intel_lrc.c 77.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
233 234
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
235

236 237 238 239 240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
242
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 244 245
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
246 247
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
248 249
	WARN_ON(i915.enable_ppgtt == -1);

250 251 252 253 254 255
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

256 257 258
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_device *dev = engine->dev;
273

274
	if (IS_GEN8(dev) || IS_GEN9(dev))
275
		engine->idle_lite_restore_wa = ~0;
276

277
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281 282
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283 284
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
311
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313
 *    bits 32-52:    ctx ID, a globally unique tag
314 315
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
316
 */
317 318
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
319
				   struct intel_engine_cs *engine)
320
{
321
	u64 desc;
322

323
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324

325 326 327 328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ctx->engine[engine->id].lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
341
{
342

343
	struct intel_engine_cs *engine = rq0->engine;
344
	struct drm_device *dev = engine->dev;
345
	struct drm_i915_private *dev_priv = dev->dev_private;
346
	uint64_t desc[2];
347

348
	if (rq1) {
349
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350 351 352 353
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
354

355
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356
	rq0->elsp_submitted++;
357

358
	/* You must always write both descriptors in the order below. */
359 360
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361

362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363
	/* The context is automatically loaded after the following */
364
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365

366
	/* ELSP is a wo register, use another nearby reg for posting */
367
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 369
}

370 371 372 373 374 375 376 377 378 379
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
380
{
381
	struct intel_engine_cs *engine = rq->engine;
382
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384

385
	reg_state[CTX_RING_TAIL+1] = rq->tail;
386

387 388 389 390 391 392 393
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
394 395
}

396 397
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
398
{
399
	struct drm_i915_private *dev_priv = rq0->i915;
400
	unsigned int fw_domains = rq0->engine->fw_domains;
401

402
	execlists_update_context(rq0);
403

404
	if (rq1)
405
		execlists_update_context(rq1);
406

407
	spin_lock_irq(&dev_priv->uncore.lock);
408
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409

410
	execlists_elsp_write(rq0, rq1);
411

412
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413
	spin_unlock_irq(&dev_priv->uncore.lock);
414 415
}

416
static void execlists_context_unqueue(struct intel_engine_cs *engine)
417
{
418
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419
	struct drm_i915_gem_request *cursor, *tmp;
420

421
	assert_spin_locked(&engine->execlist_lock);
422

423 424 425 426
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
427
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
428

429
	/* Try to read in pairs */
430
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431 432 433
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
434
		} else if (req0->ctx == cursor->ctx) {
435 436
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
437
			cursor->elsp_submitted = req0->elsp_submitted;
438
			list_move_tail(&req0->execlist_link,
439
				       &engine->execlist_retired_req_list);
440 441 442
			req0 = cursor;
		} else {
			req1 = cursor;
443
			WARN_ON(req1->elsp_submitted);
444 445 446 447
			break;
		}
	}

448 449 450
	if (unlikely(!req0))
		return;

451
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452
		/*
453 454 455 456 457 458
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
459
		 */
460
		struct intel_ringbuffer *ringbuf;
461

462
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
463 464
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
465 466
	}

467
	execlists_submit_requests(req0, req1);
468 469
}

470
static unsigned int
471
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
472
{
473
	struct drm_i915_gem_request *head_req;
474

475
	assert_spin_locked(&engine->execlist_lock);
476

477
	head_req = list_first_entry_or_null(&engine->execlist_queue,
478
					    struct drm_i915_gem_request,
479 480
					    execlist_link);

481 482
	if (!head_req)
		return 0;
483

484
	if (unlikely(head_req->ctx_hw_id != request_id))
485 486 487 488 489 490 491 492
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
493
		       &engine->execlist_retired_req_list);
494

495
	return 1;
496 497
}

498
static u32
499
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500
		   u32 *context_id)
B
Ben Widawsky 已提交
501
{
502
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
503
	u32 status;
B
Ben Widawsky 已提交
504

505 506
	read_pointer %= GEN8_CSB_ENTRIES;

507
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508 509 510

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
511

512
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513 514 515
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
516 517
}

518
/**
519
 * intel_lrc_irq_handler() - handle Context Switch interrupts
520
 * @engine: Engine Command Streamer to handle.
521 522 523 524
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
525
static void intel_lrc_irq_handler(unsigned long data)
526
{
527
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
529
	u32 status_pointer;
530
	unsigned int read_pointer, write_pointer;
531 532
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
533 534
	unsigned int submit_contexts = 0;

