reg.c 53.2 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38
#include <linux/list.h>
#include <linux/random.h>
39
#include <linux/ctype.h>
40 41 42
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
43
#include "core.h"
44
#include "reg.h"
45
#include "regdb.h"
46
#include "nl80211.h"
47

48
#ifdef CONFIG_CFG80211_REG_DEBUG
49
#define REG_DBG_PRINT(format, args...) \
50
	do { \
51
		printk(KERN_DEBUG format , ## args); \
52 53
	} while (0)
#else
54
#define REG_DBG_PRINT(args...)
55 56
#endif

57
/* Receipt of information from last regulatory request */
58
static struct regulatory_request *last_request;
59

60 61
/* To trigger userspace events */
static struct platform_device *reg_pdev;
62

63 64
/*
 * Central wireless core regulatory domains, we only need two,
65
 * the current one and a world regulatory domain in case we have no
66 67
 * information to give us an alpha2
 */
68
const struct ieee80211_regdomain *cfg80211_regdomain;
69

70 71 72 73 74 75
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
76
static DEFINE_MUTEX(reg_mutex);
77 78 79 80 81

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
82

83
/* Used to queue up regulatory hints */
84 85 86
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

87 88 89 90 91 92 93 94 95 96 97 98
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

99 100
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
101
	.n_reg_rules = 5,
102 103
	.alpha2 =  "00",
	.reg_rules = {
104 105
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 107 108
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 110
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
111 112 113 114 115 116 117
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
118
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 120
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
121 122 123 124

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
125
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 127
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
128 129 130
	}
};

131 132
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
133

134
static char *ieee80211_regdom = "00";
135
static char user_alpha2[2];
136

137 138 139 140 141
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
142 143 144 145 146 147 148 149 150 151
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
152

153
	cfg80211_world_regdom = &world_regdom;
154 155 156
	cfg80211_regdomain = NULL;
}

157 158 159 160
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
161
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162
{
163
	BUG_ON(!last_request);
164 165 166 167 168 169 170

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

171
bool is_world_regdom(const char *alpha2)
172 173 174 175 176 177 178
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
179

180
static bool is_alpha2_set(const char *alpha2)
181 182 183 184 185 186 187
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
188

189
static bool is_unknown_alpha2(const char *alpha2)
190 191 192
{
	if (!alpha2)
		return false;
193 194 195 196
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
197 198 199 200
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
201

202 203 204 205
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
206 207
	/*
	 * Special case where regulatory domain is the
208
	 * result of an intersection between two regulatory domain
209 210
	 * structures
	 */
211 212 213 214 215
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

216
static bool is_an_alpha2(const char *alpha2)
217 218 219
{
	if (!alpha2)
		return false;
220
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 222 223
		return true;
	return false;
}
224

225
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 227 228 229 230 231 232 233 234
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

235
static bool regdom_changes(const char *alpha2)
236
{
237 238
	assert_cfg80211_lock();

239 240 241 242 243 244 245
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
298
static DEFINE_MUTEX(reg_regdb_search_mutex);
299 300 301 302 303 304 305

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

306
	mutex_lock(&reg_regdb_search_mutex);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
329
	mutex_unlock(&reg_regdb_search_mutex);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

347
	mutex_lock(&reg_regdb_search_mutex);
348
	list_add_tail(&request->list, &reg_regdb_search_list);
349
	mutex_unlock(&reg_regdb_search_mutex);
350 351 352 353 354 355 356

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

376 377 378
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

379 380 381 382 383 384 385
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
386
bool reg_is_valid_request(const char *alpha2)
387
{
388 389
	assert_cfg80211_lock();

390 391 392 393
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
394
}
395

396
/* Sanity check on a regulatory rule */
397
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398
{
399
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 401
	u32 freq_diff;

402
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 404 405 406 407 408 409
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

410 411
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
412 413 414 415 416
		return false;

	return true;
}

417
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418
{
419
	const struct ieee80211_reg_rule *reg_rule = NULL;
420
	unsigned int i;
421

422 423
	if (!rd->n_reg_rules)
		return false;
424

425 426 427
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

428 429 430 431 432 433 434
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
435 436
}

437 438 439
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
440
{
441 442 443 444 445 446 447 448 449 450
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
451
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479 480 481
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

