reg.c 56.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52
#define REG_DBG_PRINT(format, args...) \
53
	do { \
54
		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 56
	} while (0)
#else
57
#define REG_DBG_PRINT(args...)
58 59
#endif

60
/* Receipt of information from last regulatory request */
61
static struct regulatory_request *last_request;
62

63 64
/* To trigger userspace events */
static struct platform_device *reg_pdev;
65

66 67
/*
 * Central wireless core regulatory domains, we only need two,
68
 * the current one and a world regulatory domain in case we have no
69 70
 * information to give us an alpha2
 */
71
const struct ieee80211_regdomain *cfg80211_regdomain;
72

73 74 75 76 77 78
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
79
static DEFINE_MUTEX(reg_mutex);
80 81 82 83 84

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
85

86
/* Used to queue up regulatory hints */
87 88 89
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

90 91 92 93 94 95 96 97 98 99 100 101
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

102 103 104
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

105 106
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
107
	.n_reg_rules = 5,
108 109
	.alpha2 =  "00",
	.reg_rules = {
110 111
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
112 113 114
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
115 116
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
117 118 119 120 121 122 123
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
124
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
125 126
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
127 128 129 130

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
131
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
132 133
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
134 135 136
	}
};

137 138
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
139

140
static char *ieee80211_regdom = "00";
141
static char user_alpha2[2];
142

143 144 145 146 147
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
148 149 150 151 152 153 154 155 156 157
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
158

159
	cfg80211_world_regdom = &world_regdom;
160 161 162
	cfg80211_regdomain = NULL;
}

163 164 165 166
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
167
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
168
{
169
	BUG_ON(!last_request);
170 171 172 173 174 175 176

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

177
bool is_world_regdom(const char *alpha2)
178 179 180 181 182 183 184
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
185

186
static bool is_alpha2_set(const char *alpha2)
187 188 189 190 191 192 193
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
194

195
static bool is_unknown_alpha2(const char *alpha2)
196 197 198
{
	if (!alpha2)
		return false;
199 200 201 202
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
203 204 205 206
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
207

208 209 210 211
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
212 213
	/*
	 * Special case where regulatory domain is the
214
	 * result of an intersection between two regulatory domain
215 216
	 * structures
	 */
217 218 219 220 221
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

222
static bool is_an_alpha2(const char *alpha2)
223 224 225
{
	if (!alpha2)
		return false;
226
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
227 228 229
		return true;
	return false;
}
230

231
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
232 233 234 235 236 237 238 239 240
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

241
static bool regdom_changes(const char *alpha2)
242
{
243 244
	assert_cfg80211_lock();

245 246 247 248 249 250 251
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
304
static DEFINE_MUTEX(reg_regdb_search_mutex);
305 306 307 308 309 310 311

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

312
	mutex_lock(&reg_regdb_search_mutex);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
335
	mutex_unlock(&reg_regdb_search_mutex);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

353
	mutex_lock(&reg_regdb_search_mutex);
354
	list_add_tail(&request->list, &reg_regdb_search_list);
355
	mutex_unlock(&reg_regdb_search_mutex);
356 357 358 359 360 361 362

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

363 364 365 366
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
367 368 369 370 371 372 373 374 375
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
376
		pr_info("Calling CRDA for country: %c%c\n",
377 378
			alpha2[0], alpha2[1]);
	else
379
		pr_info("Calling CRDA to update world regulatory domain\n");
380

381 382 383
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

384 385 386 387 388 389 390
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
391
bool reg_is_valid_request(const char *alpha2)
392
{
393 394
	assert_cfg80211_lock();

395 396 397 398
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
399
}
400

401
/* Sanity check on a regulatory rule */
402
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403
{
404
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
405 406
	u32 freq_diff;

407
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
408 409 410 411 412 413 414
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

415 416
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
417 418 419 420 421
		return false;

	return true;
}

422
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423
{
424
	const struct ieee80211_reg_rule *reg_rule = NULL;
425
	unsigned int i;
426

427 428
	if (!rd->n_reg_rules)
		return false;
429

430 431 432
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

433 434 435 436 437 438 439
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
440 441
}

