slab.c 116.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 154 155
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
156
 */
157
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
177
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
178
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179
			 SLAB_CACHE_DMA | \
180
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
181
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
183
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
184
#else
185
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
186
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
187
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
189
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

211
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
212 213
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
214 215
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
225 226 227 228 229 230
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
250
	struct rcu_head head;
251
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
252
	void *addr;
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
272
	spinlock_t lock;
273
	void *entry[];	/*
A
Andrew Morton 已提交
274 275 276 277
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
278 279
};

A
Andrew Morton 已提交
280 281 282
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
283 284 285 286
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
287
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
288 289 290
};

/*
291
 * The slab lists for all objects.
L
Linus Torvalds 已提交
292 293
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
294 295 296 297 298
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
299
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
300 301 302
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
303 304
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
305 306
};

307 308 309
/*
 * Need this for bootstrapping a per node allocator.
 */
310
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 312
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
313 314
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
315

316 317 318 319
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
320
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321
static void cache_reap(struct work_struct *unused);
322

323
/*
A
Andrew Morton 已提交
324 325
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
326
 */
327
static __always_inline int index_of(const size_t size)
328
{
329 330
	extern void __bad_size(void);

331 332 333 334 335 336 337 338
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
339
#include <linux/kmalloc_sizes.h>
340
#undef CACHE
341
		__bad_size();
342
	} else
343
		__bad_size();
344 345 346
	return 0;
}

347 348
static int slab_early_init = 1;

349 350
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
351

P
Pekka Enberg 已提交
352
static void kmem_list3_init(struct kmem_list3 *parent)
353 354 355 356 357 358
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
359
	parent->colour_next = 0;
360 361 362 363 364
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
365 366 367 368
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
369 370
	} while (0)

A
Andrew Morton 已提交
371 372
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
373 374 375 376
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
377 378 379 380 381

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
382 383 384
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
385
 *
A
Adrian Bunk 已提交
386
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394 395 396
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
397
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
398 399 400 401 402
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
403 404
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
405
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
406
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
407 408 409 410 411
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
421
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
422 423 424
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
425
#define	STATS_INC_NODEFREES(x)	do { } while (0)
426
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
427
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
436 437
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
438
 * 0		: objp
439
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
440 441
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
442
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
443
 * 		redzone word.
444 445
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
446 447
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
448
 */
449
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
450
{
451
	return cachep->obj_offset;
L
Linus Torvalds 已提交
452 453
}

454
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return cachep->obj_size;
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 463
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
464 465
}

466
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
467 468 469
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
470 471
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
472
					      REDZONE_ALIGN);
473 474
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
475 476
}

477
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
478 479
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
481 482 483 484
}

#else

485 486
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
487 488
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
489 490 491 492
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

E
Eduard - Gabriel Munteanu 已提交
493 494 495 496 497 498 499 500
#ifdef CONFIG_KMEMTRACE
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
508 509 510 511
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
512
 */
513 514 515 516 517 518 519
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
520
	page = compound_head(page);
521
	BUG_ON(!PageSlab(page));
522 523 524 525 526 527 528 529 530 531
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
532
	BUG_ON(!PageSlab(page));
533 534
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
535

536 537
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
538
	struct page *page = virt_to_head_page(obj);
539 540 541 542 543
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
544
	struct page *page = virt_to_head_page(obj);
545 546 547
	return page_get_slab(page);
}

548 549 550 551 552 553
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

554 555 556 557 558 559 560 561
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
562
{
563 564
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 566
}

A
Andrew Morton 已提交
567 568 569
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
587
	{NULL,}
L
Linus Torvalds 已提交
588 589 590 591
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
592
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
593
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
594
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
595 596

/* internal cache of cache description objs */
597
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
598 599 600
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
601
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
602
	.name = "kmem_cache",
L
Linus Torvalds 已提交
603 604
};

605 606
#define BAD_ALIEN_MAGIC 0x01020304ul

607 608 609 610 611 612 613 614
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
615 616 617 618
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
619
 */
620 621 622 623
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
624 625 626