559 560
	/*
	 * First we get a count of the rules we'll need, then we actually
561 562 563
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
564 565
	 * All rules that do check out OK are valid.
	 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
593 594
			/*
			 * This time around instead of using the stack lets
595
			 * write to the target rule directly saving ourselves
596 597
			 * a memcpy()
			 */
598 599 600
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
601 602 603 604
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

623 624 625 626
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
627 628 629 630 631 632 633 634 635 636 637 638
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

639 640
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
641
			      u32 desired_bw_khz,
642 643
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
644 645
{
	int i;
646
	bool band_rule_found = false;
647
	const struct ieee80211_regdomain *regd;
648 649 650 651
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
652

653
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
654

655 656 657 658
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
659 660
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 662 663 664
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
665 666
		return -EINVAL;

667
	for (i = 0; i < regd->n_reg_rules; i++) {
668 669 670 671
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

672
		rr = &regd->reg_rules[i];
673 674
		fr = &rr->freq_range;
		pr = &rr->power_rule;
675

676 677
		/*
		 * We only need to know if one frequency rule was
678
		 * was in center_freq's band, that's enough, so lets
679 680
		 * not overwrite it once found
		 */
681 682 683
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

684 685 686
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
687

688
		if (band_rule_found && bw_fits) {
689
			*reg_rule = rr;
690
			return 0;
691 692 693
		}
	}

694 695 696
	if (!band_rule_found)
		return -ERANGE;

697
	return -EINVAL;
698 699
}

700 701 702 703
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
704
{
705
	assert_cfg80211_lock();
706 707 708 709 710
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
711
}
712
EXPORT_SYMBOL(freq_reg_info);
713

714 715 716 717 718 719 720 721 722
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
723 724 725
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
726
			   unsigned int chan_idx)
727 728
{
	int r;
729 730
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
731 732
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
733
	const struct ieee80211_freq_range *freq_range = NULL;
734 735
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
736
	struct wiphy *request_wiphy = NULL;
737

738 739
	assert_cfg80211_lock();

740 741
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

742 743 744 745 746
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
747

748 749 750 751
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
752

753
	if (r)
754 755
		return;

756
	power_rule = &reg_rule->power_rule;
757 758 759 760
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
761

762
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
763
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
764
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
765 766
		/*
		 * This gaurantees the driver's requested regulatory domain
767
		 * will always be used as a base for further regulatory
768 769
		 * settings
		 */
770
		chan->flags = chan->orig_flags =
771
			map_regdom_flags(reg_rule->flags) | bw_flags;
772 773 774 775 776 777 778
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

779
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
780
	chan->max_antenna_gain = min(chan->orig_mag,
781
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
782
	if (chan->orig_mpwr)
783 784
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
785
	else
786
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
787 788
}

789 790 791
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
792
{
793 794 795 796 797
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
798 799

	for (i = 0; i < sband->n_channels; i++)
800
		handle_channel(wiphy, initiator, band, i);
801 802
}

803 804
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
805 806 807
{
	if (!last_request)
		return true;
808
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
809
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
810
		return true;
811 812 813 814
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
815
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
816
	    !is_world_regdom(last_request->alpha2))
817 818 819 820
		return true;
	return false;
}

821
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
822
{
823
	struct cfg80211_registered_device *rdev;
824

825 826
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
827 828
}

829 830 831 832 833 834
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
835 836
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
837 838 839 840 841 842 843 844 845

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

846 847 848 849 850
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
851
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
852 853
		return;

854 855 856
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

857
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
858
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
859
		channel_changed = true;
860 861
	}

862
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
863
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
864
		channel_changed = true;
865 866
	}

867 868
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
920 921
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
922
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
923 924 925 926 927 928 929
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
930 931 932 933 934 935
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
936 937 938 939 940
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
991
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
992
	else
993
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
994 995

	if (is_ht40_not_allowed(channel_after))
996
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
997
	else
998
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1028 1029
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1030 1031
{
	enum ieee80211_band band;
1032

1033
	if (ignore_reg_update(wiphy, initiator))
1034
		goto out;
1035
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1036
		if (wiphy->bands[band])
1037
			handle_band(wiphy, band, initiator);
1038
	}
1039 1040
out:
	reg_process_beacons(wiphy);
1041
	reg_process_ht_flags(wiphy);
1042
	if (wiphy->reg_notifier)
1043
		wiphy->reg_notifier(wiphy, last_request);
1044 1045
}

