reg.c 58.1 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52 53 54
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
55 56
};

57 58
/*
 * Central wireless core regulatory domains, we only need two,
59
 * the current one and a world regulatory domain in case we have no
60 61
 * information to give us an alpha2
 */
62
const struct ieee80211_regdomain *cfg80211_regdomain;
63

64 65
/*
 * We use this as a place for the rd structure built from the
66
 * last parsed country IE to rest until CRDA gets back to us with
67 68
 * what it thinks should apply for the same country
 */
69 70
static const struct ieee80211_regdomain *country_ie_regdomain;

71
/* Used to queue up regulatory hints */
72 73 74
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

75 76 77 78 79 80 81 82 83 84 85 86
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

87 88
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
89
	.n_reg_rules = 5,
90 91
	.alpha2 =  "00",
	.reg_rules = {
92 93
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 95 96
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
97 98
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
99 100 101 102 103 104 105
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
106
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
107 108
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
109 110 111 112

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
113
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
114 115
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
116 117 118
	}
};

119 120
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
121 122 123

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
124 125 126 127
#else
static char *ieee80211_regdom = "00";
#endif

128 129 130
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

131
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 133
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
134
 * We make emphasis we are using the exact same frequencies
135 136
 * as before
 */
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
175 176 177 178
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

215
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 217 218 219 220
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
221 222
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223
{
224
	return false;
225
}
226 227
#endif

228 229
static void reset_regdomains(void)
{
230 231 232 233 234 235 236 237 238 239 240 241
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
242

243
	cfg80211_world_regdom = &world_regdom;
244 245 246
	cfg80211_regdomain = NULL;
}

247 248 249 250
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
251
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252
{
253
	BUG_ON(!last_request);
254 255 256 257 258 259 260

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

261
bool is_world_regdom(const char *alpha2)
262 263 264 265 266 267 268
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
269

270
static bool is_alpha2_set(const char *alpha2)
271 272 273 274 275 276 277
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
278

279 280 281 282 283 284 285
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
286

287
static bool is_unknown_alpha2(const char *alpha2)
288 289 290
{
	if (!alpha2)
		return false;
291 292 293 294
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
295 296 297 298
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
299

300 301 302 303
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
304 305
	/*
	 * Special case where regulatory domain is the
306
	 * result of an intersection between two regulatory domain
307 308
	 * structures
	 */
309 310 311 312 313
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

314
static bool is_an_alpha2(const char *alpha2)
315 316 317 318 319 320 321
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
322

323
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 325 326 327 328 329 330 331 332
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

333
static bool regdom_changes(const char *alpha2)
334
{
335 336
	assert_cfg80211_lock();

337 338 339 340 341 342 343
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

363 364 365 366
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392 393 394
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
395
}
396

397
/* Sanity check on a regulatory rule */
398
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399
{
400
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 402
	u32 freq_diff;

403
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 405 406 407 408 409 410
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

411 412
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
413 414 415 416 417
		return false;

	return true;
}

418
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419
{
420
	const struct ieee80211_reg_rule *reg_rule = NULL;
421
	unsigned int i;
422

423 424
	if (!rd->n_reg_rules)
		return false;
425

426 427 428
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

429 430 431 432 433 434 435
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
480 481
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
482 483
 * with our userspace regulatory agent to get lower bounds.
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

528 529
	/*
	 * We need to build a reg rule for each triplet, but first we must
530
	 * calculate the number of reg rules we will need. We will need one
531 532
	 * for each channel subband
	 */
533
	while (country_ie_len >= 3) {
534
		int end_channel = 0;
535 536 537 538 539 540 541 542 543 544 545
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

563
		cur_channel = triplet->chans.first_channel;
564
		cur_sub_max_channel = end_channel;
565 566 567 568 569

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

570 571
		/*
		 * Do not allow overlapping channels. Also channels
572
		 * passed in each subband must be monotonically
573 574
		 * increasing
		 */
575 576 577 578 579 580 581
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

582 583
		/*
		 * When dot11RegulatoryClassesRequired is supported
584 585
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
586 587
		 * don't support them
		 */
588 589 590 591 592 593 594 595 596 597
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

598 599 600 601
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
622
		int end_channel = 0;
623 624 625 626 627 628
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

629 630 631 632
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
633 634 635 636 637 638 639 640 641 642 643 644 645
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

646 647 648 649 650 651 652 653
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