535
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536

537
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538

539
	read_pointer = engine->next_context_status_buffer;
540
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541
	if (read_pointer > write_pointer)
542
		write_pointer += GEN8_CSB_ENTRIES;
543 544

	while (read_pointer < write_pointer) {
545 546 547 548 549 550
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
551

552 553 554 555 556 557 558 559
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

560
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561 562 563 564 565 566 567

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
568 569 570 571 572
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

573
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574 575
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
576
				execlists_check_remove_request(engine, csb[i][1]);
577 578
	}

579
	if (submit_contexts) {
580
		if (!engine->disable_lite_restore_wa ||
581 582
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
583
	}
584

585
	spin_unlock(&engine->execlist_lock);
586 587 588

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
589 590
}

591
static void execlists_context_queue(struct drm_i915_gem_request *request)
592
{
593
	struct intel_engine_cs *engine = request->engine;
594
	struct drm_i915_gem_request *cursor;
595
	int num_elements = 0;
596

597
	intel_lr_context_pin(request->ctx, request->engine);
598 599
	i915_gem_request_reference(request);

600
	spin_lock_bh(&engine->execlist_lock);
601

602
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
603 604 605 606
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
607
		struct drm_i915_gem_request *tail_req;
608

609
		tail_req = list_last_entry(&engine->execlist_queue,
610
					   struct drm_i915_gem_request,
611 612
					   execlist_link);

613
		if (request->ctx == tail_req->ctx) {
614
			WARN(tail_req->elsp_submitted != 0,
615
				"More than 2 already-submitted reqs queued\n");
616
			list_move_tail(&tail_req->execlist_link,
617
				       &engine->execlist_retired_req_list);
618 619 620
		}
	}

621
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
622
	request->ctx_hw_id = request->ctx->hw_id;
623
	if (num_elements == 0)
624
		execlists_context_unqueue(engine);
625

626
	spin_unlock_bh(&engine->execlist_lock);
627 628
}

629
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
630
{
631
	struct intel_engine_cs *engine = req->engine;
632 633 634 635
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
636
	if (engine->gpu_caches_dirty)
637 638
		flush_domains = I915_GEM_GPU_DOMAINS;

639
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
640 641 642
	if (ret)
		return ret;

643
	engine->gpu_caches_dirty = false;
644 645 646
	return 0;
}

647
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
648 649
				 struct list_head *vmas)
{
650
	const unsigned other_rings = ~intel_engine_flag(req->engine);
651 652 653 654 655 656 657 658
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

659
		if (obj->active & other_rings) {
660
			ret = i915_gem_object_sync(obj, req->engine, &req);
661 662 663
			if (ret)
				return ret;
		}
664 665 666 667 668 669 670 671 672 673 674 675 676

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
677
	return logical_ring_invalidate_all_caches(req);
678 679
}

680
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
681
{
682
	struct intel_engine_cs *engine = request->engine;
683
	int ret;
684

685 686 687 688 689 690
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;

691 692 693 694 695 696
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

697
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
698

699 700 701 702 703 704 705 706 707 708 709 710 711
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

712 713 714
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
715

716 717 718 719
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

735
	request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
736 737 738
	return 0;

err_unpin:
739
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
740
	return ret;
741 742 743 744
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
745
 * @request: Request to advance the logical ringbuffer of.
746 747 748 749 750 751
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
752
static int
753
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
754
{
755
	struct intel_ringbuffer *ringbuf = request->ringbuf;
756
	struct drm_i915_private *dev_priv = request->i915;
757
	struct intel_engine_cs *engine = request->engine;
758

759 760
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
761

762 763 764 765 766 767 768 769 770
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
771

772
	if (intel_engine_stopped(engine))
773
		return 0;
774

775 776 777 778 779 780 781 782
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
783

784 785 786 787
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
788 789

	return 0;
790 791
}

792 793 794 795 796 797 798 799 800 801
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
802
 * @dispatch_flags: translated execbuffer call flags.
803 804 805 806 807 808
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
809
int intel_execlists_submission(struct i915_execbuffer_params *params,
810
			       struct drm_i915_gem_execbuffer2 *args,
811
			       struct list_head *vmas)
812
{
813
	struct drm_device       *dev = params->dev;
814
	struct intel_engine_cs *engine = params->engine;
815
	struct drm_i915_private *dev_priv = dev->dev_private;
816
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
817
	u64 exec_start;
818 819 820 821 822 823 824 825 826 827
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
828
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