{
	int q;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
654 655 656
	}
}
#else
657
static inline void init_lock_keys(void)
658 659 660 661
{
}
#endif

662
/*
663
 * Guard access to the cache-chain.
664
 */
I
Ingo Molnar 已提交
665
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
666 667 668 669 670 671 672 673
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
674 675
	PARTIAL_AC,
	PARTIAL_L3,
676
	EARLY,
L
Linus Torvalds 已提交
677 678 679
	FULL
} g_cpucache_up;

680 681 682 683 684
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
685
	return g_cpucache_up >= EARLY;
686 687
}

688
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
689

690
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
691 692 693 694
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
695 696
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
697 698 699 700 701
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
702 703 704
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
705
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
706
#endif
707 708 709
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
710 711 712 713
	while (size > csizep->cs_size)
		csizep++;

	/*
714
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
715 716 717
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
718
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
719 720
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
721
#endif
L
Linus Torvalds 已提交
722 723 724
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
725
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
726 727 728 729
{
	return __find_general_cachep(size, gfpflags);
}

730
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
731
{
732 733
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
734

A
Andrew Morton 已提交
735 736 737
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
738 739 740 741 742 743 744
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
794 795
}

796
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
797

A
Andrew Morton 已提交
798 799
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
800 801
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
802
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
803 804 805
	dump_stack();
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
837
		node = first_node(node_online_map);
838

839
	per_cpu(reap_node, cpu) = node;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
857 858 859 860 861 862 863
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
864
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
865
{
866
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
867 868 869 870 871 872

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
873
	if (keventd_up() && reap_work->work.func == NULL) {
874
		init_reap_node(cpu);
875
		INIT_DELAYED_WORK(reap_work, cache_reap);
876 877
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
878 879 880
	}
}

881
static struct array_cache *alloc_arraycache(int node, int entries,
882
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
883
{
P
Pekka Enberg 已提交
884
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
885 886
	struct array_cache *nc = NULL;

887
	nc = kmalloc_node(memsize, gfp, node);
888 889 890 891 892 893 894 895
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
896 897 898 899 900
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
901
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
902 903 904 905
	}
	return nc;
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

930 931 932 933 934
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

935
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

955
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
956 957 958 959 960 961 962
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

963
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
964
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
965

966
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
967 968
{
	struct array_cache **ac_ptr;
969
	int memsize = sizeof(void *) * nr_node_ids;
970 971 972 973
	int i;

	if (limit > 1)
		limit = 12;
974
	ac_ptr = kmalloc_node(memsize, gfp, node);
975 976 977 978 979 980
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
981
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
982
			if (!ac_ptr[i]) {
983
				for (i--; i >= 0; i--)
984 985 986 987 988 989 990 991 992
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
993
static void free_alien_cache(struct array_cache **ac_ptr)
994 995 996 997 998 999
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1000
	    kfree(ac_ptr[i]);
1001 1002 1003
	kfree(ac_ptr);
}

1004
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1005
				struct array_cache *ac, int node)
1006 1007 1008 1009 1010
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1011 1012 1013 1014 1015
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1016 1017
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1018

1019
		free_block(cachep, ac->entry, ac->avail, node);
1020 1021 1022 1023 1024
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1034 1035

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1036 1037 1038 1039 1040 1041
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1042 1043
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1044
{
P
Pekka Enberg 已提交
1045
	int i = 0;
1046 1047 1048 1049
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1050
		ac = alien[i];
1051 1052 1053 1054 1055 1056 1057
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1058

1059
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1060 1061 1062 1063 1064
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1065 1066 1067
	int node;

	node = numa_node_id();
1068 1069 1070 1071 1072

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1073
	if (likely(slabp->nodeid == node))
1074 1075
		return 0;

P
Pekka Enberg 已提交
1076
	l3 = cachep->nodelists[node];
1077 1078 1079
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1080
		spin_lock(&alien->lock);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1094 1095
#endif

1096 1097 1098 1099 1100
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1101
	const struct cpumask *mask = cpumask_of_node(node);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1123
		if (!cpus_empty(*mask)) {
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1162
{
1163
	struct kmem_cache *cachep;
1164 1165
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1166
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1167