442 443 444
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
445
{
446 447 448 449 450 451 452 453 454 455
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
456
}
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

483 484 485 486
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

564 565
	/*
	 * First we get a count of the rules we'll need, then we actually
566 567 568
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
569 570
	 * All rules that do check out OK are valid.
	 */
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
598 599
			/*
			 * This time around instead of using the stack lets
600
			 * write to the target rule directly saving ourselves
601 602
			 * a memcpy()
			 */
603 604 605
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
606 607 608 609
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

628 629 630 631
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
632 633 634 635 636 637 638 639 640 641 642 643
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

644 645
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
646
			      u32 desired_bw_khz,
647 648
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
649 650
{
	int i;
651
	bool band_rule_found = false;
652
	const struct ieee80211_regdomain *regd;
653 654 655 656
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
657

658
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
659

660 661 662 663
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
664 665
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
666
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
667 668 669 670
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
671 672
		return -EINVAL;

673
	for (i = 0; i < regd->n_reg_rules; i++) {
674 675 676 677
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

678
		rr = &regd->reg_rules[i];
679 680
		fr = &rr->freq_range;
		pr = &rr->power_rule;
681

682 683
		/*
		 * We only need to know if one frequency rule was
684
		 * was in center_freq's band, that's enough, so lets
685 686
		 * not overwrite it once found
		 */
687 688 689
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

690 691 692
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
693

694
		if (band_rule_found && bw_fits) {
695
			*reg_rule = rr;
696
			return 0;
697 698 699
		}
	}

700 701 702
	if (!band_rule_found)
		return -ERANGE;

703
	return -EINVAL;
704 705
}

706 707 708 709
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
710
{
711
	assert_cfg80211_lock();
712 713 714 715 716
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
717
}
718
EXPORT_SYMBOL(freq_reg_info);
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

754
	REG_DBG_PRINT("Updating information on frequency %d MHz "
755
		      "for a %d MHz width channel with regulatory rule:\n",
756 757 758
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

759
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
760 761 762 763 764 765 766 767 768 769 770 771
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
772 773
#endif

774 775 776 777 778 779 780 781 782
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
783 784 785
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
786
			   unsigned int chan_idx)
787 788
{
	int r;
789 790
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
791 792
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
793
	const struct ieee80211_freq_range *freq_range = NULL;
794 795
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
796
	struct wiphy *request_wiphy = NULL;
797

798 799
	assert_cfg80211_lock();

800 801
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

802 803 804 805 806
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
807

808 809 810 811
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if (r) {
		/*
		 * We will disable all channels that do not match our
		 * recieved regulatory rule unless the hint is coming
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

828
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
829
		chan->flags = IEEE80211_CHAN_DISABLED;
830
		return;
831
	}
832

833 834
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

835
	power_rule = &reg_rule->power_rule;
836 837 838 839
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
840

841
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
842
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
843
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
844 845
		/*
		 * This gaurantees the driver's requested regulatory domain
846
		 * will always be used as a base for further regulatory
847 848
		 * settings
		 */
849
		chan->flags = chan->orig_flags =
850
			map_regdom_flags(reg_rule->flags) | bw_flags;
851 852 853 854 855 856 857
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

858
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
859
	chan->max_antenna_gain = min(chan->orig_mag,
860
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
861
	if (chan->orig_mpwr)
862 863
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
864
	else
865
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
866 867
}

868 869 870
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
871
{
872 873 874 875 876
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
877 878

	for (i = 0; i < sband->n_channels; i++)
879
		handle_channel(wiphy, initiator, band, i);
880 881
}

882 883
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
884
{
885
	if (!last_request) {
886
		REG_DBG_PRINT("Ignoring regulatory request %s since "
887 888
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
889
		return true;
890 891
	}

892
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
893
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
894
		REG_DBG_PRINT("Ignoring regulatory request %s "
895 896 897
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
898
		return true;
899 900
	}

901 902 903 904
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
905
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
906
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907
	    !is_world_regdom(last_request->alpha2)) {
908
		REG_DBG_PRINT("Ignoring regulatory request %s "
909 910 911
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
912
		return true;
913 914
	}

