reg.c 62.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99 100
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
101
static DEFINE_MUTEX(reg_mutex);
102 103 104 105 106

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
107

108
/* Used to queue up regulatory hints */
109 110 111
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

112 113 114 115 116 117 118 119 120 121 122 123
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

124 125 126
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

127 128 129
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

130 131
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
132
	.n_reg_rules = 6,
133 134
	.alpha2 =  "00",
	.reg_rules = {
135 136
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 138 139
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 141
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
142 143 144 145 146 147 148
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
149
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 151
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
152 153 154 155

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
156
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 158
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
159 160 161

		/* IEEE 802.11ad (60gHz), channels 1..3 */
		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
162 163 164
	}
};

165 166
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
167

168
static char *ieee80211_regdom = "00";
169
static char user_alpha2[2];
170

171 172 173
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

174
static void reset_regdomains(bool full_reset)
175
{
176 177 178 179 180 181 182 183 184 185
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
186

187
	cfg80211_world_regdom = &world_regdom;
188
	cfg80211_regdomain = NULL;
189 190 191 192 193 194 195

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
196 197
}

198 199 200 201
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
202
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
203
{
204
	BUG_ON(!last_request);
205

206
	reset_regdomains(false);
207 208 209 210 211

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

212
bool is_world_regdom(const char *alpha2)
213 214 215 216 217 218 219
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
220

221
static bool is_alpha2_set(const char *alpha2)
222 223 224 225 226 227 228
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
229

230
static bool is_unknown_alpha2(const char *alpha2)
231 232 233
{
	if (!alpha2)
		return false;
234 235 236 237
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
238 239 240 241
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
242

243 244 245 246
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
247 248
	/*
	 * Special case where regulatory domain is the
249
	 * result of an intersection between two regulatory domain
250 251
	 * structures
	 */
252 253 254 255 256
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

257
static bool is_an_alpha2(const char *alpha2)
258 259 260
{
	if (!alpha2)
		return false;
261
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
262 263 264
		return true;
	return false;
}
265

266
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
267 268 269 270 271 272 273 274 275
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

276
static bool regdom_changes(const char *alpha2)
277
{
278 279
	assert_cfg80211_lock();

280 281 282 283 284 285 286
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
339
static DEFINE_MUTEX(reg_regdb_search_mutex);
340 341 342 343 344 345 346

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

347
	mutex_lock(&reg_regdb_search_mutex);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
370
	mutex_unlock(&reg_regdb_search_mutex);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

388
	mutex_lock(&reg_regdb_search_mutex);
389
	list_add_tail(&request->list, &reg_regdb_search_list);
390
	mutex_unlock(&reg_regdb_search_mutex);
391 392 393

	schedule_work(&reg_regdb_work);
}
394 395 396 397 398 399 400

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
401
#else
402
static inline void reg_regdb_size_check(void) {}
403 404 405
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

406 407
/*
 * This lets us keep regulatory code which is updated on a regulatory
408 409
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
410
 */
411 412 413
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
414
		pr_info("Calling CRDA for country: %c%c\n",
415 416
			alpha2[0], alpha2[1]);
	else
417
		pr_info("Calling CRDA to update world regulatory domain\n");
418

419 420 421
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

422
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
423 424 425
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
426
bool reg_is_valid_request(const char *alpha2)
427
{
428 429
	assert_cfg80211_lock();

430 431 432 433
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
434
}
435

436
/* Sanity check on a regulatory rule */
437
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
438
{
439
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
440 441
	u32 freq_diff;

442
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
443 444 445 446 447 448 449
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

450 451
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
452 453 454 455 456
		return false;

	return true;
}

457
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
458
{
459
	const struct ieee80211_reg_rule *reg_rule = NULL;
460
	unsigned int i;
461

462 463
	if (!rd->n_reg_rules)
		return false;
464

465 466 467
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

468 469 470 471 472 473 474
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
475 476
}

477 478 479
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
480
{
481 482 483 484 485 486 487 488 489 490
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
491
}
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

518 519 520 521
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

599 600
	/*
	 * First we get a count of the rules we'll need, then we actually
601 602 603
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
604 605
	 * All rules that do check out OK are valid.
	 */
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
633 634
			/*
			 * This time around instead of using the stack lets
635
			 * write to the target rule directly saving ourselves
636 637
			 * a memcpy()
			 */
638 639 640
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
641 642 643 644
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