1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1176
		/*
1177 1178 1179
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1180
		 */
1181 1182 1183 1184 1185 1186 1187
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1188

A
Andrew Morton 已提交
1189
			/*
1190 1191 1192
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1193
			 */
1194
			cachep->nodelists[node] = l3;
1195 1196
		}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1214
					cachep->batchcount, GFP_KERNEL);
1215 1216 1217 1218 1219
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1220
				0xbaadf00d, GFP_KERNEL);
1221 1222
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1223
				goto bad;
1224
			}
1225 1226
		}
		if (use_alien_caches) {
1227
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 1229 1230
			if (!alien) {
				kfree(shared);
				kfree(nc);
1231
				goto bad;
1232
			}
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1247
#ifdef CONFIG_NUMA
1248 1249 1250
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1251
		}
1252 1253 1254 1255 1256 1257 1258
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1259
	cpuup_canceled(cpu);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1272
		mutex_lock(&cache_chain_mutex);
1273
		err = cpuup_prepare(cpu);
1274
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1275 1276
		break;
	case CPU_ONLINE:
1277
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1278 1279 1280
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1281
  	case CPU_DOWN_PREPARE:
1282
  	case CPU_DOWN_PREPARE_FROZEN:
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1294
  	case CPU_DOWN_FAILED_FROZEN:
1295 1296
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1297
	case CPU_DEAD:
1298
	case CPU_DEAD_FROZEN:
1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1307
		/* fall through */
1308
#endif
L
Linus Torvalds 已提交
1309
	case CPU_UP_CANCELED:
1310
	case CPU_UP_CANCELED_FROZEN:
1311
		mutex_lock(&cache_chain_mutex);
1312
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1313
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1314 1315
		break;
	}
1316
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1317 1318
}

1319 1320 1321
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1322

1323 1324 1325
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1326 1327
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1328 1329 1330
{
	struct kmem_list3 *ptr;

1331
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1332 1333 1334
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1335 1336 1337 1338 1339
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1340 1341 1342 1343
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1360 1361 1362
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1369
	int i;
1370
	int order;
P
Pekka Enberg 已提交
1371
	int node;
1372

1373
	if (num_possible_nodes() == 1)
1374 1375
		use_alien_caches = 0;

1376 1377 1378 1379 1380
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1381
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1392 1393 1394
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1395 1396 1397
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1398
	 * 2) Create the first kmalloc cache.
1399
	 *    The struct kmem_cache for the new cache is allocated normally.
1400 1401 1402
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1403 1404
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1405 1406 1407
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1408 1409
	 */

P
Pekka Enberg 已提交
1410 1411
	node = numa_node_id();

L
Linus Torvalds 已提交
1412 1413 1414 1415 1416
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1417
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1418

E
Eric Dumazet 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1428 1429
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1430 1431
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1432

1433 1434 1435 1436 1437 1438
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1439
	BUG_ON(!cache_cache.num);
1440
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1441 1442 1443
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1449 1450 1451 1452
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1453 1454 1455
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1456 1457 1458
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1459
					NULL);
1460

A
Andrew Morton 已提交
1461
	if (INDEX_AC != INDEX_L3) {
1462
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1463 1464 1465 1466
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1467
				NULL);
A
Andrew Morton 已提交
1468
	}
1469

1470 1471
	slab_early_init = 0;

L
Linus Torvalds 已提交
1472
	while (sizes->cs_size != ULONG_MAX) {
1473 1474
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1475 1476 1477
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1478 1479
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1480
		if (!sizes->cs_cachep) {
1481
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1482 1483 1484
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1485
					NULL);
A
Andrew Morton 已提交
1486
		}
1487 1488 1489
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1490 1491 1492 1493
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1494
					NULL);
1495
#endif
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1501
		struct array_cache *ptr;
1502

1503
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1504

1505 1506
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1507
		       sizeof(struct arraycache_init));
1508 1509 1510 1511 1512
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1513
		cache_cache.array[smp_processor_id()] = ptr;
1514