654 655
		/*
		 * The +10 is since the regulatory domain expects
656 657
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
658 659
		 * the channels passed
		 */
660 661 662 663 664
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665
				end_channel) + 10);
666

667 668 669 670 671
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


687 688 689 690
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

768 769
	/*
	 * First we get a count of the rules we'll need, then we actually
770 771 772
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
773 774
	 * All rules that do check out OK are valid.
	 */
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
802 803
			/*
			 * This time around instead of using the stack lets
804
			 * write to the target rule directly saving ourselves
805 806
			 * a memcpy()
			 */
807 808 809
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
810 811 812 813
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

832 833 834 835
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
836 837 838 839 840 841 842 843 844 845 846 847
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

848 849 850 851 852
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
853 854
{
	int i;
855
	bool band_rule_found = false;
856
	const struct ieee80211_regdomain *regd;
857
	u32 max_bandwidth = 0;
858

859
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
860

861 862 863 864
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
865 866
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867 868 869 870
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
871 872
		return -EINVAL;

873
	for (i = 0; i < regd->n_reg_rules; i++) {
874 875 876 877
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

878
		rr = &regd->reg_rules[i];
879 880
		fr = &rr->freq_range;
		pr = &rr->power_rule;
881

882 883
		/*
		 * We only need to know if one frequency rule was
884
		 * was in center_freq's band, that's enough, so lets
885 886
		 * not overwrite it once found
		 */
887 888 889
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

890
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
891

892 893 894
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
895 896 897 898
			break;
		}
	}

899 900 901
	if (!band_rule_found)
		return -ERANGE;

902 903
	return !max_bandwidth;
}
904
EXPORT_SYMBOL(freq_reg_info);
905

906
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
907 908
			 const struct ieee80211_reg_rule **reg_rule)
{
909
	assert_cfg80211_lock();
910 911 912
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
913

914 915
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
916 917
{
	int r;
918
	u32 flags;
919 920 921
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
922 923
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
924
	struct wiphy *request_wiphy = NULL;
925

926 927
	assert_cfg80211_lock();

928 929
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

930 931 932 933 934
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
935

936
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
937 938 939
		&max_bandwidth, &reg_rule);

	if (r) {
940 941
		/*
		 * This means no regulatory rule was found in the country IE
942 943 944 945 946 947 948 949 950 951
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
952 953
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
954 955 956 957 958 959 960
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
961 962 963 964
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
965
#ifdef CONFIG_CFG80211_REG_DEBUG
966 967
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
968 969 970 971 972 973 974 975
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
976 977 978
		return;
	}

979 980
	power_rule = &reg_rule->power_rule;

981
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
982 983
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
984 985
		/*
		 * This gaurantees the driver's requested regulatory domain
986
		 * will always be used as a base for further regulatory
987 988
		 * settings
		 */
989 990 991 992 993 994 995 996 997 998
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

999
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
1000
	chan->max_antenna_gain = min(chan->orig_mag,
1001 1002
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1003
	if (chan->orig_mpwr)
1004 1005
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1006
	else
1007
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1008 1009
}

1010
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1011
{
1012 1013 1014 1015 1016
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1017 1018

	for (i = 0; i < sband->n_channels; i++)
1019
		handle_channel(wiphy, band, i);
1020 1021
}

1022 1023
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1024 1025 1026
{
	if (!last_request)
		return true;
1027
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1028
		  wiphy->custom_regulatory)
1029
		return true;
1030 1031 1032 1033
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1034 1035
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1036 1037 1038 1039
		return true;
	return false;
}

1040
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1041
{
1042
	struct cfg80211_registered_device *drv;
1043

1044
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1045
		wiphy_update_regulatory(&drv->wiphy, initiator);
1046 1047
}

1048 1049 1050 1051 1052 1053
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1054 1055
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1056 1057 1058 1059 1060 1061 1062 1063 1064

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1065 1066 1067 1068 1069 1070 1071 1072
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1073 1074
	if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
	    !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1075
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1076
		channel_changed = true;
1077 1078
	}

1079 1080
	if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
	    !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1081
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1082
		channel_changed = true;
1083 1084
	}

1085 1086
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1138 1139
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1140 1141 1142 1143 1144 1145 1146 1147
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1148 1149 1150 1151 1152 1153
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1154 1155 1156 1157 1158
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1159 1160
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1161 1162
{
	enum ieee80211_band band;
1163

