wiphy, initiator);
1066 1067
}

1068 1069 1070 1071 1072 1073
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1074 1075
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1076 1077 1078 1079 1080 1081 1082 1083 1084

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1085 1086 1087 1088 1089 1090 1091 1092
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1093 1094
	if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
	    !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1095
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1096
		channel_changed = true;
1097 1098
	}

1099 1100
	if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
	    !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1101
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1102
		channel_changed = true;
1103 1104
	}

1105 1106
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1158 1159
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1160 1161 1162 1163 1164 1165 1166 1167
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1168 1169 1170 1171 1172 1173
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1174 1175 1176 1177 1178
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1229
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1230
	else
1231
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1232 1233

	if (is_ht40_not_allowed(channel_after))
1234
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1235
	else
1236
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1266 1267
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1268 1269
{
	enum ieee80211_band band;
1270

1271
	if (ignore_reg_update(wiphy, initiator))
1272
		goto out;
1273
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1274
		if (wiphy->bands[band])
1275
			handle_band(wiphy, band);
1276
	}
1277 1278
out:
	reg_process_beacons(wiphy);
1279
	reg_process_ht_flags(wiphy);
1280
	if (wiphy->reg_notifier)
1281
		wiphy->reg_notifier(wiphy, last_request);
1282 1283
}

1284 1285 1286 1287 1288 1289
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1290 1291
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1292 1293
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1294
	const struct ieee80211_freq_range *freq_range = NULL;
1295 1296 1297
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1298 1299
	assert_cfg80211_lock();

1300 1301 1302 1303
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1304 1305 1306 1307 1308
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1309 1310 1311 1312 1313 1314 1315

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1316 1317 1318 1319
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1320

1321
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1322
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1323
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1345 1346

	mutex_lock(&cfg80211_mutex);
1347 1348 1349
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1350
	}
1351
	mutex_unlock(&cfg80211_mutex);
1352
}
1353 1354
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1378

1379 1380 1381 1382
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1383 1384
#define REG_INTERSECT	1

1385 1386
/* This has the logic which determines when a new request
 * should be ignored. */
1387 1388
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1389
{
1390
	struct wiphy *last_wiphy = NULL;
1391 1392 1393

	assert_cfg80211_lock();

1394 1395 1396 1397
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1398
	switch (pending_request->initiator) {
1399
	case NL80211_REGDOM_SET_BY_CORE:
1400
		return -EINVAL;
1401
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1402 1403 1404

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1405
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1406
			return -EINVAL;
1407 1408
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1409
			if (last_wiphy != wiphy) {
1410 1411 1412 1413 1414 1415
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1416
				if (regdom_changes(pending_request->alpha2))
1417 1418 1419
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1420 1421 1422 1423
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1424
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1425 1426 1427
				return 0;
			return -EALREADY;
		}
1428
		return REG_INTERSECT;
1429 1430
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1431 1432
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1433
			if (regdom_changes(pending_request->alpha2))
1434
				return 0;
1435
			return -EALREADY;
1436
		}
1437 1438 1439 1440 1441 1442

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1443
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1444
		    !regdom_changes(pending_request->alpha2))
1445 1446
			return -EALREADY;

1447
		return REG_INTERSECT;
1448 1449
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1450
			return REG_INTERSECT;
1451 1452 1453 1454
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1455
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1456 1457
			  last_request->intersect)
			return -EOPNOTSUPP;
1458 1459 1460 1461
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1462 1463 1464
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1465
			if (regdom_changes(last_request->alpha2))
1466 1467 1468
				return -EAGAIN;
		}

1469
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1470
		    !regdom_changes(pending_request->alpha2))
1471 1472
			return -EALREADY;

1473 1474 1475 1476 1477 1478
		return 0;
	}

	return -EINVAL;
}

1479 1480 1481 1482
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1483
 * @pending_request: the regulatory request currently being processed
1484 1485
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1486
 * what it believes should be the current regulatory domain.
1487 1488 1489 1490 1491 1492
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1493 1494
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1495
{
1496
	bool intersect = false;
1497 1498
	int r = 0;

1499 1500
	assert_cfg80211_lock();

1501
	r = ignore_request(wiphy, pending_request);
1502

1503
	if (r == REG_INTERSECT) {
1504 1505
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1506
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1507 1508
			if (r) {
				kfree(pending_request);
1509
				return r;
1510
			}
1511
		}
1512
		intersect = true;
1513
	} else if (r) {
1514 1515
		/*
		 * If the regulatory domain being requested by the
1516
		 * driver has already been set just copy it to the
1517 1518
		 * wiphy
		 */
1519
		if (r == -EALREADY &&
1520 1521
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1522
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1523 1524
			if (r) {
				kfree(pending_request);
1525
				return r;
1526
			}
1527 1528 1529
			r = -EALREADY;
			goto new_request;
		}
1530
		kfree(pending_request);
1531
		return r;
1532
	}
1533