1515
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1516

1517
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1518
		       != &initarray_generic.cache);
1519
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1520
		       sizeof(struct arraycache_init));
1521 1522 1523 1524 1525
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1526
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1527
		    ptr;
L
Linus Torvalds 已提交
1528
	}
1529 1530
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1531 1532
		int nid;

1533
		for_each_online_node(nid) {
1534
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1535

1536
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1537
				  &initkmem_list3[SIZE_AC + nid], nid);
1538 1539 1540

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1541
					  &initkmem_list3[SIZE_L3 + nid], nid);
1542 1543 1544
			}
		}
	}
L
Linus Torvalds 已提交
1545

1546
	g_cpucache_up = EARLY;
L
Linus Torvalds 已提交
1547

1548 1549
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1562

L
Linus Torvalds 已提交
1563 1564 1565
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1566 1567 1568
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1569 1570 1571
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1572 1573 1574
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1582 1583
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1584
	 */
1585
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1586
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1598
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1599 1600
{
	struct page *page;
1601
	int nr_pages;
L
Linus Torvalds 已提交
1602 1603
	int i;

1604
#ifndef CONFIG_MMU
1605 1606 1607
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1608
	 */
1609
	flags |= __GFP_COMP;
1610
#endif
1611

1612
	flags |= cachep->gfpflags;
1613 1614
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1615

L
Linus Torvalds 已提交
1616
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1617 1618 1619
	if (!page)
		return NULL;

1620
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1621
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1622 1623 1624 1625 1626
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1627 1628
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1629

1630 1631 1632 1633 1634 1635 1636 1637
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1638

1639
	return page_address(page);
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644
}

/*
 * Interface to system's page release.
 */
1645
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1646
{
P
Pekka Enberg 已提交
1647
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1648 1649 1650
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1651
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1652

1653 1654 1655 1656 1657 1658
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1659
	while (i--) {
N
Nick Piggin 已提交
1660 1661
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1671
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1672
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1682
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1683
			    unsigned long caller)
L
Linus Torvalds 已提交
1684
{
1685
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1686

1687
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1688

P
Pekka Enberg 已提交
1689
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1690 1691
		return;

P
Pekka Enberg 已提交
1692 1693 1694 1695
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1703
				*addr++ = svalue;
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708 1709 1710
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1711
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1712 1713 1714
}
#endif

1715
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1716
{
1717 1718
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1719 1720

	memset(addr, val, size);
P
Pekka Enberg 已提交
1721
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1727 1728 1729
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1730
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1731 1732 1733 1734 1735
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1736
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1737
	}
L
Linus Torvalds 已提交
1738
	printk("\n");
D
Dave Jones 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757
}
#endif

#if DEBUG

1758
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1759 1760 1761 1762 1763
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1764
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1765 1766
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1767 1768 1769 1770
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1771
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1772
		print_symbol("(%s)",
A
Andrew Morton 已提交
1773
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1774 1775
		printk("\n");
	}
1776 1777
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1778
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1779 1780
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1781 1782
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1783 1784 1785 1786
		dump_line(realobj, i, limit);
	}
}

1787
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792
{
	char *realobj;
	int size, i;
	int lines = 0;

1793 1794
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1795

P
Pekka Enberg 已提交
1796
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1797
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1798
		if (i == size - 1)
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1805
				printk(KERN_ERR
1806 1807
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1808 1809 1810
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1811
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1812
			limit = 16;
P
Pekka Enberg 已提交
1813 1814
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1827
		struct slab *slabp = virt_to_slab(objp);
1828
		unsigned int objnr;
L
Linus Torvalds 已提交
1829

1830
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1831
		if (objnr) {
1832
			objp = index_to_obj(cachep, slabp, objnr - 1);
1833
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1834
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1835
			       realobj, size);
L
Linus Torvalds 已提交
1836 1837
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1838
		if (objnr + 1 < cachep->num) {
1839
			objp = index_to_obj(cachep, slabp, objnr + 1);
1840
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1841
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1842
			       realobj, size);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1849
#if DEBUG
R
Rabin Vincent 已提交
1850
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1851 1852 1853
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1854
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1855 1856 1857