1164
	if (ignore_reg_update(wiphy, initiator))
1165
		goto out;
1166
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1167
		if (wiphy->bands[band])
1168
			handle_band(wiphy, band);
1169
	}
1170 1171
out:
	reg_process_beacons(wiphy);
1172
	if (wiphy->reg_notifier)
1173
		wiphy->reg_notifier(wiphy, last_request);
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1188 1189
	assert_cfg80211_lock();

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1228 1229

	mutex_lock(&cfg80211_mutex);
1230 1231 1232
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1233
	}
1234
	mutex_unlock(&cfg80211_mutex);
1235
}
1236 1237
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1261

1262 1263 1264 1265
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1266 1267
#define REG_INTERSECT	1

1268 1269
/* This has the logic which determines when a new request
 * should be ignored. */
1270 1271
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1272
{
1273
	struct wiphy *last_wiphy = NULL;
1274 1275 1276

	assert_cfg80211_lock();

1277 1278 1279 1280
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1281
	switch (pending_request->initiator) {
1282
	case NL80211_REGDOM_SET_BY_CORE:
1283
		return -EINVAL;
1284
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1285 1286 1287

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1288
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1289
			return -EINVAL;
1290 1291
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1292
			if (last_wiphy != wiphy) {
1293 1294 1295 1296 1297 1298
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1299
				if (regdom_changes(pending_request->alpha2))
1300 1301 1302
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1303 1304 1305 1306
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1307
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1308 1309 1310
				return 0;
			return -EALREADY;
		}
1311
		return REG_INTERSECT;
1312 1313
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1314 1315
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1316
			if (regdom_changes(pending_request->alpha2))
1317
				return 0;
1318
			return -EALREADY;
1319
		}
1320 1321 1322 1323 1324 1325

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1326
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1327
		    !regdom_changes(pending_request->alpha2))
1328 1329
			return -EALREADY;

1330
		return REG_INTERSECT;
1331 1332
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1333
			return REG_INTERSECT;
1334 1335 1336 1337
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1338
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1339 1340
			  last_request->intersect)
			return -EOPNOTSUPP;
1341 1342 1343 1344
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1345 1346 1347
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1348
			if (regdom_changes(last_request->alpha2))
1349 1350 1351
				return -EAGAIN;
		}

1352
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1353
		    !regdom_changes(pending_request->alpha2))
1354 1355
			return -EALREADY;

1356 1357 1358 1359 1360 1361
		return 0;
	}

	return -EINVAL;
}

1362 1363 1364 1365
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1366
 * @pending_request: the regulatory request currently being processed
1367 1368
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1369
 * what it believes should be the current regulatory domain.
1370 1371 1372 1373 1374 1375
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1376 1377
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1378
{
1379
	bool intersect = false;
1380 1381
	int r = 0;

1382 1383
	assert_cfg80211_lock();

1384
	r = ignore_request(wiphy, pending_request);
1385

1386
	if (r == REG_INTERSECT) {
1387 1388
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1389
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1390 1391
			if (r) {
				kfree(pending_request);
1392
				return r;
1393
			}
1394
		}
1395
		intersect = true;
1396
	} else if (r) {
1397 1398
		/*
		 * If the regulatory domain being requested by the
1399
		 * driver has already been set just copy it to the
1400 1401
		 * wiphy
		 */
1402
		if (r == -EALREADY &&
1403 1404
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1405
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1406 1407
			if (r) {
				kfree(pending_request);
1408
				return r;
1409
			}
1410 1411 1412
			r = -EALREADY;
			goto new_request;
		}
1413
		kfree(pending_request);
1414
		return r;
1415
	}
1416

1417
new_request:
1418
	kfree(last_request);
1419

1420 1421
	last_request = pending_request;
	last_request->intersect = intersect;
1422

1423
	pending_request = NULL;
1424 1425

	/* When r == REG_INTERSECT we do need to call CRDA */
1426 1427 1428 1429 1430 1431 1432 1433
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1434
		return r;
1435
	}
1436

1437
	return call_crda(last_request->alpha2);
1438 1439
}

1440
/* This processes *all* regulatory hints */
1441
static void reg_process_hint(struct regulatory_request *reg_request)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1453
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1454
	    !wiphy) {
1455
		kfree(reg_request);
1456 1457 1458
		goto out;
	}

1459
	r = __regulatory_hint(wiphy, reg_request);
1460 1461 1462 1463 1464 1465 1466
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1467
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1479 1480
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1481 1482 1483 1484 1485
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1520 1521 1522
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1523
	reg_process_pending_beacon_hints();
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1551
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1552