1046 1047 1048 1049 1050 1051
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1052 1053
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1054 1055
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1056
	const struct ieee80211_freq_range *freq_range = NULL;
1057 1058 1059
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1060
	assert_reg_lock();
1061

1062 1063 1064 1065
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1066 1067 1068 1069 1070
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1071 1072 1073 1074 1075 1076 1077

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1078 1079 1080 1081
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1082

1083
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1106
	unsigned int bands_set = 0;
1107

1108
	mutex_lock(&reg_mutex);
1109
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 1111 1112 1113
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1114
	}
1115
	mutex_unlock(&reg_mutex);
1116 1117 1118 1119 1120 1121

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1122
}
1123 1124
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1125 1126 1127 1128
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1129 1130
#define REG_INTERSECT	1

1131 1132
/* This has the logic which determines when a new request
 * should be ignored. */
1133 1134
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1135
{
1136
	struct wiphy *last_wiphy = NULL;
1137 1138 1139

	assert_cfg80211_lock();

1140 1141 1142 1143
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1144
	switch (pending_request->initiator) {
1145
	case NL80211_REGDOM_SET_BY_CORE:
1146
		return 0;
1147
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1148 1149 1150

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1151
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1152
			return -EINVAL;
1153 1154
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1155
			if (last_wiphy != wiphy) {
1156 1157
				/*
				 * Two cards with two APs claiming different
1158
				 * Country IE alpha2s. We could
1159 1160 1161
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1162
				if (regdom_changes(pending_request->alpha2))
1163 1164 1165
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1166 1167 1168 1169
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1170
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1171 1172 1173
				return 0;
			return -EALREADY;
		}
1174
		return 0;
1175 1176
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1177
			if (regdom_changes(pending_request->alpha2))
1178
				return 0;
1179
			return -EALREADY;
1180
		}
1181 1182 1183 1184 1185 1186

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1187
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1188
		    !regdom_changes(pending_request->alpha2))
1189 1190
			return -EALREADY;

1191
		return REG_INTERSECT;
1192 1193
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1194
			return REG_INTERSECT;
1195 1196 1197 1198
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1199
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1200 1201
			  last_request->intersect)
			return -EOPNOTSUPP;
1202 1203 1204 1205
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1206 1207 1208
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1209
			if (regdom_changes(last_request->alpha2))
1210 1211 1212
				return -EAGAIN;
		}

1213
		if (!regdom_changes(pending_request->alpha2))
1214 1215
			return -EALREADY;

1216 1217 1218 1219 1220 1221
		return 0;
	}

	return -EINVAL;
}

1222 1223 1224 1225
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1226
 * @pending_request: the regulatory request currently being processed
1227 1228
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1229
 * what it believes should be the current regulatory domain.
1230 1231 1232 1233
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1234
 * Caller must hold &cfg80211_mutex and &reg_mutex
1235
 */
1236 1237
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1238
{
1239
	bool intersect = false;
1240 1241
	int r = 0;

1242 1243
	assert_cfg80211_lock();

1244
	r = ignore_request(wiphy, pending_request);
1245

1246
	if (r == REG_INTERSECT) {
1247 1248
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1249
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1250 1251
			if (r) {
				kfree(pending_request);
1252
				return r;
1253
			}
1254
		}
1255
		intersect = true;
1256
	} else if (r) {
1257 1258
		/*
		 * If the regulatory domain being requested by the
1259
		 * driver has already been set just copy it to the
1260 1261
		 * wiphy
		 */
1262
		if (r == -EALREADY &&
1263 1264
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1265
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1266 1267
			if (r) {
				kfree(pending_request);
1268
				return r;
1269
			}
1270 1271 1272
			r = -EALREADY;
			goto new_request;
		}
1273
		kfree(pending_request);
1274
		return r;
1275
	}
1276

1277
new_request:
1278
	kfree(last_request);
1279

1280 1281
	last_request = pending_request;
	last_request->intersect = intersect;
1282

1283
	pending_request = NULL;
1284

1285 1286 1287 1288 1289
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1290
	/* When r == REG_INTERSECT we do need to call CRDA */
1291 1292 1293 1294 1295 1296 1297 1298
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1299
		return r;
1300
	}
1301

1302
	return call_crda(last_request->alpha2);
1303 1304
}

1305
/* This processes *all* regulatory hints */
1306
static void reg_process_hint(struct regulatory_request *reg_request)
1307 1308 1309
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1310
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1311 1312 1313 1314

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1315
	mutex_lock(&reg_mutex);
1316 1317 1318 1319