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1858 1859
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1860
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1861
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1871
					   "was overwritten");
L
Linus Torvalds 已提交
1872 1873
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1874
					   "was overwritten");
L
Linus Torvalds 已提交
1875 1876
		}
	}
1877
}
L
Linus Torvalds 已提交
1878
#else
R
Rabin Vincent 已提交
1879
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1880 1881
{
}
L
Linus Torvalds 已提交
1882 1883
#endif

1884 1885 1886 1887 1888
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1889
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1890 1891
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1892
 */
1893
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1894 1895 1896
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1897
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1898 1899 1900
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1901
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1907 1908
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1909 1910 1911
	}
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1933
/**
1934 1935 1936 1937 1938 1939 1940
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1941 1942 1943 1944 1945
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1946
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1947
			size_t size, size_t align, unsigned long flags)
1948
{
1949
	unsigned long offslab_limit;
1950
	size_t left_over = 0;
1951
	int gfporder;
1952

1953
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1954 1955 1956
		unsigned int num;
		size_t remainder;

1957
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1958 1959
		if (!num)
			continue;
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1973

1974
		/* Found something acceptable - save it away */
1975
		cachep->num = num;
1976
		cachep->gfporder = gfporder;
1977 1978
		left_over = remainder;

1979 1980 1981 1982 1983 1984 1985 1986
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1987 1988 1989 1990
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1991
		if (gfporder >= slab_break_gfp_order)
1992 1993
			break;

1994 1995 1996
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1997
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1998 1999 2000 2001 2002
			break;
	}
	return left_over;
}

2003
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2004
{
2005
	if (g_cpucache_up == FULL)
2006
		return enable_cpucache(cachep, gfp);
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2028
			kmalloc(sizeof(struct arraycache_init), gfp);
2029 2030 2031 2032 2033 2034

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2035
			for_each_online_node(node) {
2036 2037
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2038
						gfp, node);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2054
	return 0;
2055 2056
}

L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2067
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2068 2069
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2070
 * the module calling this has to destroy the cache before getting unloaded.
2071 2072
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2073
 *
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2086
struct kmem_cache *
L
Linus Torvalds 已提交
2087
kmem_cache_create (const char *name, size_t size, size_t align,
2088
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2089 2090
{
	size_t left_over, slab_size, ralign;
2091
	struct kmem_cache *cachep = NULL, *pc;
2092
	gfp_t gfp;
L
Linus Torvalds 已提交
2093 2094 2095 2096

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2097
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2098
	    size > KMALLOC_MAX_SIZE) {
2099
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2100
				name);
P
Pekka Enberg 已提交
2101 2102
		BUG();
	}
L
Linus Torvalds 已提交
2103

2104
	/*
2105
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2106
	 * cpu_online_mask as well.  Please see cpuup_callback
2107
	 */
2108 2109 2110 2111
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2112

2113
	list_for_each_entry(pc, &cache_chain, next) {
2114 2115 2116 2117 2118 2119 2120 2121
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2122
		res = probe_kernel_address(pc->name, tmp);
2123
		if (res) {
2124 2125
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2126
			       pc->buffer_size);
2127 2128 2129
			continue;
		}

P
Pekka Enberg 已提交
2130
		if (!strcmp(pc->name, name)) {
2131 2132
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2133 2134 2135 2136 2137
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2147 2148
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2149
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155 2156
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2157 2158
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2159
	 */
2160
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2161

A
Andrew Morton 已提交
2162 2163
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2164 2165 2166
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2167 2168 2169
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2170 2171
	}

A
Andrew Morton 已提交
2172 2173
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2174 2175
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2176 2177 2178 2179
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2180 2181
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2182
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2183 2184 2185 2186
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2187 2188

	/*
D
David Woodhouse 已提交
2189 2190 2191
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2192
	 */
D
David Woodhouse 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2203