853
	ret = execlists_move_to_gpu(params->request, vmas);
854 855 856
	if (ret)
		return ret;

857
	if (engine == &dev_priv->engine[RCS] &&
858
	    instp_mode != dev_priv->relative_constants_mode) {
859
		ret = intel_ring_begin(params->request, 4);
860 861 862 863 864
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
865
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
866 867 868 869 870 871
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

872 873 874
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

875
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
876 877 878
	if (ret)
		return ret;

879
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
880

881
	i915_gem_execbuffer_move_to_active(vmas, params->request);
882

883 884 885
	return 0;
}

886
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
887
{
888
	struct drm_i915_gem_request *req, *tmp;
889 890
	struct list_head retired_list;

891 892
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
893 894 895
		return;

	INIT_LIST_HEAD(&retired_list);
896
	spin_lock_bh(&engine->execlist_lock);
897
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
898
	spin_unlock_bh(&engine->execlist_lock);
899 900

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
901
		intel_lr_context_unpin(req->ctx, engine);
902

903
		list_del(&req->execlist_link);
904
		i915_gem_request_unreference(req);
905 906 907
	}
}

908
void intel_logical_ring_stop(struct intel_engine_cs *engine)
909
{
910
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
911 912
	int ret;

913
	if (!intel_engine_initialized(engine))
914 915
		return;

916
	ret = intel_engine_idle(engine);
917
	if (ret)
918
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
919
			  engine->name, ret);
920 921

	/* TODO: Is this correct with Execlists enabled? */
922 923 924
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
925 926
		return;
	}
927
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
928 929
}

930
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
931
{
932
	struct intel_engine_cs *engine = req->engine;
933 934
	int ret;

935
	if (!engine->gpu_caches_dirty)
936 937
		return 0;

938
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
939 940 941
	if (ret)
		return ret;

942
	engine->gpu_caches_dirty = false;
943 944 945
	return 0;
}

946 947
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
948
{
949 950 951
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
952 953
	void *vaddr;
	u32 *lrc_reg_state;
954
	int ret;
955

956
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
957

958 959 960 961
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
962 963 964
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
965
		goto err;
966

967 968 969
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
970 971 972
		goto unpin_ctx_obj;
	}

973 974
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

975
	ringbuf = ctx->engine[engine->id].ringbuf;
976
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
977
	if (ret)
978
		goto unpin_map;
979

980
	i915_gem_context_reference(ctx);
981 982
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
983
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
984
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
985
	ctx_obj->dirty = true;
986

987 988 989
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
990

991
	return 0;
992

993 994
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
995 996
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
997 998
err:
	ctx->engine[engine->id].pin_count = 0;
999 1000 1001
	return ret;
}

1002 1003
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1004
{
1005
	struct drm_i915_gem_object *ctx_obj;
1006

1007 1008
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1009

1010 1011
	if (--ctx->engine[engine->id].pin_count)
		return;
1012

1013
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1014

1015 1016 1017
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1018

1019 1020 1021
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1022

1023
	i915_gem_context_unreference(ctx);
1024 1025
}

1026
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1027 1028
{
	int ret, i;
1029
	struct intel_engine_cs *engine = req->engine;
1030
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1031
	struct drm_device *dev = engine->dev;
1032 1033 1034
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1035
	if (w->count == 0)
1036 1037
		return 0;

1038
	engine->gpu_caches_dirty = true;
1039
	ret = logical_ring_flush_all_caches(req);
1040 1041 1042
	if (ret)
		return ret;

1043
	ret = intel_ring_begin(req, w->count * 2 + 2);
1044 1045 1046 1047 1048
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1049
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1050 1051 1052 1053 1054 1055
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1056
	engine->gpu_caches_dirty = true;
1057
	ret = logical_ring_flush_all_caches(req);
1058 1059 1060 1061 1062 1063
	if (ret)
		return ret;

	return 0;
}

1064
#define wa_ctx_emit(batch, index, cmd)					\
1065
	do {								\
1066 1067
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1068 1069
			return -ENOSPC;					\
		}							\
1070
		batch[__index] = (cmd);					\
1071 1072
	} while (0)