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1320
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1321
	    !wiphy) {
1322
		kfree(reg_request);
1323 1324 1325
		goto out;
	}

1326
	r = __regulatory_hint(wiphy, reg_request);
1327
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1328 1329
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1330
		wiphy_update_regulatory(wiphy, initiator);
1331
out:
1332
	mutex_unlock(&reg_mutex);
1333 1334 1335
	mutex_unlock(&cfg80211_mutex);
}

1336
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1348 1349
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1350 1351 1352 1353 1354
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1355 1356 1357
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1358
	struct cfg80211_registered_device *rdev;
1359 1360
	struct reg_beacon *pending_beacon, *tmp;

1361 1362 1363 1364
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1381 1382
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1393 1394 1395
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1396
	reg_process_pending_beacon_hints();
1397 1398 1399 1400 1401 1402
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
1403 1404 1405 1406 1407
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1408 1409 1410 1411 1412 1413 1414
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1415 1416 1417 1418
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1419 1420 1421 1422
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1423 1424
	kfree(last_request);
	last_request = NULL;
1425 1426 1427 1428 1429 1430 1431 1432

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1433
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1434

1435 1436 1437 1438 1439
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1440
	reg_process_hint(request);
1441

1442
	return 0;
1443 1444
}

1445 1446
/* User hints */
int regulatory_hint_user(const char *alpha2)
1447
{
1448 1449
	struct regulatory_request *request;

1450
	BUG_ON(!alpha2);
1451

1452 1453 1454 1455 1456 1457 1458
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1459
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1485
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1486 1487 1488 1489

	queue_regulatory_request(request);

	return 0;
1490 1491 1492
}
EXPORT_SYMBOL(regulatory_hint);

1493 1494 1495 1496
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1497
void regulatory_hint_11d(struct wiphy *wiphy,
1498 1499 1500
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1501 1502 1503
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1504
	struct regulatory_request *request;
1505

1506
	mutex_lock(&reg_mutex);
1507

1508 1509
	if (unlikely(!last_request))
		goto out;
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1526
	/*
1527
	 * We will run this only upon a successful connection on cfg80211.
1528 1529
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1530
	 */
1531 1532
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1533 1534
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1535

1536 1537
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1538
		goto out;
1539 1540

	request->wiphy_idx = get_wiphy_idx(wiphy);
1541 1542
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1543
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1544 1545
	request->country_ie_env = env;

1546
	mutex_unlock(&reg_mutex);
1547

1548 1549 1550
	queue_regulatory_request(request);

	return;
1551

1552
out:
1553
	mutex_unlock(&reg_mutex);
1554
}
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1698 1699 1700 1701 1702 1703
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1721
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1722 1723
{
	unsigned int i;
1724 1725 1726
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1727

1728
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1729 1730 1731 1732 1733 1734 1735
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1736 1737 1738 1739
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1740
		if (power_rule->max_antenna_gain)
1741
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1742 1743 1744 1745 1746 1747 1748
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1749
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1750 1751 1752 1753 1754 1755 1756 1757
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1758
static void print_regdomain(const struct ieee80211_regdomain *rd)
1759 1760
{

1761 1762
	if (is_intersected_alpha2(rd->alpha2)) {

1763 1764
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1765 1766
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1767
				last_request->wiphy_idx);
1768
			if (rdev) {
1769 1770
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1771 1772
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1773 1774
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1775
					"domain intersected:\n");
1776
		} else
1777 1778
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
1779
	} else if (is_world_regdom(rd->alpha2))
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1795
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1796 1797 1798 1799 1800 1801
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1802
/* Takes ownership of rd only if it doesn't fail */
1803
static int __set_regdom(const struct ieee80211_regdomain *rd)
1804
{
1805
	const struct ieee80211_regdomain *intersected_rd = NULL;
1806
	struct cfg80211_registered_device *rdev = NULL;
1807
	struct wiphy *request_wiphy;
1808 1809 1810
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1811
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1812 1813 1814 1815 1816 1817 1818 1819 1820
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1821
	if (!last_request)
1822 1823
		return -EINVAL;

1824 1825
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1826
	 * rd is non static (it means CRDA was present and was used last)
1827 1828
	 * and the pending request came in from a country IE
	 */
1829
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1830 1831 1832 1833
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1834
		if (!regdom_changes(rd->alpha2))
1835 1836 1837
			return -EINVAL;
	}