915 916 917
	return false;
}

918
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
919
{
920
	struct cfg80211_registered_device *rdev;
921

922 923
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
924 925
}

926 927 928 929 930 931
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
932 933
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
934 935 936 937 938 939 940 941 942

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

943 944 945 946 947
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
948
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
949 950
		return;

951 952 953
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

954
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
955
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
956
		channel_changed = true;
957 958
	}

959
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
960
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
961
		channel_changed = true;
962 963
	}

964 965
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1017 1018
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1019
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1020 1021 1022 1023 1024 1025 1026
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1027 1028 1029 1030 1031 1032
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1033 1034 1035 1036 1037
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1088
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1089
	else
1090
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1091 1092

	if (is_ht40_not_allowed(channel_after))
1093
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1094
	else
1095
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1125 1126
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1127 1128
{
	enum ieee80211_band band;
1129

1130
	if (ignore_reg_update(wiphy, initiator))
1131
		goto out;
1132
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1133
		if (wiphy->bands[band])
1134
			handle_band(wiphy, band, initiator);
1135
	}
1136 1137
out:
	reg_process_beacons(wiphy);
1138
	reg_process_ht_flags(wiphy);
1139
	if (wiphy->reg_notifier)
1140
		wiphy->reg_notifier(wiphy, last_request);
1141 1142
}

1143 1144 1145 1146 1147 1148
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1149 1150
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1151 1152
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1153
	const struct ieee80211_freq_range *freq_range = NULL;
1154 1155 1156
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1157
	assert_reg_lock();
1158

1159 1160 1161 1162
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1163 1164 1165 1166 1167
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1168 1169

	if (r) {
1170
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1171 1172 1173 1174
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1175 1176 1177 1178
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1179 1180
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1181
	power_rule = &reg_rule->power_rule;
1182 1183 1184 1185
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1186

1187
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1210
	unsigned int bands_set = 0;
1211

1212
	mutex_lock(&reg_mutex);
1213
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1214 1215 1216 1217
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1218
	}
1219
	mutex_unlock(&reg_mutex);
1220 1221 1222 1223 1224 1225

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1226
}
1227 1228
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1229 1230 1231 1232
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1233 1234
#define REG_INTERSECT	1

1235 1236
/* This has the logic which determines when a new request
 * should be ignored. */
1237 1238
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1239
{
1240
	struct wiphy *last_wiphy = NULL;
1241 1242 1243

	assert_cfg80211_lock();

1244 1245 1246 1247
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1248
	switch (pending_request->initiator) {
1249
	case NL80211_REGDOM_SET_BY_CORE:
1250
		return 0;
1251
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1252 1253 1254

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1255
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1256
			return -EINVAL;
1257 1258
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1259
			if (last_wiphy != wiphy) {
1260 1261
				/*
				 * Two cards with two APs claiming different
1262
				 * Country IE alpha2s. We could
1263 1264 1265
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1266
				if (regdom_changes(pending_request->alpha2))
1267 1268 1269
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1270 1271 1272 1273
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1274
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1275 1276 1277
				return 0;
			return -EALREADY;
		}
1278
		return 0;
1279 1280
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1281
			if (regdom_changes(pending_request->alpha2))
1282
				return 0;
1283
			return -EALREADY;
1284
		}
1285 1286 1287 1288 1289 1290

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1291
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1292
		    !regdom_changes(pending_request->alpha2))
1293 1294
			return -EALREADY;

1295
		return REG_INTERSECT;
1296 1297
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1298
			return REG_INTERSECT;
1299 1300 1301 1302
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1303
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1304 1305
			  last_request->intersect)
			return -EOPNOTSUPP;
1306 1307 1308 1309
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1310 1311 1312
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1313
			if (regdom_changes(last_request->alpha2))
1314 1315 1316
				return -EAGAIN;
		}

1317
		if (!regdom_changes(pending_request->alpha2))
1318 1319
			return -EALREADY;