V
Ville Syrjälä 已提交
1073
#define wa_ctx_emit_reg(batch, index, reg) \
1074
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1092
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1093 1094 1095 1096 1097
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1098 1099 1100 1101 1102 1103
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1104
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1105 1106
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1107
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1108
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1109
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1110
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1111 1112 1113
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1114
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1125
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1126
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1127
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1128
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1129
	wa_ctx_emit(batch, index, 0);
1130 1131 1132 1133

	return index;
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1172
 *
1173 1174 1175 1176 1177 1178 1179 1180
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1181
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1182 1183 1184 1185
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1186
	uint32_t scratch_addr;
1187 1188
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1189
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1190
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1191

1192
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1193 1194
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1195 1196 1197
		if (rc < 0)
			return rc;
		index = rc;
1198 1199
	}

1200 1201
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1202
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1213

1214 1215
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1216
		wa_ctx_emit(batch, index, MI_NOOP);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1234
 * @batch: page in which WA are loaded
1235 1236 1237 1238 1239 1240 1241 1242 1243
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1244
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1245 1246 1247 1248 1249 1250
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1251
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1252
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1253

1254
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1255 1256 1257 1258

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1259
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1260 1261 1262 1263
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1264
	int ret;
1265
	struct drm_device *dev = engine->dev;
1266 1267
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1268
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1269
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1270
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1271
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1272

1273
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1274
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1275 1276 1277 1278
	if (ret < 0)
		return ret;
	index = ret;

1279 1280 1281 1282 1283 1284 1285
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1286
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1287 1288 1289 1290
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1291
	struct drm_device *dev = engine->dev;
1292 1293
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1294
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1295
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1296
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1297
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1298
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1299 1300 1301 1302 1303
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1323
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1324
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1325
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1326 1327
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1328 1329 1330 1331 1332
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1333
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1334 1335 1336
{
	int ret;

1337
	engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1338
						   PAGE_ALIGN(size));
1339
	if (IS_ERR(engine->wa_ctx.obj)) {
1340
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1341 1342 1343
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1344 1345
	}

1346
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1347 1348 1349
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1350
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1351 1352 1353 1354 1355 1356
		return ret;
	}

	return 0;
}

1357
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1358
{
1359 1360 1361 1362
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1363 1364 1365
	}
}

1366
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1367 1368 1369 1370 1371
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1372
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1373

1374
	WARN_ON(engine->id != RCS);
1375

1376
	/* update this when WA for higher Gen are added */
1377
	if (INTEL_INFO(engine->dev)->gen > 9) {
1378
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1379
			  INTEL_INFO(engine->dev)->gen);
1380
		return 0;
1381
	}
1382

1383
	/* some WA perform writes to scratch page, ensure it is valid */
1384 1385
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1386 1387 1388
		return -EINVAL;
	}

1389
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1390 1391 1392 1393 1394
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1395
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1396 1397 1398
	batch = kmap_atomic(page);
	offset = 0;

1399 1400
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1401 1402 1403 1404 1405 1406
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1407
		ret = gen8_init_perctx_bb(engine,
1408 1409 1410 1411 1412
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1413 1414
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1415 1416 1417 1418 1419 1420
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1421
		ret = gen9_init_perctx_bb(engine,
1422 1423 1424 1425 1426
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1427 1428 1429 1430 1431
	}

out:
	kunmap_atomic(batch);
	if (ret)
1432
		lrc_destroy_wa_ctx_obj(engine);
1433 1434 1435 1436

	return ret;
}

1437 1438 1439 1440 1441 1442 1443 1444 1445
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1446
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1447
{
1448
	struct drm_device *dev = engine->dev;
1449
	struct drm_i915_private *dev_priv = dev->dev_private;
1450
	unsigned int next_context_status_buffer_hw;
1451

1452
	lrc_init_hws(engine);
1453

1454 1455 1456
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1457

1458
	I915_WRITE(RING_MODE_GEN7(engine),
1459 1460
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1461
	POSTING_READ(RING_MODE_GEN7(engine));
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1472 1473
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1474
	 */
1475
	next_context_status_buffer_hw =
1476
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1477 1478 1479 1480 1481 1482 1483 1484 1485

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1486 1487
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1488

1489
	intel_engine_init_hangcheck(engine);
1490

1491
	return intel_mocs_init_engine(engine);
1492 1493
}

1494
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1495
{
1496
	struct drm_device *dev = engine->dev;
1497 1498 1499
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1500
	ret = gen8_init_common_ring(engine);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1514
	return init_workarounds_ring(engine);
1515 1516
}