1534
new_request:
1535
	kfree(last_request);
1536

1537 1538
	last_request = pending_request;
	last_request->intersect = intersect;
1539

1540
	pending_request = NULL;
1541 1542

	/* When r == REG_INTERSECT we do need to call CRDA */
1543 1544 1545 1546 1547 1548 1549 1550
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1551
		return r;
1552
	}
1553

1554
	return call_crda(last_request->alpha2);
1555 1556
}

1557
/* This processes *all* regulatory hints */
1558
static void reg_process_hint(struct regulatory_request *reg_request)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1570
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1571
	    !wiphy) {
1572
		kfree(reg_request);
1573 1574 1575
		goto out;
	}

1576
	r = __regulatory_hint(wiphy, reg_request);
1577 1578 1579 1580 1581 1582 1583
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1584
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1596 1597
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1598 1599 1600 1601 1602
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1637 1638 1639
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1640
	reg_process_pending_beacon_hints();
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1668
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1669

1670
	queue_regulatory_request(request);
1671

1672
	return 0;
1673 1674
}

1675 1676
/* User hints */
int regulatory_hint_user(const char *alpha2)
1677
{
1678 1679
	struct regulatory_request *request;

1680
	BUG_ON(!alpha2);
1681

1682 1683 1684 1685 1686 1687 1688
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1689
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1715
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1716 1717 1718 1719

	queue_regulatory_request(request);

	return 0;
1720 1721 1722
}
EXPORT_SYMBOL(regulatory_hint);

1723 1724 1725
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1726 1727
	struct wiphy *request_wiphy;

1728 1729
	assert_cfg80211_lock();

1730 1731 1732 1733
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1734 1735 1736
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1737
		return false;
1738 1739

	if (likely(request_wiphy != wiphy))
1740
		return !country_ie_integrity_changes(country_ie_checksum);
1741 1742
	/*
	 * We should not have let these through at this point, they
1743
	 * should have been picked up earlier by the first alpha2 check
1744 1745
	 * on the device
	 */
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1759
	struct regulatory_request *request;
1760

1761
	mutex_lock(&cfg80211_mutex);
1762

1763 1764 1765 1766 1767
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1768 1769 1770 1771 1772 1773 1774
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1775 1776
	/*
	 * Pending country IE processing, this can happen after we
1777
	 * call CRDA and wait for a response if a beacon was received before
1778 1779
	 * we were able to process the last regulatory_hint_11d() call
	 */
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1791 1792
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1793
	 * we optimize an early check to exit out early if we don't have to
1794 1795
	 * do anything
	 */
1796 1797 1798
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1799 1800
		struct cfg80211_registered_device *drv_last_ie;

1801 1802
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1803

1804 1805 1806 1807
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1808
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1809 1810 1811 1812
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1813 1814 1815 1816 1817
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1818 1819
			/*
			 * the wiphy moved on to another BSSID or the AP
1820 1821 1822
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1823 1824
			 * AP with different settings
			 */
1825 1826
			goto out;
		} else {
1827 1828 1829 1830
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1845 1846
	/*
	 * This will not happen right now but we leave it here for the
1847 1848
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1849 1850 1851 1852 1853 1854
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1855
		goto free_rd_out;
1856

1857 1858 1859 1860
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1861 1862 1863 1864
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1865 1866
	country_ie_regdomain = rd;

1867 1868 1869
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1870
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1871 1872 1873 1874
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1875

1876 1877 1878
	queue_regulatory_request(request);

	return;
1879 1880 1881

free_rd_out:
	kfree(rd);
1882
out:
1883
	mutex_unlock(&cfg80211_mutex);
1884 1885
}
EXPORT_SYMBOL(regulatory_hint_11d);
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1936
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1937 1938
{
	unsigned int i;
1939 1940 1941
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1942 1943 1944 1945 1946 1947 1948 1949 1950

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1951 1952 1953 1954
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1973
static void print_regdomain(const struct ieee80211_regdomain *rd)
1974 1975
{

1976 1977
	if (is_intersected_alpha2(rd->alpha2)) {

1978 1979
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1980 1981 1982 1983
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1984 1985 1986 1987 1988 1989 1990 1991 1992
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1993
					"domain intersected: \n");
1994
	} else if (is_world_regdom(rd->alpha2))
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2010
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2011 2012 2013 2014 2015 2016
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2030
		print_regdomain_info(intersected_rd);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2044
/* Takes ownership of rd only if it doesn't fail */
2045
static int __set_regdom(const struct ieee80211_regdomain *rd)
2046
{
2047
	const struct ieee80211_regdomain *intersected_rd = NULL;
2048
	struct cfg80211_registered_device *drv = NULL;
2049
	struct wiphy *request_wiphy;
2050 2051 2052
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2053
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2054 2055 2056 2057 2058 2059 2060 2061 2062
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2063
	if (!last_request)
2064 2065
		return -EINVAL;