1320 1321 1322 1323 1324 1325
		return 0;
	}

	return -EINVAL;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

	if (need_more_processing)
		schedule_work(&reg_work);
}

1341 1342 1343 1344
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1345
 * @pending_request: the regulatory request currently being processed
1346 1347
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1348
 * what it believes should be the current regulatory domain.
1349 1350 1351 1352
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1353
 * Caller must hold &cfg80211_mutex and &reg_mutex
1354
 */
1355 1356
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1357
{
1358
	bool intersect = false;
1359 1360
	int r = 0;

1361 1362
	assert_cfg80211_lock();

1363
	r = ignore_request(wiphy, pending_request);
1364

1365
	if (r == REG_INTERSECT) {
1366 1367
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1368
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 1370
			if (r) {
				kfree(pending_request);
1371
				return r;
1372
			}
1373
		}
1374
		intersect = true;
1375
	} else if (r) {
1376 1377
		/*
		 * If the regulatory domain being requested by the
1378
		 * driver has already been set just copy it to the
1379 1380
		 * wiphy
		 */
1381
		if (r == -EALREADY &&
1382 1383
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1384
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 1386
			if (r) {
				kfree(pending_request);
1387
				return r;
1388
			}
1389 1390 1391
			r = -EALREADY;
			goto new_request;
		}
1392
		kfree(pending_request);
1393
		return r;
1394
	}
1395

1396
new_request:
1397
	kfree(last_request);
1398

1399 1400
	last_request = pending_request;
	last_request->intersect = intersect;
1401

1402
	pending_request = NULL;
1403

1404 1405 1406 1407 1408
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1409
	/* When r == REG_INTERSECT we do need to call CRDA */
1410 1411 1412 1413 1414 1415
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1416
		if (r == -EALREADY) {
1417
			nl80211_send_reg_change_event(last_request);
1418 1419
			reg_set_request_processed();
		}
1420
		return r;
1421
	}
1422

1423
	return call_crda(last_request->alpha2);
1424 1425
}

1426
/* This processes *all* regulatory hints */
1427
static void reg_process_hint(struct regulatory_request *reg_request)
1428 1429 1430
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1431
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1432 1433 1434 1435 1436 1437

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1438
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439
	    !wiphy) {
1440
		kfree(reg_request);
1441
		return;
1442 1443
	}

1444
	r = __regulatory_hint(wiphy, reg_request);
1445
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1446 1447
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1448
		wiphy_update_regulatory(wiphy, initiator);
1449 1450
}

1451 1452 1453 1454 1455
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1456
static void reg_process_pending_hints(void)
1457
{
1458 1459
	struct regulatory_request *reg_request;

1460 1461 1462
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1463 1464 1465 1466 1467 1468 1469
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
			      "for it to be processed...");
		goto out;
	}

1470 1471
	spin_lock(&reg_requests_lock);

1472
	if (list_empty(&reg_requests_list)) {
1473
		spin_unlock(&reg_requests_lock);
1474
		goto out;
1475
	}
1476 1477 1478 1479 1480 1481

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1482
	spin_unlock(&reg_requests_lock);
1483

1484 1485 1486
	reg_process_hint(reg_request);

out:
1487 1488
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1489 1490
}

1491 1492 1493
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1494
	struct cfg80211_registered_device *rdev;
1495 1496
	struct reg_beacon *pending_beacon, *tmp;

1497 1498 1499 1500
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1517 1518
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1529 1530 1531
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1532
	reg_process_pending_beacon_hints();
1533 1534 1535 1536
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1537 1538 1539 1540 1541
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1542 1543 1544 1545 1546 1547 1548
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1549 1550 1551 1552
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1553 1554 1555 1556
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1557 1558
	kfree(last_request);
	last_request = NULL;
1559 1560 1561 1562 1563 1564 1565 1566

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1567
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1568

1569
	queue_regulatory_request(request);
1570

1571
	return 0;
1572 1573
}

1574 1575
/* User hints */
int regulatory_hint_user(const char *alpha2)
1576
{
1577 1578
	struct regulatory_request *request;

1579
	BUG_ON(!alpha2);
1580

1581 1582 1583 1584 1585 1586 1587
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1588
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1614
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1615 1616 1617 1618

	queue_regulatory_request(request);

	return 0;
1619 1620 1621
}
EXPORT_SYMBOL(regulatory_hint);