1517
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1518 1519 1520
{
	int ret;

1521
	ret = gen8_init_common_ring(engine);
1522 1523 1524
	if (ret)
		return ret;

1525
	return init_workarounds_ring(engine);
1526 1527
}

1528 1529 1530
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1531
	struct intel_engine_cs *engine = req->engine;
1532 1533 1534 1535
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1536
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1537 1538 1539 1540 1541 1542 1543
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1544 1545
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1546
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1547 1548
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1549 1550 1551 1552 1553 1554 1555 1556 1557
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1558
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1559
			      u64 offset, unsigned dispatch_flags)
1560
{
1561
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1562
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1563 1564
	int ret;

1565 1566 1567 1568
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1569 1570
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1571
	if (req->ctx->ppgtt &&
1572
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1573 1574
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1575 1576 1577 1578
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1579

1580
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1581 1582
	}

1583
	ret = intel_ring_begin(req, 4);
1584 1585 1586 1587
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1588 1589 1590 1591
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1592 1593 1594 1595 1596 1597 1598 1599
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1600
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1601
{
1602
	struct drm_device *dev = engine->dev;
1603 1604 1605
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1606
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1607 1608 1609
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1610 1611 1612 1613
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1614 1615 1616 1617 1618 1619
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1620
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1621
{
1622
	struct drm_device *dev = engine->dev;
1623 1624 1625 1626
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627 1628 1629
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1630 1631 1632 1633
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1634
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1635 1636 1637
			   u32 invalidate_domains,
			   u32 unused)
{
1638
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1639
	struct intel_engine_cs *engine = ringbuf->engine;
1640
	struct drm_device *dev = engine->dev;
1641 1642 1643 1644
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1645
	ret = intel_ring_begin(request, 4);
1646 1647 1648 1649 1650
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1651 1652 1653 1654 1655 1656 1657 1658 1659
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1660
		if (engine == &dev_priv->engine[VCS])
1661
			cmd |= MI_INVALIDATE_BSD;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1675
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1676 1677 1678
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1679
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1680
	struct intel_engine_cs *engine = ringbuf->engine;
1681
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1682
	bool vf_flush_wa = false;
1683 1684 1685 1686 1687 1688 1689 1690
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1691
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1692
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1705 1706 1707 1708
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1709
		if (IS_GEN9(engine->dev))
1710 1711
			vf_flush_wa = true;
	}
1712

1713
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1714 1715 1716
	if (ret)
		return ret;

1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1737
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1738
{
1739
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1740 1741
}

1742
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1743
{
1744
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1745 1746
}

1747
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1759
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1760 1761
}

1762
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1763
{
1764
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1765 1766

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1767
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1782
static int gen8_emit_request(struct drm_i915_gem_request *request)
1783
{
1784
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1785 1786
	int ret;

1787
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1788 1789 1790
	if (ret)
		return ret;

1791 1792
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1793 1794

	intel_logical_ring_emit(ringbuf,
1795 1796
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1797
				hws_seqno_address(request->engine) |
1798
				MI_FLUSH_DW_USE_GTT);
1799
	intel_logical_ring_emit(ringbuf, 0);
1800
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1801 1802
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1803 1804
	return intel_logical_ring_advance_and_submit(request);
}
1805

1806 1807 1808 1809
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1810

1811
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1812 1813 1814
	if (ret)
		return ret;

1815 1816 1817
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1818 1819 1820 1821
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1822
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1823 1824 1825 1826
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1827
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1828 1829
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1830 1831
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1832
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1833
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1834
	return intel_logical_ring_advance_and_submit(request);
1835 1836
}

1837
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1838 1839 1840 1841
{
	struct render_state so;
	int ret;

1842
	ret = i915_gem_render_state_prepare(req->engine, &so);
1843 1844 1845 1846 1847 1848
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1849
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1850
				       I915_DISPATCH_SECURE);
1851 1852 1853
	if (ret)
		goto out;

1854
	ret = req->engine->emit_bb_start(req,
1855 1856 1857 1858 1859
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1860
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1861 1862 1863 1864 1865 1866

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1867
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1868 1869 1870
{
	int ret;

1871
	ret = intel_logical_ring_workarounds_emit(req);
1872 1873 1874
	if (ret)
		return ret;