2204
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2205 2206 2207
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2208
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2209 2210 2211
	if (ralign < align) {
		ralign = align;
	}
2212
	/* disable debug if necessary */
2213
	if (ralign > __alignof__(unsigned long long))
2214
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2215
	/*
2216
	 * 4) Store it.
L
Linus Torvalds 已提交
2217 2218 2219
	 */
	align = ralign;

2220 2221 2222 2223 2224
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2225
	/* Get cache's description obj. */
2226
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2227
	if (!cachep)
2228
		goto oops;
L
Linus Torvalds 已提交
2229 2230

#if DEBUG
2231
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2232

2233 2234 2235 2236
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2237 2238
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2239 2240
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2241 2242
	}
	if (flags & SLAB_STORE_USER) {
2243
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2244 2245
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2246
		 */
D
David Woodhouse 已提交
2247 2248 2249 2250
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2251 2252
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2253
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2254 2255
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
		size = PAGE_SIZE;
	}
#endif
#endif

2261 2262 2263 2264 2265 2266
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273 2274
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2275
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2276 2277

	if (!cachep->num) {
2278 2279
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2280 2281
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2282
		goto oops;
L
Linus Torvalds 已提交
2283
	}
P
Pekka Enberg 已提交
2284 2285
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2298 2299
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2300 2301 2302 2303 2304 2305 2306 2307 2308

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313 2314
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2315
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2316 2317 2318
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2319
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2320
		cachep->gfpflags |= GFP_DMA;
2321
	cachep->buffer_size = size;
2322
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2323

2324
	if (flags & CFLGS_OFF_SLAB) {
2325
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2326 2327 2328 2329 2330 2331 2332
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2333
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2334
	}
L
Linus Torvalds 已提交
2335 2336 2337
	cachep->ctor = ctor;
	cachep->name = name;

2338
	if (setup_cpu_cache(cachep, gfp)) {
2339 2340 2341 2342
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2343 2344 2345

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2346
oops:
L
Linus Torvalds 已提交
2347 2348
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2349
		      name);
2350 2351 2352 2353
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2369
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2370 2371 2372
{
#ifdef CONFIG_SMP
	check_irq_off();
2373
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2374 2375
#endif
}
2376

2377
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2378 2379 2380 2381 2382 2383 2384
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2385 2386 2387 2388
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2389
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2390 2391
#endif

2392 2393 2394 2395
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2396 2397
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2398
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2399
	struct array_cache *ac;
2400
	int node = numa_node_id();
L
Linus Torvalds 已提交
2401 2402

	check_irq_off();
2403
	ac = cpu_cache_get(cachep);
2404 2405 2406
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2407 2408 2409
	ac->avail = 0;
}

2410
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2411
{
2412 2413 2414
	struct kmem_list3 *l3;
	int node;

2415
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2416
	check_irq_on();
P
Pekka Enberg 已提交
2417
	for_each_online_node(node) {
2418
		l3 = cachep->nodelists[node];
2419 2420 2421 2422 2423 2424 2425
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2426
			drain_array(cachep, l3, l3->shared, 1, node);
2427
	}
L
Linus Torvalds 已提交
2428 2429
}

2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2438
{
2439 2440
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2441 2442
	struct slab *slabp;

2443 2444
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2445

2446
		spin_lock_irq(&l3->list_lock);
2447
		p = l3->slabs_free.prev;
2448 2449 2450 2451
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2452

2453
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2454
#if DEBUG
2455
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2456 2457
#endif
		list_del(&slabp->list);
2458 2459 2460 2461 2462
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2463
		spin_unlock_irq(&l3->list_lock);
2464 2465
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2466
	}
2467 2468
out:
	return nr_freed;
L
Linus Torvalds 已提交
2469 2470
}

2471
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2472
static int __cache_shrink(struct kmem_cache *cachep)
2473 2474 2475 2476 2477 2478 2479 2480 2481
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2482 2483 2484 2485 2486 2487 2488
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2489 2490 2491 2492
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498 2499
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2500
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2501
{
2502
	int ret;
2503
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2504

2505
	get_online_cpus();
2506 2507 2508
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2509
	put_online_cpus();
2510
	return ret;
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515 2516 2517
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2518
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2530
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2531
{
2532
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2533 2534