663 664 665 666
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
667 668 669 670 671 672 673 674 675 676 677 678
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

679 680
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
681
			      u32 desired_bw_khz,
682 683
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
684 685
{
	int i;
686
	bool band_rule_found = false;
687
	const struct ieee80211_regdomain *regd;
688 689 690 691
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
692

693
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
694

695 696 697 698
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
699 700
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
701
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
702 703 704 705
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
706 707
		return -EINVAL;

708
	for (i = 0; i < regd->n_reg_rules; i++) {
709 710 711
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

712
		rr = &regd->reg_rules[i];
713
		fr = &rr->freq_range;
714

715 716
		/*
		 * We only need to know if one frequency rule was
717
		 * was in center_freq's band, that's enough, so lets
718 719
		 * not overwrite it once found
		 */
720 721 722
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

723 724 725
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
726

727
		if (band_rule_found && bw_fits) {
728
			*reg_rule = rr;
729
			return 0;
730 731 732
		}
	}

733 734 735
	if (!band_rule_found)
		return -ERANGE;

736
	return -EINVAL;
737 738
}

739 740 741 742
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
743
{
744
	assert_cfg80211_lock();
745 746 747 748 749
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
750
}
751
EXPORT_SYMBOL(freq_reg_info);
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

787
	REG_DBG_PRINT("Updating information on frequency %d MHz "
788
		      "for a %d MHz width channel with regulatory rule:\n",
789 790 791
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

792
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
793 794
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
795
		      freq_range->max_bandwidth_khz,
796 797 798 799 800 801 802 803 804 805
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
806 807
#endif

808 809 810 811 812 813 814 815 816
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
817 818 819
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
820
			   unsigned int chan_idx)
821 822
{
	int r;
823 824
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
825 826
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
827
	const struct ieee80211_freq_range *freq_range = NULL;
828 829
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
830
	struct wiphy *request_wiphy = NULL;
831

832 833
	assert_cfg80211_lock();

834 835
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

836 837 838 839 840
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
841

842 843 844 845
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
846

847 848 849
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
850
		 * received regulatory rule unless the hint is coming
851 852 853 854 855 856 857 858 859 860 861
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

862
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
863
		chan->flags = IEEE80211_CHAN_DISABLED;
864
		return;
865
	}
866

867 868
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

869
	power_rule = &reg_rule->power_rule;
870 871 872 873
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
874

875
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
876
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
877
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
878
		/*
L
Lucas De Marchi 已提交
879
		 * This guarantees the driver's requested regulatory domain
880
		 * will always be used as a base for further regulatory
881 882
		 * settings
		 */
883
		chan->flags = chan->orig_flags =
884
			map_regdom_flags(reg_rule->flags) | bw_flags;
885 886 887 888 889 890 891
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

892
	chan->beacon_found = false;
893
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
894
	chan->max_antenna_gain = min(chan->orig_mag,
895
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
896 897
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
	chan->max_power = min(chan->max_power, chan->max_reg_power);
898 899
}

900 901 902
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
903
{
904 905 906 907 908
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
909 910

	for (i = 0; i < sband->n_channels; i++)
911
		handle_channel(wiphy, initiator, band, i);
912 913
}

914 915
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
916
{
917
	if (!last_request) {
918
		REG_DBG_PRINT("Ignoring regulatory request %s since "
919 920
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
921
		return true;
922 923
	}

924
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
925
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
926
		REG_DBG_PRINT("Ignoring regulatory request %s "
927
			      "since the driver uses its own custom "
928
			      "regulatory domain\n",
929
			      reg_initiator_name(initiator));
930
		return true;
931 932
	}

933 934 935 936
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
937
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
938
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
939
	    !is_world_regdom(last_request->alpha2)) {
940
		REG_DBG_PRINT("Ignoring regulatory request %s "
941
			      "since the driver requires its own regulatory "
942
			      "domain to be set first\n",
943
			      reg_initiator_name(initiator));
944
		return true;
945 946
	}

947 948 949
	return false;
}

950 951 952 953 954 955
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
956 957
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
958 959 960 961 962 963 964 965 966

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

967 968 969 970 971
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
972
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
973 974
		return;

975 976 977
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

978
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
979
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
980
		channel_changed = true;
981 982
	}

983
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
984
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
985
		channel_changed = true;
986 987
	}