1875 1876 1877 1878 1879 1880 1881 1882
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1883
	return intel_lr_context_render_state_init(req);
1884 1885
}

1886 1887 1888 1889 1890 1891
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1892
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1893
{
1894
	struct drm_i915_private *dev_priv;
1895

1896
	if (!intel_engine_initialized(engine))
1897 1898
		return;

1899 1900 1901 1902 1903 1904 1905
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1906
	dev_priv = engine->dev->dev_private;
1907

1908 1909 1910
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1911
	}
1912

1913 1914
	if (engine->cleanup)
		engine->cleanup(engine);
1915

1916 1917
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1918

1919
	if (engine->status_page.obj) {
1920
		i915_gem_object_unpin_map(engine->status_page.obj);
1921
		engine->status_page.obj = NULL;
1922
	}
1923
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1924

1925 1926 1927
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1928

1929 1930
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1931 1932
}

1933 1934
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1935
			    struct intel_engine_cs *engine)
1936 1937
{
	/* Default vfuncs which can be overriden by each engine. */
1938 1939 1940 1941 1942 1943
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1944 1945
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1946
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1947
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1948
		engine->set_seqno = bxt_a_set_seqno;
1949 1950 1951
	}
}

1952
static inline void
1953
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1954
{
1955 1956
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1957 1958
}

1959
static int
1960 1961 1962
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1963
	void *hws;
1964 1965 1966 1967

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1968 1969 1970 1971
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1972
	engine->status_page.obj = dctx_obj;
1973 1974

	return 0;
1975 1976
}

1977
static int
1978
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1979
{
1980 1981 1982
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1983 1984 1985
	int ret;

	/* Intentionally left blank. */
1986
	engine->buffer = NULL;
1987

1988 1989 1990 1991 1992
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
1993

1994 1995 1996 1997
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
1998

1999 2000 2001
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2002
	logical_ring_init_platform_invariants(engine);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2018
	ret = i915_cmd_parser_init_ring(engine);
2019
	if (ret)
2020
		goto error;
2021

2022
	ret = execlists_context_deferred_alloc(dctx, engine);
2023
	if (ret)
2024
		goto error;
2025 2026

	/* As this is the default context, always pin it */
2027
	ret = intel_lr_context_pin(dctx, engine);
2028
	if (ret) {
2029 2030
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2031
		goto error;
2032
	}
2033

2034
	/* And setup the hardware status page. */
2035 2036 2037 2038 2039
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2040

2041 2042 2043
	return 0;

error:
2044
	intel_logical_ring_cleanup(engine);
2045
	return ret;
2046 2047 2048 2049 2050
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2051
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2052
	int ret;
2053

2054 2055 2056 2057 2058
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2059

2060
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2061
	if (HAS_L3_DPF(dev))
2062
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2063

2064
	logical_ring_default_vfuncs(dev, engine);
2065 2066

	/* Override some for render ring. */
2067
	if (INTEL_INFO(dev)->gen >= 9)
2068
		engine->init_hw = gen9_init_render_ring;
2069
	else
2070 2071 2072 2073 2074
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2075

2076
	engine->dev = dev;
2077

2078
	ret = intel_init_pipe_control(engine);
2079 2080 2081
	if (ret)
		return ret;

2082
	ret = intel_init_workaround_bb(engine);
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2093
	ret = logical_ring_init(dev, engine);
2094
	if (ret) {
2095
		lrc_destroy_wa_ctx_obj(engine);
2096
	}
2097 2098

	return ret;
2099 2100 2101 2102 2103
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2104
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2105

2106 2107 2108 2109 2110
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2111

2112 2113
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2114

2115
	return logical_ring_init(dev, engine);
2116 2117 2118 2119 2120
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2121
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2122

2123 2124 2125 2126 2127
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2128

2129 2130
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2131

2132
	return logical_ring_init(dev, engine);
2133 2134 2135 2136 2137
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2138
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2139

2140 2141 2142 2143 2144
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2145

2146 2147
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2148

2149
	return logical_ring_init(dev, engine);
2150 2151 2152 2153 2154
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2155
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2156

2157 2158 2159 2160 2161
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2162