	/* Find the cache in the chain of caches. */
2535
	get_online_cpus();
I
Ingo Molnar 已提交
2536
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2543
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2544
		mutex_unlock(&cache_chain_mutex);
2545
		put_online_cpus();
2546
		return;
L
Linus Torvalds 已提交
2547 2548 2549
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2550
		synchronize_rcu();
L
Linus Torvalds 已提交
2551

2552
	__kmem_cache_destroy(cachep);
2553
	mutex_unlock(&cache_chain_mutex);
2554
	put_online_cpus();
L
Linus Torvalds 已提交
2555 2556 2557
}
EXPORT_SYMBOL(kmem_cache_destroy);

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2569
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2570 2571
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2572 2573
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2574

L
Linus Torvalds 已提交
2575 2576
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2577
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2578
					      local_flags, nodeid);
2579 2580 2581 2582 2583 2584 2585 2586
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
		kmemleak_scan_area(slabp, offsetof(struct slab, list),
				   sizeof(struct list_head), local_flags);
L
Linus Torvalds 已提交
2587 2588 2589
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2590
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2591 2592 2593 2594
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2595
	slabp->s_mem = objp + colour_off;
2596
	slabp->nodeid = nodeid;
2597
	slabp->free = 0;
L
Linus Torvalds 已提交
2598 2599 2600 2601 2602
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2603
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2604 2605
}

2606
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2607
			    struct slab *slabp)
L
Linus Torvalds 已提交
2608 2609 2610 2611
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2612
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2625 2626 2627
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2628 2629
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2630
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2631 2632 2633 2634

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2635
					   " end of an object");
L
Linus Torvalds 已提交
2636 2637
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2638
					   " start of an object");
L
Linus Torvalds 已提交
2639
		}
A
Andrew Morton 已提交
2640 2641
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2642
			kernel_map_pages(virt_to_page(objp),
2643
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2644 2645
#else
		if (cachep->ctor)
2646
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2647
#endif
P
Pekka Enberg 已提交
2648
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2649
	}
P
Pekka Enberg 已提交
2650
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2651 2652
}

2653
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2654
{
2655 2656 2657 2658 2659 2660
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2661 2662
}

A
Andrew Morton 已提交
2663 2664
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2665
{
2666
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2680 2681
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2682
{
2683
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2684 2685 2686 2687 2688

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2689
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2690
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2691
				"'%s', objp %p\n", cachep->name, objp);
2692 2693 2694 2695 2696 2697 2698 2699
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2700 2701 2702 2703 2704 2705 2706
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2707
{
2708
	int nr_pages;
L
Linus Torvalds 已提交
2709 2710
	struct page *page;

2711
	page = virt_to_page(addr);
2712

2713
	nr_pages = 1;
2714
	if (likely(!PageCompound(page)))
2715 2716
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2717
	do {
2718 2719
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2720
		page++;
2721
	} while (--nr_pages);
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726 2727
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2728 2729
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2730
{
P
Pekka Enberg 已提交
2731 2732 2733
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2734
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2735

A
Andrew Morton 已提交
2736 2737 2738
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2739
	 */
C
Christoph Lameter 已提交
2740 2741
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2742

2743
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2744
	check_irq_off();
2745 2746
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2747 2748

	/* Get colour for the slab, and cal the next value. */
2749 2750 2751 2752 2753
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2754

2755
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2768 2769 2770
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2771
	 */
2772
	if (!objp)
2773
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2774
	if (!objp)
L
Linus Torvalds 已提交
2775 2776 2777
		goto failed;

	/* Get slab management. */
2778
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2779
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2780
	if (!slabp)
L
Linus Torvalds 已提交
2781 2782
		goto opps1;

2783
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2784

C
Christoph Lameter 已提交
2785
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2786 2787 2788 2789

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2790
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2791 2792

	/* Make slab active. */
2793
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2794
	STATS_INC_GROWN(cachep);
2795 2796
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2797
	return 1;
A
Andrew Morton 已提交
2798
opps1:
L
Linus Torvalds 已提交
2799
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2800
failed:
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2817 2818
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2819 2820 2821
	}
}