988 989
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1041 1042
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1043
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1044 1045 1046 1047 1048 1049 1050
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1051 1052 1053 1054 1055 1056
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1057 1058 1059 1060 1061
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1112
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1113
	else
1114
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1115 1116

	if (is_ht40_not_allowed(channel_after))
1117
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1118
	else
1119
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1149 1150
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1151 1152
{
	enum ieee80211_band band;
1153

1154 1155
	assert_reg_lock();

1156
	if (ignore_reg_update(wiphy, initiator))
1157 1158
		return;

1159 1160
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1161
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1162
		if (wiphy->bands[band])
1163
			handle_band(wiphy, band, initiator);
1164
	}
1165

1166
	reg_process_beacons(wiphy);
1167
	reg_process_ht_flags(wiphy);
1168
	if (wiphy->reg_notifier)
1169
		wiphy->reg_notifier(wiphy, last_request);
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1180 1181 1182
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1183
	struct wiphy *wiphy;
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1198 1199
}

1200 1201 1202 1203 1204 1205
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1206 1207
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1208 1209
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1210
	const struct ieee80211_freq_range *freq_range = NULL;
1211 1212 1213
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1214
	assert_reg_lock();
1215

1216 1217 1218 1219
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1220 1221 1222 1223 1224
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1225 1226

	if (r) {
1227
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1228 1229 1230 1231
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1232 1233 1234 1235
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1236 1237
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1238
	power_rule = &reg_rule->power_rule;
1239 1240 1241 1242
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1243

1244
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1267
	unsigned int bands_set = 0;
1268

1269
	mutex_lock(&reg_mutex);
1270
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1271 1272 1273 1274
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1275
	}
1276
	mutex_unlock(&reg_mutex);
1277 1278 1279 1280 1281 1282

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1283
}
1284 1285
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1286 1287 1288 1289
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1290 1291
#define REG_INTERSECT	1

1292 1293
/* This has the logic which determines when a new request
 * should be ignored. */
1294 1295
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1296
{
1297
	struct wiphy *last_wiphy = NULL;
1298 1299 1300

	assert_cfg80211_lock();

1301 1302 1303 1304
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1305
	switch (pending_request->initiator) {
1306
	case NL80211_REGDOM_SET_BY_CORE:
1307
		return 0;
1308
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1309 1310 1311

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1312
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1313
			return -EINVAL;
1314 1315
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1316
			if (last_wiphy != wiphy) {
1317 1318
				/*
				 * Two cards with two APs claiming different
1319
				 * Country IE alpha2s. We could
1320 1321 1322
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1323
				if (regdom_changes(pending_request->alpha2))
1324 1325 1326
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1327 1328 1329 1330
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1331
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1332 1333 1334
				return 0;
			return -EALREADY;
		}
1335
		return 0;
1336 1337
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1338
			if (regdom_changes(pending_request->alpha2))
1339
				return 0;
1340
			return -EALREADY;
1341
		}
1342 1343 1344 1345 1346 1347

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1348
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1349
		    !regdom_changes(pending_request->alpha2))
1350 1351
			return -EALREADY;

1352
		return REG_INTERSECT;
1353 1354
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1355
			return REG_INTERSECT;
1356 1357 1358 1359
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1360
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1361 1362
			  last_request->intersect)
			return -EOPNOTSUPP;
1363 1364 1365 1366
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1367 1368 1369
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1370
			if (regdom_changes(last_request->alpha2))
1371 1372 1373
				return -EAGAIN;
		}

1374
		if (!regdom_changes(pending_request->alpha2))
1375 1376
			return -EALREADY;

1377 1378 1379 1380 1381 1382
		return 0;
	}

	return -EINVAL;
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1394
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1395
		cancel_delayed_work(&reg_timeout);
1396

1397 1398 1399 1400
	if (need_more_processing)
		schedule_work(&reg_work);
}

1401 1402 1403 1404
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1405
 * @pending_request: the regulatory request currently being processed
1406 1407
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1408
 * what it believes should be the current regulatory domain.
1409 1410 1411 1412
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1413
 * Caller must hold &cfg80211_mutex and &reg_mutex
1414
 */
1415 1416
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1417
{
1418
	bool intersect = false;
1419 1420
	int r = 0;

1421 1422
	assert_cfg80211_lock();

