timekeeping.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* NTP adjusted clock multiplier */
	u32	mult;
30 31
	/* The shift value of the current clocksource. */
	int	shift;
32 33 34 35 36

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
37 38
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
39 40 41 42 43 44 45 46
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
47 48 49
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
50

51 52
	/* The current time */
	struct timespec xtime;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
	struct timespec wall_to_monotonic;
68 69
	/* time spent in suspend */
	struct timespec total_sleep_time;
70 71
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec raw_time;
J
John Stultz 已提交
72 73 74

	/* Seqlock for all timekeeper values */
	seqlock_t lock;
75 76
};

77
static struct timekeeper timekeeper;
78

79 80 81 82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);


/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;



91 92 93 94 95 96 97 98 99 100 101 102 103
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
104
	u64 tmp, ntpinterval;
105 106 107 108 109 110 111

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
112
	ntpinterval = tmp;
113 114
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
115 116 117 118 119 120 121 122
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
123
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124
	timekeeper.raw_interval =
125
		((u64) interval * clock->mult) >> clock->shift;
126 127

	timekeeper.xtime_nsec = 0;
128
	timekeeper.shift = clock->shift;
129 130

	timekeeper.ntp_error = 0;
131
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132 133 134 135 136 137 138

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
139
}
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

171
	/* return delta convert to nanoseconds. */
172 173 174
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

175 176 177 178 179 180 181 182 183 184 185 186
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
	if (clearntp) {
		timekeeper.ntp_error = 0;
		ntp_clear();
	}
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			 timekeeper.clock, timekeeper.mult);
}


187
/**
188
 * timekeeping_forward_now - update clock to the current time
189
 *
190 191 192
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
193
 */
194
static void timekeeping_forward_now(void)
195 196
{
	cycle_t cycle_now, cycle_delta;
197
	struct clocksource *clock;
198
	s64 nsec;
199

200
	clock = timekeeper.clock;
201
	cycle_now = clock->read(clock);
202
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
203
	clock->cycle_last = cycle_now;
204

205 206
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
207 208 209 210

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

211
	timespec_add_ns(&timekeeper.xtime, nsec);
212

213
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214
	timespec_add_ns(&timekeeper.raw_time, nsec);
215 216 217
}

/**
218
 * getnstimeofday - Returns the time of day in a timespec
219 220
 * @ts:		pointer to the timespec to be set
 *
221
 * Returns the time of day in a timespec.
222
 */
223
void getnstimeofday(struct timespec *ts)
224 225 226 227
{
	unsigned long seq;
	s64 nsecs;

228 229
	WARN_ON(timekeeping_suspended);

230
	do {
J
John Stultz 已提交
231
		seq = read_seqbegin(&timekeeper.lock);
232

233
		*ts = timekeeper.xtime;
234
		nsecs = timekeeping_get_ns();
235

236 237 238
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

J
John Stultz 已提交
239
	} while (read_seqretry(&timekeeper.lock, seq));
240 241 242 243 244

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

245 246 247 248 249 250 251 252
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
253
		seq = read_seqbegin(&timekeeper.lock);
254 255 256 257
		secs = timekeeper.xtime.tv_sec +
				timekeeper.wall_to_monotonic.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec +
				timekeeper.wall_to_monotonic.tv_nsec;
258
		nsecs += timekeeping_get_ns();
259 260
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
261

J
John Stultz 已提交
262
	} while (read_seqretry(&timekeeper.lock, seq));
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
288
		seq = read_seqbegin(&timekeeper.lock);
289
		*ts = timekeeper.xtime;
290
		tomono = timekeeper.wall_to_monotonic;
291
		nsecs = timekeeping_get_ns();
292 293
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
294

J
John Stultz 已提交
295
	} while (read_seqretry(&timekeeper.lock, seq));
296 297 298 299 300 301

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

J
John Stultz 已提交
323
		seq = read_seqbegin(&timekeeper.lock);
324

325
		*ts_raw = timekeeper.raw_time;
326
		*ts_real = timekeeper.xtime;
327 328 329 330 331 332 333 334 335

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

J
John Stultz 已提交
336
	} while (read_seqretry(&timekeeper.lock, seq));
337 338 339 340 341 342 343 344

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

345 346 347 348
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
349
 * NOTE: Users should be converted to using getnstimeofday()
350 351 352 353 354
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

355
	getnstimeofday(&now);
356 357 358 359
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
360