1838 1839
	/*
	 * Now lets set the regulatory domain, update all driver channels
1840 1841
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1842 1843
	 * internal EEPROM data
	 */
1844

1845
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1846 1847
		return -EINVAL;

1848 1849 1850 1851 1852
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1853 1854
	}

1855 1856
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1857
	if (!last_request->intersect) {
1858 1859
		int r;

1860
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1861 1862 1863 1864 1865
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1866 1867 1868 1869
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1870

1871 1872 1873 1874 1875 1876
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1877

1878
		r = reg_copy_regd(&request_wiphy->regd, rd);
1879 1880 1881
		if (r)
			return r;

1882 1883 1884 1885 1886 1887 1888
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1889
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1890

1891 1892 1893
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1894

1895 1896
		/*
		 * We can trash what CRDA provided now.
1897
		 * However if a driver requested this specific regulatory
1898 1899
		 * domain we keep it for its private use
		 */
1900
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1901
			request_wiphy->regd = rd;
1902 1903 1904
		else
			kfree(rd);

1905 1906 1907 1908 1909 1910
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
1911 1912
	}

1913 1914 1915
	if (!intersected_rd)
		return -EINVAL;

1916
	rdev = wiphy_to_dev(request_wiphy);
1917

1918 1919 1920
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
1921 1922 1923 1924 1925 1926

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

1927
	reset_regdomains();
1928
	cfg80211_regdomain = intersected_rd;
1929 1930 1931 1932 1933

	return 0;
}


1934 1935
/*
 * Use this call to set the current regulatory domain. Conflicts with
1936
 * multiple drivers can be ironed out later. Caller must've already
1937 1938
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
1939
int set_regdom(const struct ieee80211_regdomain *rd)
1940 1941 1942
{
	int r;

1943 1944
	assert_cfg80211_lock();

1945 1946
	mutex_lock(&reg_mutex);

1947 1948
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
1949 1950
	if (r) {
		kfree(rd);
1951
		mutex_unlock(&reg_mutex);
1952
		return r;
1953
	}
1954 1955

	/* This would make this whole thing pointless */
1956 1957
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
1958 1959

	/* update all wiphys now with the new established regulatory domain */
1960
	update_all_wiphy_regulatory(last_request->initiator);
1961

1962
	print_regdomain(cfg80211_regdomain);
1963

1964 1965
	nl80211_send_reg_change_event(last_request);

1966 1967
	mutex_unlock(&reg_mutex);

1968 1969 1970
	return r;
}

1971
/* Caller must hold cfg80211_mutex */
1972 1973
void reg_device_remove(struct wiphy *wiphy)
{
1974
	struct wiphy *request_wiphy = NULL;
1975

1976 1977
	assert_cfg80211_lock();

1978 1979
	mutex_lock(&reg_mutex);

1980 1981
	kfree(wiphy->regd);

1982 1983
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1984

1985
	if (!request_wiphy || request_wiphy != wiphy)
1986
		goto out;
1987

1988
	last_request->wiphy_idx = WIPHY_IDX_STALE;
1989
	last_request->country_ie_env = ENVIRON_ANY;
1990 1991
out:
	mutex_unlock(&reg_mutex);
1992 1993
}

1994
int __init regulatory_init(void)
1995
{
1996
	int err = 0;
1997

1998 1999 2000
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2001

2002
	spin_lock_init(&reg_requests_lock);
2003
	spin_lock_init(&reg_pending_beacons_lock);
2004

2005
	cfg80211_regdomain = cfg80211_world_regdom;
2006

2007 2008 2009
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2010 2011
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2012
	if (err) {
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2027
#endif
2028
	}
2029

2030 2031 2032 2033 2034 2035 2036
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2037 2038 2039
	return 0;
}

2040
void /* __init_or_exit */ regulatory_exit(void)
2041
{
2042
	struct regulatory_request *reg_request, *tmp;
2043
	struct reg_beacon *reg_beacon, *btmp;
2044 2045 2046

	cancel_work_sync(&reg_work);

2047
	mutex_lock(&cfg80211_mutex);
2048
	mutex_lock(&reg_mutex);
2049

2050
	reset_regdomains();
2051

2052 2053
	kfree(last_request);

2054
	platform_device_unregister(reg_pdev);
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2084
	mutex_unlock(&reg_mutex);
2085
	mutex_unlock(&cfg80211_mutex);
2086
}