1423
	r = ignore_request(wiphy, pending_request);
1424

1425
	if (r == REG_INTERSECT) {
1426 1427
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1428
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1429 1430
			if (r) {
				kfree(pending_request);
1431
				return r;
1432
			}
1433
		}
1434
		intersect = true;
1435
	} else if (r) {
1436 1437
		/*
		 * If the regulatory domain being requested by the
1438
		 * driver has already been set just copy it to the
1439 1440
		 * wiphy
		 */
1441
		if (r == -EALREADY &&
1442 1443
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1444
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1445 1446
			if (r) {
				kfree(pending_request);
1447
				return r;
1448
			}
1449 1450 1451
			r = -EALREADY;
			goto new_request;
		}
1452
		kfree(pending_request);
1453
		return r;
1454
	}
1455

1456
new_request:
1457 1458
	if (last_request != &core_request_world)
		kfree(last_request);
1459

1460 1461
	last_request = pending_request;
	last_request->intersect = intersect;
1462

1463
	pending_request = NULL;
1464

1465 1466 1467 1468 1469
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1470
	/* When r == REG_INTERSECT we do need to call CRDA */
1471 1472 1473 1474 1475 1476
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1477
		if (r == -EALREADY) {
1478
			nl80211_send_reg_change_event(last_request);
1479 1480
			reg_set_request_processed();
		}
1481
		return r;
1482
	}
1483

1484
	return call_crda(last_request->alpha2);
1485 1486
}

1487
/* This processes *all* regulatory hints */
1488 1489
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1490 1491 1492 1493 1494 1495 1496 1497 1498
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1499
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1500
	    !wiphy) {
1501
		kfree(reg_request);
1502
		return;
1503 1504
	}

1505
	r = __regulatory_hint(wiphy, reg_request);
1506
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1507
	if (r == -EALREADY && wiphy &&
1508
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1509
		wiphy_update_regulatory(wiphy, reg_initiator);
1510 1511 1512 1513 1514 1515 1516
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1517
	if (r != -EALREADY &&
1518
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1519
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1520 1521
}

1522 1523 1524 1525 1526
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1527
static void reg_process_pending_hints(void)
1528
{
1529 1530
	struct regulatory_request *reg_request;

1531 1532 1533
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1534 1535 1536
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1537
			      "for it to be processed...\n");
1538 1539 1540
		goto out;
	}

1541 1542
	spin_lock(&reg_requests_lock);

1543
	if (list_empty(&reg_requests_list)) {
1544
		spin_unlock(&reg_requests_lock);
1545
		goto out;
1546
	}
1547 1548 1549 1550 1551 1552

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1553
	spin_unlock(&reg_requests_lock);
1554

1555
	reg_process_hint(reg_request, reg_request->initiator);
1556 1557

out:
1558 1559
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1560 1561
}

1562 1563 1564
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1565
	struct cfg80211_registered_device *rdev;
1566 1567
	struct reg_beacon *pending_beacon, *tmp;

1568 1569 1570 1571
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1588 1589
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1600 1601 1602
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1603
	reg_process_pending_beacon_hints();
1604 1605 1606 1607
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1608 1609 1610 1611 1612
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1613 1614 1615 1616 1617 1618 1619
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1620 1621 1622 1623
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1635
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1636

1637
	queue_regulatory_request(request);
1638

1639
	return 0;
1640 1641
}

1642 1643
/* User hints */
int regulatory_hint_user(const char *alpha2)
1644
{
1645 1646
	struct regulatory_request *request;

1647
	BUG_ON(!alpha2);
1648

1649 1650 1651 1652 1653 1654 1655
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1656
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1682
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1683 1684 1685 1686

	queue_regulatory_request(request);

	return 0;
1687 1688 1689
}
EXPORT_SYMBOL(regulatory_hint);

1690 1691 1692 1693
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1694
void regulatory_hint_11d(struct wiphy *wiphy,
1695 1696 1697
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1698 1699 1700
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1701
	struct regulatory_request *request;
1702

1703
	mutex_lock(&reg_mutex);
1704

1705 1706
	if (unlikely(!last_request))
		goto out;
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1723
	/*
1724
	 * We will run this only upon a successful connection on cfg80211.
1725 1726
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1727
	 */
1728 1729
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1730 1731
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1732

1733 1734
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1735
		goto out;
1736 1737

	request->wiphy_idx = get_wiphy_idx(wiphy);
1738 1739
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1740
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1741 1742
	request->country_ie_env = env;