361 362 363 364 365 366
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
367
int do_settimeofday(const struct timespec *tv)
368
{
369
	struct timespec ts_delta;
370
	unsigned long flags;
371 372 373 374

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

375
	write_seqlock_irqsave(&timekeeper.lock, flags);
376

377
	timekeeping_forward_now();
378

379 380
	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
381 382
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
383

384
	timekeeper.xtime = *tv;
385
	timekeeping_update(true);
386

387
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
388 389 390 391 392 393 394 395

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

396 397 398 399 400 401 402 403 404

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
405
	unsigned long flags;
406 407 408 409

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

410
	write_seqlock_irqsave(&timekeeper.lock, flags);
411 412 413

	timekeeping_forward_now();

414
	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
415 416
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
417

418
	timekeeping_update(true);
419

420
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
421 422 423 424 425 426 427 428

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

429 430 431 432 433
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
434
static int change_clocksource(void *data)
435
{
436
	struct clocksource *new, *old;
437
	unsigned long flags;
438

439
	new = (struct clocksource *) data;
440

441 442
	write_seqlock_irqsave(&timekeeper.lock, flags);

443
	timekeeping_forward_now();
444 445 446 447 448 449
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
450 451 452 453
	timekeeping_update(true);

	write_sequnlock_irqrestore(&timekeeper.lock, flags);

454 455
	return 0;
}
456

457 458 459 460 461 462 463 464 465 466
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
467
		return;
468
	stop_machine(change_clocksource, clock, NULL);
469 470
	tick_clock_notify();
}
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
486

487 488 489 490 491 492 493 494 495 496 497 498
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
J
John Stultz 已提交
499
		seq = read_seqbegin(&timekeeper.lock);
500
		nsecs = timekeeping_get_ns_raw();
501
		*ts = timekeeper.raw_time;
502

J
John Stultz 已提交
503
	} while (read_seqretry(&timekeeper.lock, seq));
504 505 506 507 508 509

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


510
/**
511
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
512
 */
513
int timekeeping_valid_for_hres(void)
514 515 516 517 518
{
	unsigned long seq;
	int ret;

	do {
J
John Stultz 已提交
519
		seq = read_seqbegin(&timekeeper.lock);
520

521
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
522

J
John Stultz 已提交
523
	} while (read_seqretry(&timekeeper.lock, seq));
524 525 526 527

	return ret;
}

528 529 530 531 532
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
J
John Stultz 已提交
533 534 535 536 537 538 539 540 541 542
	unsigned long seq;
	u64 ret;
	do {
		seq = read_seqbegin(&timekeeper.lock);

		ret = timekeeper.clock->max_idle_ns;

	} while (read_seqretry(&timekeeper.lock, seq));

	return ret;
543 544
}

545
/**
546
 * read_persistent_clock -  Return time from the persistent clock.
547 548
 *
 * Weak dummy function for arches that do not yet support it.
549 550
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
551 552 553
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
554
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
555
{
556 557
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
558 559
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

575 576 577 578 579
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
580
	struct clocksource *clock;
581
	unsigned long flags;
582
	struct timespec now, boot;
583 584

	read_persistent_clock(&now);
585
	read_boot_clock(&boot);
586

J
John Stultz 已提交
587
	seqlock_init(&timekeeper.lock);
588

R
Roman Zippel 已提交
589
	ntp_init();
590

J
John Stultz 已提交
591
	write_seqlock_irqsave(&timekeeper.lock, flags);
592
	clock = clocksource_default_clock();
593 594
	if (clock->enable)
		clock->enable(clock);
595
	timekeeper_setup_internals(clock);
596

597 598
	timekeeper.xtime.tv_sec = now.tv_sec;
	timekeeper.xtime.tv_nsec = now.tv_nsec;
599 600
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
601
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
602 603
		boot.tv_sec = timekeeper.xtime.tv_sec;
		boot.tv_nsec = timekeeper.xtime.tv_nsec;
604
	}
605
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
606
				-boot.tv_sec, -boot.tv_nsec);
607 608
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
J
John Stultz 已提交
609
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
610 611 612
}

/* time in seconds when suspend began */
613
static struct timespec timekeeping_suspend_time;
614

615 616 617 618 619 620 621 622 623
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
624
	if (!timespec_valid(delta)) {
625
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
626 627 628 629
					"sleep delta value!\n");
		return;
	}

630
	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
631 632
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
633 634
	timekeeper.total_sleep_time = timespec_add(
					timekeeper.total_sleep_time, *delta);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
650
	unsigned long flags;
651 652 653 654 655 656 657
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