1622 1623 1624 1625
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1626
void regulatory_hint_11d(struct wiphy *wiphy,
1627 1628 1629
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1630 1631 1632
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1633
	struct regulatory_request *request;
1634

1635
	mutex_lock(&reg_mutex);
1636

1637 1638
	if (unlikely(!last_request))
		goto out;
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1655
	/*
1656
	 * We will run this only upon a successful connection on cfg80211.
1657 1658
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1659
	 */
1660 1661
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1662 1663
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1664

1665 1666
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1667
		goto out;
1668 1669

	request->wiphy_idx = get_wiphy_idx(wiphy);
1670 1671
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1672
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1673 1674
	request->country_ie_env = env;

1675
	mutex_unlock(&reg_mutex);
1676

1677 1678 1679
	queue_regulatory_request(request);

	return;
1680

1681
out:
1682
	mutex_unlock(&reg_mutex);
1683
}
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1695
			REG_DBG_PRINT("Restoring regulatory settings "
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1706
				REG_DBG_PRINT("Keeping preference on "
1707 1708 1709 1710 1711 1712 1713
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1714
			REG_DBG_PRINT("Restoring regulatory settings "
1715 1716 1717 1718 1719 1720 1721
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1722
		REG_DBG_PRINT("Keeping preference on "
1723 1724 1725 1726 1727 1728
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1729
		REG_DBG_PRINT("Restoring regulatory settings\n");
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
1797
	REG_DBG_PRINT("All devices are disconnected, going to "
1798 1799 1800 1801
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1827
	REG_DBG_PRINT("Found new beacon on "
1828 1829 1830 1831 1832
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1850
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1851 1852
{
	unsigned int i;
1853 1854 1855
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1856

1857
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1858 1859 1860 1861 1862 1863

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1864 1865 1866 1867
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1868
		if (power_rule->max_antenna_gain)
1869
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1870 1871 1872 1873 1874 1875
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1876
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1877 1878 1879 1880 1881 1882 1883
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1884
static void print_regdomain(const struct ieee80211_regdomain *rd)
1885 1886
{

1887 1888
	if (is_intersected_alpha2(rd->alpha2)) {

1889 1890
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 1892
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1893
				last_request->wiphy_idx);
1894
			if (rdev) {
1895
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1896 1897
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1898
			} else
1899
				pr_info("Current regulatory domain intersected:\n");
1900
		} else
1901
			pr_info("Current regulatory domain intersected:\n");
1902
	} else if (is_world_regdom(rd->alpha2))
1903
		pr_info("World regulatory domain updated:\n");
1904 1905
	else {
		if (is_unknown_alpha2(rd->alpha2))
1906
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1907
		else
1908
			pr_info("Regulatory domain changed to country: %c%c\n",
1909 1910 1911 1912 1913
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1914
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1915
{
1916
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1917 1918 1919
	print_rd_rules(rd);
}

1920
/* Takes ownership of rd only if it doesn't fail */
1921
static int __set_regdom(const struct ieee80211_regdomain *rd)
1922
{
1923
	const struct ieee80211_regdomain *intersected_rd = NULL;
1924
	struct cfg80211_registered_device *rdev = NULL;
1925
	struct wiphy *request_wiphy;
1926 1927 1928
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1929
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1930 1931 1932 1933 1934 1935 1936 1937 1938
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1939
	if (!last_request)
1940 1941
		return -EINVAL;

1942 1943
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1944
	 * rd is non static (it means CRDA was present and was used last)
1945 1946
	 * and the pending request came in from a country IE
	 */
1947
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1948 1949 1950 1951
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1952
		if (!regdom_changes(rd->alpha2))
1953 1954 1955
			return -EINVAL;
	}

1956 1957
	/*
	 * Now lets set the regulatory domain, update all driver channels
1958 1959
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1960 1961
	 * internal EEPROM data
	 */
1962

1963
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1964 1965
		return -EINVAL;

1966
	if (!is_valid_rd(rd)) {
1967
		pr_err("Invalid regulatory domain detected:\n");
1968 1969
		print_regdomain_info(rd);
		return -EINVAL;
1970 1971
	}