2066 2067
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2068
	 * rd is non static (it means CRDA was present and was used last)
2069 2070
	 * and the pending request came in from a country IE
	 */
2071
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072 2073 2074 2075
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2076
		if (!is_old_static_regdom(cfg80211_regdomain) &&
2077
		    !regdom_changes(rd->alpha2))
2078 2079 2080
			return -EINVAL;
	}

2081 2082
	/*
	 * Now lets set the regulatory domain, update all driver channels
2083 2084
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2085 2086
	 * internal EEPROM data
	 */
2087

2088
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2089 2090
		return -EINVAL;

2091 2092 2093 2094 2095
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2096 2097
	}

2098 2099
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2100
	if (!last_request->intersect) {
2101 2102
		int r;

2103
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2104 2105 2106 2107 2108
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2109 2110 2111 2112
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2113

2114
		BUG_ON(request_wiphy->regd);
2115

2116
		r = reg_copy_regd(&request_wiphy->regd, rd);
2117 2118 2119
		if (r)
			return r;

2120 2121 2122 2123 2124 2125 2126
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2127
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2128

2129 2130 2131
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2132

2133 2134
		/*
		 * We can trash what CRDA provided now.
2135
		 * However if a driver requested this specific regulatory
2136 2137
		 * domain we keep it for its private use
		 */
2138
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2139
			request_wiphy->regd = rd;
2140 2141 2142
		else
			kfree(rd);

2143 2144 2145 2146 2147 2148
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2149 2150
	}

2151 2152 2153 2154 2155 2156
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);
2157
	BUG_ON(rd == country_ie_regdomain);
2158

2159 2160 2161 2162
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2163

2164
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2165

2166 2167 2168
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2169

2170 2171
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2172 2173 2174 2175

	if (!intersected_rd)
		return -EINVAL;

2176
	drv = wiphy_to_dev(request_wiphy);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2187
	reset_regdomains();
2188
	cfg80211_regdomain = intersected_rd;
2189 2190 2191 2192 2193

	return 0;
}


2194 2195
/*
 * Use this call to set the current regulatory domain. Conflicts with
2196
 * multiple drivers can be ironed out later. Caller must've already
2197 2198
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2199
int set_regdom(const struct ieee80211_regdomain *rd)
2200 2201 2202
{
	int r;

2203 2204
	assert_cfg80211_lock();

2205 2206
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2207 2208
	if (r) {
		kfree(rd);
2209
		return r;
2210
	}
2211 2212

	/* This would make this whole thing pointless */
2213 2214
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2215 2216

	/* update all wiphys now with the new established regulatory domain */
2217
	update_all_wiphy_regulatory(last_request->initiator);
2218

2219
	print_regdomain(cfg80211_regdomain);
2220

2221 2222
	nl80211_send_reg_change_event(last_request);

2223 2224 2225
	return r;
}

2226
/* Caller must hold cfg80211_mutex */
2227 2228
void reg_device_remove(struct wiphy *wiphy)
{
2229
	struct wiphy *request_wiphy = NULL;
2230

2231 2232
	assert_cfg80211_lock();

2233 2234
	kfree(wiphy->regd);

2235 2236
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2237

2238
	if (!request_wiphy || request_wiphy != wiphy)
2239
		return;
2240

2241
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2242 2243 2244
	last_request->country_ie_env = ENVIRON_ANY;
}

2245 2246
int regulatory_init(void)
{
2247
	int err = 0;
2248

2249 2250 2251
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2252

2253
	spin_lock_init(&reg_requests_lock);
2254
	spin_lock_init(&reg_pending_beacons_lock);
2255

2256
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2257
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2258

2259
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2260
	print_regdomain_info(cfg80211_regdomain);
2261 2262
	/*
	 * The old code still requests for a new regdomain and if
2263
	 * you have CRDA you get it updated, otherwise you get
2264 2265 2266 2267 2268 2269
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2270
	 */
2271
	err = regulatory_hint_core(ieee80211_regdom);
2272
#else
2273
	cfg80211_regdomain = cfg80211_world_regdom;
2274

2275
	err = regulatory_hint_core(ieee80211_regdom);
2276
#endif
2277
	if (err) {
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2292
#endif
2293
	}
2294

2295 2296 2297 2298 2299
	return 0;
}

void regulatory_exit(void)
{
2300
	struct regulatory_request *reg_request, *tmp;
2301
	struct reg_beacon *reg_beacon, *btmp;
2302 2303 2304

	cancel_work_sync(&reg_work);

2305
	mutex_lock(&cfg80211_mutex);
2306

2307
	reset_regdomains();
2308

2309 2310 2311
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2312 2313
	kfree(last_request);

2314
	platform_device_unregister(reg_pdev);
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2344
	mutex_unlock(&cfg80211_mutex);
2345
}