658
	write_seqlock_irqsave(&timekeeper.lock, flags);
J
John Stultz 已提交
659

660 661 662 663
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

664
	timekeeping_update(true);
665

666
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
667 668 669 670 671 672

	/* signal hrtimers about time change */
	clock_was_set();
}


673 674 675 676 677 678 679
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
680
static void timekeeping_resume(void)
681
{
682
	unsigned long flags;
683 684 685
	struct timespec ts;

	read_persistent_clock(&ts);
686

687 688
	clocksource_resume();

689
	write_seqlock_irqsave(&timekeeper.lock, flags);
690

691 692
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
693
		__timekeeping_inject_sleeptime(&ts);
694 695
	}
	/* re-base the last cycle value */
696 697
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
698
	timekeeping_suspended = 0;
699
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
700 701 702 703 704 705

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
706
	hrtimers_resume();
707 708
}

709
static int timekeeping_suspend(void)
710
{
711
	unsigned long flags;
712 713
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
714

715
	read_persistent_clock(&timekeeping_suspend_time);
716

717
	write_seqlock_irqsave(&timekeeper.lock, flags);
718
	timekeeping_forward_now();
719
	timekeeping_suspended = 1;
720 721 722 723 724 725 726

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
727
	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
728 729 730 731 732 733 734 735 736 737 738 739
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
740
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
741 742

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
743
	clocksource_suspend();
744 745 746 747 748

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
749
static struct syscore_ops timekeeping_syscore_ops = {
750 751 752 753
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

754
static int __init timekeeping_init_ops(void)
755
{
756 757
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
758 759
}

760
device_initcall(timekeeping_init_ops);
761 762 763 764 765

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
766
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
767 768 769 770 771 772 773 774 775 776 777 778
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
779
	 * here.  This is tuned so that an error of about 1 msec is adjusted
780 781
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
782
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
783 784 785 786 787 788 789 790
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
791
	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
792
	tick_error -= timekeeper.xtime_interval >> 1;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
817
static void timekeeping_adjust(s64 offset)
818
{
819
	s64 error, interval = timekeeper.cycle_interval;
820 821
	int adj;

822
	/*
823
	 * The point of this is to check if the error is greater than half
824 825 826 827 828
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
829 830
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
831
	 * larger than half an interval.
832
	 *
833
	 * Note: It does not "save" on aggravation when reading the code.
834
	 */
835
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
836
	if (error > interval) {
837 838
		/*
		 * We now divide error by 4(via shift), which checks if
839
		 * the error is greater than twice the interval.
840 841 842
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
843
		error >>= 2;
844 845 846 847 848
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
849
		 * The proper fix is to avoid rounding up by using
850 851 852 853
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
854 855 856
		if (likely(error <= interval))
			adj = 1;
		else
857
			adj = timekeeping_bigadjust(error, &interval, &offset);
858
	} else if (error < -interval) {
859
		/* See comment above, this is just switched for the negative */
860 861 862 863 864 865
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
866
			adj = timekeeping_bigadjust(error, &interval, &offset);
867
	} else /* No adjustment needed */
868 869
		return;

870 871 872 873 874
	if (unlikely(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj >
			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
875 876 877
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
878
	}
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
928
	timekeeper.mult += adj;
929 930 931
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
932
				timekeeper.ntp_error_shift;
933 934
}

L
Linus Torvalds 已提交
935

936 937 938 939 940 941 942 943 944 945 946 947
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
948
	u64 raw_nsecs;
949

950
	/* If the offset is smaller than a shifted interval, do nothing */
951 952 953 954 955 956 957 958 959
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
960
		int leap;
961
		timekeeper.xtime_nsec -= nsecps;
962
		timekeeper.xtime.tv_sec++;
963 964
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
965 966
	}

967 968
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
969
	raw_nsecs += timekeeper.raw_time.tv_nsec;
970 971 972
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
973
		timekeeper.raw_time.tv_sec += raw_secs;
974
	}
975
	timekeeper.raw_time.tv_nsec = raw_nsecs;
976 977

	/* Accumulate error between NTP and clock interval */
978
	timekeeper.ntp_error += ntp_tick_length() << shift;
979 980
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
981 982 983 984 985
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
986