1743
	mutex_unlock(&reg_mutex);
1744

1745 1746 1747
	queue_regulatory_request(request);

	return;
1748

1749
out:
1750
	mutex_unlock(&reg_mutex);
1751
}
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1763
			REG_DBG_PRINT("Restoring regulatory settings "
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1774
				REG_DBG_PRINT("Keeping preference on "
1775 1776 1777 1778 1779 1780 1781
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1782
			REG_DBG_PRINT("Restoring regulatory settings "
1783 1784 1785 1786 1787 1788 1789
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1790
		REG_DBG_PRINT("Keeping preference on "
1791 1792 1793 1794 1795 1796
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1797
		REG_DBG_PRINT("Restoring regulatory settings\n");
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1838
	char world_alpha2[2];
1839
	struct reg_beacon *reg_beacon, *btmp;
1840 1841
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1842
	struct cfg80211_registered_device *rdev;
1843 1844 1845 1846

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1847
	reset_regdomains(true);
1848 1849
	restore_alpha2(alpha2, reset_user);

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1890 1891
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1892

1893 1894 1895 1896 1897
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1898 1899 1900
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1901
	regulatory_hint_core(world_alpha2);
1902 1903 1904 1905 1906 1907 1908 1909 1910

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1935 1936 1937

void regulatory_hint_disconnect(void)
{
1938
	REG_DBG_PRINT("All devices are disconnected, going to "
1939 1940 1941 1942
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1943 1944
static bool freq_is_chan_12_13_14(u16 freq)
{
1945 1946 1947
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1968
	REG_DBG_PRINT("Found new beacon on "
1969 1970 1971 1972 1973
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1991
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1992 1993
{
	unsigned int i;
1994 1995 1996
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1997

1998
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1999 2000 2001 2002 2003 2004

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2005 2006 2007 2008
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2009
		if (power_rule->max_antenna_gain)
2010
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2011 2012 2013 2014 2015 2016
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2017
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2018 2019 2020 2021 2022 2023 2024
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2061
static void print_regdomain(const struct ieee80211_regdomain *rd)
2062 2063
{

2064 2065
	if (is_intersected_alpha2(rd->alpha2)) {

2066 2067
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2068 2069
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2070
				last_request->wiphy_idx);
2071
			if (rdev) {
2072
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2073 2074
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2075
			} else
2076
				pr_info("Current regulatory domain intersected:\n");
2077
		} else
2078
			pr_info("Current regulatory domain intersected:\n");
2079
	} else if (is_world_regdom(rd->alpha2))
2080
		pr_info("World regulatory domain updated:\n");
2081 2082
	else {
		if (is_unknown_alpha2(rd->alpha2))
2083
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2084
		else
2085
			pr_info("Regulatory domain changed to country: %c%c\n",
2086 2087
				rd->alpha2[0], rd->alpha2[1]);
	}
2088
	print_dfs_region(rd->dfs_region);
2089 2090 2091
	print_rd_rules(rd);
}

2092
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2093
{
2094
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2095 2096 2097
	print_rd_rules(rd);
}

2098
/* Takes ownership of rd only if it doesn't fail */
2099
static int __set_regdom(const struct ieee80211_regdomain *rd)
2100
{
2101
	const struct ieee80211_regdomain *intersected_rd = NULL;
2102
	struct cfg80211_registered_device *rdev = NULL;
2103
	struct wiphy *request_wiphy;
2104 2105 2106
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2107
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2108 2109 2110 2111 2112 2113 2114 2115 2116
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2117
	if (!last_request)
2118 2119
		return -EINVAL;

2120 2121
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2122
	 * rd is non static (it means CRDA was present and was used last)
2123 2124
	 * and the pending request came in from a country IE
	 */
2125
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2126 2127 2128 2129
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2130
		if (!regdom_changes(rd->alpha2))
2131 2132 2133
			return -EINVAL;
	}

2134 2135
	/*
	 * Now lets set the regulatory domain, update all driver channels
2136 2137
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2138 2139
	 * internal EEPROM data
	 */
2140

2141
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2142 2143
		return -EINVAL;

2144
	if (!is_valid_rd(rd)) {
2145
		pr_err("Invalid regulatory domain detected:\n");
2146 2147
		print_regdomain_info(rd);
		return -EINVAL;
2148 2149
	}

2150
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2151 2152 2153 2154
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2155 2156
		return -ENODEV;
	}
2157

2158
	if (!last_request->intersect) {
2159 2160
		int r;

2161
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2162
			reset_regdomains(false);
2163 2164 2165 2166
			cfg80211_regdomain = rd;
			return 0;
		}

2167 2168 2169 2170
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2171

2172 2173 2174 2175 2176 2177
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2178