1972 1973
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1974
	if (!last_request->intersect) {
1975 1976
		int r;

1977
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1978 1979 1980 1981 1982
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1983 1984 1985 1986
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1987

1988 1989 1990 1991 1992 1993
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1994

1995
		r = reg_copy_regd(&request_wiphy->regd, rd);
1996 1997 1998
		if (r)
			return r;

1999 2000 2001 2002 2003 2004 2005
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2006
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2007

2008 2009 2010
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2011

2012 2013
		/*
		 * We can trash what CRDA provided now.
2014
		 * However if a driver requested this specific regulatory
2015 2016
		 * domain we keep it for its private use
		 */
2017
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2018
			request_wiphy->regd = rd;
2019 2020 2021
		else
			kfree(rd);

2022 2023 2024 2025 2026 2027
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2028 2029
	}

2030 2031 2032
	if (!intersected_rd)
		return -EINVAL;

2033
	rdev = wiphy_to_dev(request_wiphy);
2034

2035 2036 2037
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2038 2039 2040 2041 2042 2043

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2044
	reset_regdomains();
2045
	cfg80211_regdomain = intersected_rd;
2046 2047 2048 2049 2050

	return 0;
}


2051 2052
/*
 * Use this call to set the current regulatory domain. Conflicts with
2053
 * multiple drivers can be ironed out later. Caller must've already
2054 2055
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2056
int set_regdom(const struct ieee80211_regdomain *rd)
2057 2058 2059
{
	int r;

2060 2061
	assert_cfg80211_lock();

2062 2063
	mutex_lock(&reg_mutex);

2064 2065
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2066 2067
	if (r) {
		kfree(rd);
2068
		mutex_unlock(&reg_mutex);
2069
		return r;
2070
	}
2071 2072

	/* This would make this whole thing pointless */
2073 2074
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2075 2076

	/* update all wiphys now with the new established regulatory domain */
2077
	update_all_wiphy_regulatory(last_request->initiator);
2078

2079
	print_regdomain(cfg80211_regdomain);
2080

2081 2082
	nl80211_send_reg_change_event(last_request);

2083 2084
	reg_set_request_processed();

2085 2086
	mutex_unlock(&reg_mutex);

2087 2088 2089
	return r;
}

2090
/* Caller must hold cfg80211_mutex */
2091 2092
void reg_device_remove(struct wiphy *wiphy)
{
2093
	struct wiphy *request_wiphy = NULL;
2094

2095 2096
	assert_cfg80211_lock();

2097 2098
	mutex_lock(&reg_mutex);

2099 2100
	kfree(wiphy->regd);

2101 2102
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2103

2104
	if (!request_wiphy || request_wiphy != wiphy)
2105
		goto out;
2106

2107
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2108
	last_request->country_ie_env = ENVIRON_ANY;
2109 2110
out:
	mutex_unlock(&reg_mutex);
2111 2112
}

2113
int __init regulatory_init(void)
2114
{
2115
	int err = 0;
2116

2117 2118 2119
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2120

2121
	spin_lock_init(&reg_requests_lock);
2122
	spin_lock_init(&reg_pending_beacons_lock);
2123

2124
	cfg80211_regdomain = cfg80211_world_regdom;
2125

2126 2127 2128
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2129 2130
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2131
	if (err) {
2132 2133 2134 2135 2136 2137 2138 2139 2140
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2141
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2142 2143 2144
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2145
#endif
2146
	}
2147

2148 2149 2150 2151 2152 2153 2154
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2155 2156 2157
	return 0;
}

2158
void /* __init_or_exit */ regulatory_exit(void)
2159
{
2160
	struct regulatory_request *reg_request, *tmp;
2161
	struct reg_beacon *reg_beacon, *btmp;
2162 2163 2164

	cancel_work_sync(&reg_work);

2165
	mutex_lock(&cfg80211_mutex);
2166
	mutex_lock(&reg_mutex);
2167

2168
	reset_regdomains();
2169

2170 2171
	kfree(last_request);

2172
	platform_device_unregister(reg_pdev);
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2202
	mutex_unlock(&reg_mutex);
2203
	mutex_unlock(&cfg80211_mutex);
2204
}