987 988 989 990
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
991
static void update_wall_time(void)
992
{
993
	struct clocksource *clock;
994
	cycle_t offset;
995
	int shift = 0, maxshift;
J
John Stultz 已提交
996 997 998
	unsigned long flags;

	write_seqlock_irqsave(&timekeeper.lock, flags);
999 1000 1001

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1002
		goto out;
1003

1004
	clock = timekeeper.clock;
J
John Stultz 已提交
1005 1006

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1007
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
1008 1009
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1010
#endif
1011 1012
	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1013

1014 1015 1016 1017
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1018
	 * that is smaller than the offset.  We then accumulate that
1019 1020
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1021
	 */
1022 1023
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
1024
	/* Bound shift to one less than what overflows tick_length */
1025
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1026
	shift = min(shift, maxshift);
1027
	while (offset >= timekeeper.cycle_interval) {
1028
		offset = logarithmic_accumulation(offset, shift);
1029 1030
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1031 1032 1033
	}

	/* correct the clock when NTP error is too big */
1034
	timekeeping_adjust(offset);
1035

1036 1037 1038 1039
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1040
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1052 1053 1054
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1055
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1056 1057
	}

J
John Stultz 已提交
1058 1059 1060

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1061 1062
	 * add the remainder to the error difference.
	 */
1063 1064 1065 1066
	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
						timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1067 1068
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1069

J
John Stultz 已提交
1070 1071
	/*
	 * Finally, make sure that after the rounding
1072
	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1073
	 */
1074
	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1075
		int leap;
1076 1077
		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
		timekeeper.xtime.tv_sec++;
1078 1079
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
J
John Stultz 已提交
1080
	}
L
Linus Torvalds 已提交
1081

1082
	timekeeping_update(false);
J
John Stultz 已提交
1083 1084 1085 1086

out:
	write_sequnlock_irqrestore(&timekeeper.lock, flags);

1087
}
T
Tomas Janousek 已提交
1088 1089 1090 1091 1092

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1093
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1094 1095 1096 1097 1098 1099 1100 1101
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1102
	struct timespec boottime = {
1103
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1104
				timekeeper.total_sleep_time.tv_sec,
1105
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1106
				timekeeper.total_sleep_time.tv_nsec
1107
	};
1108 1109

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1110
}
1111
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
1132
		seq = read_seqbegin(&timekeeper.lock);
1133
		*ts = timekeeper.xtime;
1134
		tomono = timekeeper.wall_to_monotonic;
1135
		sleep = timekeeper.total_sleep_time;
1136 1137
		nsecs = timekeeping_get_ns();

J
John Stultz 已提交
1138
	} while (read_seqretry(&timekeeper.lock, seq));
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1162 1163 1164 1165 1166 1167
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1168
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1169
}
1170
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1171

1172 1173
unsigned long get_seconds(void)
{
1174
	return timekeeper.xtime.tv_sec;
1175 1176 1177
}
EXPORT_SYMBOL(get_seconds);

1178 1179
struct timespec __current_kernel_time(void)
{
1180
	return timekeeper.xtime;
1181
}
1182

1183 1184 1185 1186 1187 1188
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
J
John Stultz 已提交
1189
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1190

1191
		now = timekeeper.xtime;
J
John Stultz 已提交
1192
	} while (read_seqretry(&timekeeper.lock, seq));
1193 1194 1195 1196

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1197 1198 1199 1200 1201 1202 1203

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
J
John Stultz 已提交
1204
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1205

1206
		now = timekeeper.xtime;
1207
		mono = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1208
	} while (read_seqretry(&timekeeper.lock, seq));
1209 1210 1211 1212 1213

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1226 1227

/**
1228 1229
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1230 1231
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1232
 * @sleep:	pointer to timespec to be set with time in suspend
1233
 */
1234 1235
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1236 1237 1238 1239
{
	unsigned long seq;

	do {
J
John Stultz 已提交
1240
		seq = read_seqbegin(&timekeeper.lock);
1241
		*xtim = timekeeper.xtime;
1242
		*wtom = timekeeper.wall_to_monotonic;
1243
		*sleep = timekeeper.total_sleep_time;
J
John Stultz 已提交
1244
	} while (read_seqretry(&timekeeper.lock, seq));
1245
}
T
Torben Hohn 已提交
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
J
John Stultz 已提交
1256
		seq = read_seqbegin(&timekeeper.lock);
1257
		wtom = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1258 1259
	} while (read_seqretry(&timekeeper.lock, seq));

1260 1261
	return timespec_to_ktime(wtom);
}
1262 1263
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1264

T
Torben Hohn 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}