1553
	queue_regulatory_request(request);
1554

1555
	return 0;
1556 1557
}

1558 1559
/* User hints */
int regulatory_hint_user(const char *alpha2)
1560
{
1561 1562
	struct regulatory_request *request;

1563
	BUG_ON(!alpha2);
1564

1565 1566 1567 1568 1569 1570 1571
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1572
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1598
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1599 1600 1601 1602

	queue_regulatory_request(request);

	return 0;
1603 1604 1605
}
EXPORT_SYMBOL(regulatory_hint);

1606 1607 1608
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1609 1610
	struct wiphy *request_wiphy;

1611 1612
	assert_cfg80211_lock();

1613 1614 1615 1616
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1617 1618 1619
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1620
		return false;
1621 1622

	if (likely(request_wiphy != wiphy))
1623
		return !country_ie_integrity_changes(country_ie_checksum);
1624 1625
	/*
	 * We should not have let these through at this point, they
1626
	 * should have been picked up earlier by the first alpha2 check
1627 1628
	 * on the device
	 */
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1642
	struct regulatory_request *request;
1643

1644
	mutex_lock(&cfg80211_mutex);
1645

1646 1647 1648 1649 1650
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1651 1652 1653 1654 1655 1656 1657
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1658 1659
	/*
	 * Pending country IE processing, this can happen after we
1660
	 * call CRDA and wait for a response if a beacon was received before
1661 1662
	 * we were able to process the last regulatory_hint_11d() call
	 */
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1674 1675
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1676
	 * we optimize an early check to exit out early if we don't have to
1677 1678
	 * do anything
	 */
1679 1680 1681
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1682 1683
		struct cfg80211_registered_device *drv_last_ie;

1684 1685
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1686

1687 1688 1689 1690
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1691
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1692 1693 1694 1695
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1696 1697 1698 1699 1700
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1701 1702
			/*
			 * the wiphy moved on to another BSSID or the AP
1703 1704 1705
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1706 1707
			 * AP with different settings
			 */
1708 1709
			goto out;
		} else {
1710 1711 1712 1713
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1728 1729
	/*
	 * This will not happen right now but we leave it here for the
1730 1731
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1732 1733 1734 1735 1736 1737
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1738
		goto free_rd_out;
1739

1740 1741 1742 1743
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1744 1745 1746 1747
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1748 1749
	country_ie_regdomain = rd;

1750 1751 1752
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1753
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1754 1755 1756 1757
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1758

1759 1760 1761
	queue_regulatory_request(request);

	return;
1762 1763 1764

free_rd_out:
	kfree(rd);
1765
out:
1766
	mutex_unlock(&cfg80211_mutex);
1767 1768
}
EXPORT_SYMBOL(regulatory_hint_11d);
1769

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1819
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1820 1821
{
	unsigned int i;
1822 1823 1824
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1825 1826 1827 1828 1829 1830 1831 1832 1833

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1834 1835 1836 1837
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1856
static void print_regdomain(const struct ieee80211_regdomain *rd)
1857 1858
{

1859 1860
	if (is_intersected_alpha2(rd->alpha2)) {

1861 1862
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1863 1864 1865 1866
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1867 1868 1869 1870 1871 1872 1873 1874 1875
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1876
					"domain intersected: \n");
1877
	} else if (is_world_regdom(rd->alpha2))
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1893
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1894 1895 1896 1897 1898 1899
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1913
		print_regdomain_info(intersected_rd);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1927
/* Takes ownership of rd only if it doesn't fail */
1928
static int __set_regdom(const struct ieee80211_regdomain *rd)
1929
{
1930
	const struct ieee80211_regdomain *intersected_rd = NULL;
1931
	struct cfg80211_registered_device *drv = NULL;
1932
	struct wiphy *request_wiphy;
1933 1934 1935
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1936
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1937 1938 1939 1940 1941 1942 1943 1944 1945
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1946
	if (!last_request)
1947 1948
		return -EINVAL;

1949 1950
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1951
	 * rd is non static (it means CRDA was present and was used last)
1952 1953
	 * and the pending request came in from a country IE
	 */
1954
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1955 1956 1957 1958
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1959
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1960
		    !regdom_changes(rd->alpha2))
1961 1962 1963
			return -EINVAL;
	}