2163 2164
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2165

2166
	return logical_ring_init(dev, engine);
2167 2168
}

2169 2170 2171 2172 2173
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2174
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2175 2176 2177 2178
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2215
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2216
cleanup_blt_ring:
2217
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2218
cleanup_bsd_ring:
2219
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2220
cleanup_render_ring:
2221
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2222 2223 2224 2225

	return ret;
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2269
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2270 2271 2272
{
	u32 indirect_ctx_offset;

2273
	switch (INTEL_INFO(engine->dev)->gen) {
2274
	default:
2275
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2290
static int
2291 2292
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2293 2294
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2295
{
2296
	struct drm_device *dev = engine->dev;
2297
	struct drm_i915_private *dev_priv = dev->dev_private;
2298
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2299 2300
	void *vaddr;
	u32 *reg_state;
2301 2302
	int ret;

2303 2304 2305
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2306 2307 2308 2309 2310 2311
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2312 2313 2314 2315
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2316 2317
		return ret;
	}
2318
	ctx_obj->dirty = true;
2319 2320 2321

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2322
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2323 2324 2325 2326 2327 2328

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2329
	reg_state[CTX_LRI_HEADER_0] =
2330 2331 2332
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2333 2334
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2335 2336
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2337 2338 2339 2340
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2341 2342 2343
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2344 2345 2346 2347
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2348
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2349 2350 2351 2352 2353 2354
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2355
		       RING_BB_PPGTT);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2371 2372 2373 2374 2375 2376 2377
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2378
				intel_lr_indirect_ctx_offset(engine) << 6;
2379 2380 2381 2382 2383

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2384
	}
2385
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2386 2387
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2388
	/* PDP values well be assigned later if needed */
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2418
		execlists_update_context_pdps(ppgtt, reg_state);
2419 2420
	}

2421
	if (engine->id == RCS) {
2422
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2423 2424
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2425 2426
	}

2427
	i915_gem_object_unpin_map(ctx_obj);
2428 2429 2430 2431

	return 0;
}

2432 2433 2434 2435 2436 2437 2438 2439
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2440 2441
void intel_lr_context_free(struct intel_context *ctx)
{
2442 2443
	int i;

2444
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2445
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2446
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2447

D
Dave Gordon 已提交
2448 2449
		if (!ctx_obj)
			continue;
2450

D
Dave Gordon 已提交
2451 2452 2453
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2454 2455 2456
	}
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2471
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 2473 2474
{
	int ret = 0;

2475
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2476

2477
	switch (engine->id) {
2478
	case RCS:
2479
		if (INTEL_INFO(engine->dev)->gen >= 9)
2480 2481 2482
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2493 2494
}

2495
/**
2496
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2497
 * @ctx: LR context to create.
2498
 * @engine: engine to be used with the context.
2499 2500 2501 2502 2503 2504 2505
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2506
 * Return: non-zero on error.
2507
 */
2508 2509
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2510
{
2511
	struct drm_device *dev = engine->dev;
2512 2513
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2514
	struct intel_ringbuffer *ringbuf;
2515 2516
	int ret;

2517
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2518
	WARN_ON(ctx->engine[engine->id].state);
2519

2520
	context_size = round_up(intel_lr_context_size(engine), 4096);
2521

2522 2523 2524
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2525
	ctx_obj = i915_gem_object_create(dev, context_size);
2526
	if (IS_ERR(ctx_obj)) {
2527
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2528
		return PTR_ERR(ctx_obj);
2529 2530
	}

2531
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2532 2533
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2534
		goto error_deref_obj;
2535 2536
	}

2537
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2538 2539
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2540
		goto error_ringbuf;
2541 2542
	}

2543 2544
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2545
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2546 2547

	return 0;
2548

2549 2550
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2551
error_deref_obj:
2552
	drm_gem_object_unreference(&ctx_obj->base);
2553 2554
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2555
	return ret;
2556
}
2557

2558 2559
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2560
{
2561
	struct intel_engine_cs *engine;
2562

2563
	for_each_engine(engine, dev_priv) {
2564
		struct drm_i915_gem_object *ctx_obj =
2565
				ctx->engine[engine->id].state;
2566
		struct intel_ringbuffer *ringbuf =
2567
				ctx->engine[engine->id].ringbuf;
2568
		void *vaddr;
2569 2570 2571 2572 2573
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2574 2575
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2576
			continue;
2577 2578 2579

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2580 2581 2582 2583

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2584
		i915_gem_object_unpin_map(ctx_obj);
2585 2586 2587 2588 2589

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}