2179
		r = reg_copy_regd(&request_wiphy->regd, rd);
2180 2181 2182
		if (r)
			return r;

2183
		reset_regdomains(false);
2184 2185 2186 2187 2188 2189
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2190
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2191

2192 2193 2194
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2195

2196 2197
		/*
		 * We can trash what CRDA provided now.
2198
		 * However if a driver requested this specific regulatory
2199 2200
		 * domain we keep it for its private use
		 */
2201
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2202
			request_wiphy->regd = rd;
2203 2204 2205
		else
			kfree(rd);

2206 2207
		rd = NULL;

2208
		reset_regdomains(false);
2209 2210 2211
		cfg80211_regdomain = intersected_rd;

		return 0;
2212 2213
	}

2214 2215 2216
	if (!intersected_rd)
		return -EINVAL;

2217
	rdev = wiphy_to_dev(request_wiphy);
2218

2219 2220 2221
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2222 2223 2224 2225 2226 2227

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2228
	reset_regdomains(false);
2229
	cfg80211_regdomain = intersected_rd;
2230 2231 2232 2233 2234

	return 0;
}


2235 2236
/*
 * Use this call to set the current regulatory domain. Conflicts with
2237
 * multiple drivers can be ironed out later. Caller must've already
2238 2239
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2240
int set_regdom(const struct ieee80211_regdomain *rd)
2241 2242 2243
{
	int r;

2244 2245
	assert_cfg80211_lock();

2246 2247
	mutex_lock(&reg_mutex);

2248 2249
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2250 2251
	if (r) {
		kfree(rd);
2252
		mutex_unlock(&reg_mutex);
2253
		return r;
2254
	}
2255 2256

	/* This would make this whole thing pointless */
2257 2258
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2259 2260

	/* update all wiphys now with the new established regulatory domain */
2261
	update_all_wiphy_regulatory(last_request->initiator);
2262

2263
	print_regdomain(cfg80211_regdomain);
2264

2265 2266
	nl80211_send_reg_change_event(last_request);

2267 2268
	reg_set_request_processed();

2269 2270
	mutex_unlock(&reg_mutex);

2271 2272 2273
	return r;
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2293
/* Caller must hold cfg80211_mutex */
2294 2295
void reg_device_remove(struct wiphy *wiphy)
{
2296
	struct wiphy *request_wiphy = NULL;
2297

2298 2299
	assert_cfg80211_lock();

2300 2301
	mutex_lock(&reg_mutex);

2302 2303
	kfree(wiphy->regd);

2304 2305
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2306

2307
	if (!request_wiphy || request_wiphy != wiphy)
2308
		goto out;
2309

2310
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2311
	last_request->country_ie_env = ENVIRON_ANY;
2312 2313
out:
	mutex_unlock(&reg_mutex);
2314 2315
}

2316 2317 2318
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2319
		      "restoring regulatory settings\n");
2320 2321 2322
	restore_regulatory_settings(true);
}

2323
int __init regulatory_init(void)
2324
{
2325
	int err = 0;
2326

2327 2328 2329
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2330

2331 2332
	reg_pdev->dev.type = &reg_device_type;

2333
	spin_lock_init(&reg_requests_lock);
2334
	spin_lock_init(&reg_pending_beacons_lock);
2335

2336 2337
	reg_regdb_size_check();

2338
	cfg80211_regdomain = cfg80211_world_regdom;
2339

2340 2341 2342
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2343 2344
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2345
	if (err) {
2346 2347 2348 2349 2350 2351 2352 2353 2354
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2355
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2356 2357 2358
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2359
#endif
2360
	}
2361

2362 2363 2364 2365 2366 2367 2368
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2369 2370 2371
	return 0;
}

2372
void /* __init_or_exit */ regulatory_exit(void)
2373
{
2374
	struct regulatory_request *reg_request, *tmp;
2375
	struct reg_beacon *reg_beacon, *btmp;
2376 2377

	cancel_work_sync(&reg_work);
2378
	cancel_delayed_work_sync(&reg_timeout);
2379

2380
	mutex_lock(&cfg80211_mutex);
2381
	mutex_lock(&reg_mutex);
2382

2383
	reset_regdomains(true);
2384

2385
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2386

2387
	platform_device_unregister(reg_pdev);
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2417
	mutex_unlock(&reg_mutex);
2418
	mutex_unlock(&cfg80211_mutex);
2419
}