1964 1965
	/*
	 * Now lets set the regulatory domain, update all driver channels
1966 1967
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1968 1969
	 * internal EEPROM data
	 */
1970

1971
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1972 1973
		return -EINVAL;

1974 1975 1976 1977 1978
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1979 1980
	}

1981 1982
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1983
	if (!last_request->intersect) {
1984 1985
		int r;

1986
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1987 1988 1989 1990 1991
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1992 1993 1994 1995
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1996

1997
		BUG_ON(request_wiphy->regd);
1998

1999
		r = reg_copy_regd(&request_wiphy->regd, rd);
2000 2001 2002
		if (r)
			return r;

2003 2004 2005 2006 2007 2008 2009
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2010
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2011

2012 2013 2014
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2015

2016 2017
		/*
		 * We can trash what CRDA provided now.
2018
		 * However if a driver requested this specific regulatory
2019 2020
		 * domain we keep it for its private use
		 */
2021
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2022
			request_wiphy->regd = rd;
2023 2024 2025
		else
			kfree(rd);

2026 2027 2028 2029 2030 2031
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2032 2033
	}

2034 2035 2036 2037 2038 2039
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);
2040
	BUG_ON(rd == country_ie_regdomain);
2041

2042 2043 2044 2045
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2046

2047
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2048

2049 2050 2051
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2052

2053 2054
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2055 2056 2057 2058

	if (!intersected_rd)
		return -EINVAL;

2059
	drv = wiphy_to_dev(request_wiphy);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2070
	reset_regdomains();
2071
	cfg80211_regdomain = intersected_rd;
2072 2073 2074 2075 2076

	return 0;
}


2077 2078
/*
 * Use this call to set the current regulatory domain. Conflicts with
2079
 * multiple drivers can be ironed out later. Caller must've already
2080 2081
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2082
int set_regdom(const struct ieee80211_regdomain *rd)
2083 2084 2085
{
	int r;

2086 2087
	assert_cfg80211_lock();

2088 2089
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2090 2091
	if (r) {
		kfree(rd);
2092
		return r;
2093
	}
2094 2095

	/* This would make this whole thing pointless */
2096 2097
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2098 2099

	/* update all wiphys now with the new established regulatory domain */
2100
	update_all_wiphy_regulatory(last_request->initiator);
2101

2102
	print_regdomain(cfg80211_regdomain);
2103

2104 2105
	nl80211_send_reg_change_event(last_request);

2106 2107 2108
	return r;
}

2109
/* Caller must hold cfg80211_mutex */
2110 2111
void reg_device_remove(struct wiphy *wiphy)
{
2112
	struct wiphy *request_wiphy = NULL;
2113

2114 2115
	assert_cfg80211_lock();

2116 2117
	kfree(wiphy->regd);

2118 2119
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2120

2121
	if (!request_wiphy || request_wiphy != wiphy)
2122
		return;
2123

2124
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2125 2126 2127
	last_request->country_ie_env = ENVIRON_ANY;
}

2128 2129
int regulatory_init(void)
{
2130
	int err = 0;
2131

2132 2133 2134
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2135

2136
	spin_lock_init(&reg_requests_lock);
2137
	spin_lock_init(&reg_pending_beacons_lock);
2138

2139
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2140
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2141

2142
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2143
	print_regdomain_info(cfg80211_regdomain);
2144 2145
	/*
	 * The old code still requests for a new regdomain and if
2146
	 * you have CRDA you get it updated, otherwise you get
2147 2148 2149 2150 2151 2152
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2153
	 */
2154
	err = regulatory_hint_core(ieee80211_regdom);
2155
#else
2156
	cfg80211_regdomain = cfg80211_world_regdom;
2157

2158
	err = regulatory_hint_core(ieee80211_regdom);
2159
#endif
2160
	if (err) {
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2175
#endif
2176
	}
2177

2178 2179 2180 2181 2182
	return 0;
}

void regulatory_exit(void)
{
2183
	struct regulatory_request *reg_request, *tmp;
2184
	struct reg_beacon *reg_beacon, *btmp;
2185 2186 2187

	cancel_work_sync(&reg_work);

2188
	mutex_lock(&cfg80211_mutex);
2189

2190
	reset_regdomains();
2191

2192 2193 2194
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2195 2196
	kfree(last_request);

2197
	platform_device_unregister(reg_pdev);
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2227
	mutex_unlock(&cfg80211_mutex);
2228
}