2822 2823
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2824
	unsigned long long redzone1, redzone2;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2840
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2841 2842 2843
			obj, redzone1, redzone2);
}

2844
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2845
				   void *caller)
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2851 2852
	BUG_ON(virt_to_cache(objp) != cachep);

2853
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2854
	kfree_debugcheck(objp);
2855
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2856

2857
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2858 2859

	if (cachep->flags & SLAB_RED_ZONE) {
2860
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2867
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2868 2869

	BUG_ON(objnr >= cachep->num);
2870
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2871

2872 2873 2874
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2875 2876
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2877
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2878
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2879
			kernel_map_pages(virt_to_page(objp),
2880
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2891
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2892 2893 2894
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2895

L
Linus Torvalds 已提交
2896 2897 2898 2899 2900 2901 2902
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2903 2904 2905 2906
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2907
		for (i = 0;
2908
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2909
		     i++) {
A
Andrew Morton 已提交
2910
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2911
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2912
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2924
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2925 2926 2927 2928
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2929 2930
	int node;

2931
retry:
L
Linus Torvalds 已提交
2932
	check_irq_off();
2933
	node = numa_node_id();
2934
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2935 2936
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2937 2938 2939 2940
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2941 2942 2943
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2944
	l3 = cachep->nodelists[node];
2945 2946 2947

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2948

2949 2950 2951 2952
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2968 2969 2970 2971 2972 2973

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2974
		BUG_ON(slabp->inuse >= cachep->num);
2975

L
Linus Torvalds 已提交
2976 2977 2978 2979 2980
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2981
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2982
							    node);
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2994
must_grow:
L
Linus Torvalds 已提交
2995
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2996
alloc_done:
2997
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2998 2999 3000

	if (unlikely(!ac->avail)) {
		int x;
3001
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3002

A
Andrew Morton 已提交
3003
		/* cache_grow can reenable interrupts, then ac could change. */
3004
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3005
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3006 3007
			return NULL;

A
Andrew Morton 已提交
3008
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3009 3010 3011
			goto retry;
	}
	ac->touched = 1;
3012
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3013 3014
}

A
Andrew Morton 已提交
3015 3016
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022 3023 3024
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3025 3026
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3027
{
P
Pekka Enberg 已提交
3028
	if (!objp)
L
Linus Torvalds 已提交
3029
		return objp;
P
Pekka Enberg 已提交
3030
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3031
#ifdef CONFIG_DEBUG_PAGEALLOC
3032
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3033
			kernel_map_pages(virt_to_page(objp),
3034
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3046 3047 3048 3049
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3050
			printk(KERN_ERR
3051
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3052 3053
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3054 3055 3056 3057
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3058 3059 3060 3061 3062
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3063
		slabp = page_get_slab(virt_to_head_page(objp));
3064 3065 3066 3067
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3068
	objp += obj_offset(cachep);
3069
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3070
		cachep->ctor(objp);
3071 3072 3073 3074 3075 3076
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3077 3078 3079 3080 3081 3082
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3083
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3084 3085
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3086
		return false;
3087

A
Akinobu Mita 已提交
3088
	return should_failslab(obj_size(cachep), flags);
3089 3090
}

3091
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3092
{
P
Pekka Enberg 已提交
3093
	void *objp;
L
Linus Torvalds 已提交
3094 3095
	struct array_cache *ac;

3096
	check_irq_off();
3097

3098
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3099 3100 3101
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3102
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3103 3104 3105 3106
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3107 3108 3109 3110 3111 3112
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
	kmemleak_erase(&ac->entry[ac->avail]);
3113 3114 3115
	return objp;
}

3116
#ifdef CONFIG_NUMA
3117
/*
3118
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3119 3120 3121 3122 3123 3124 3125 3126
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3127
	if (in_interrupt() || (flags & __GFP_THISNODE))
3128 3129 3130 3131 3132 3133 3134
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3135
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3136 3137 3138
	return NULL;
}

3139 3140
/*
 * Fallback function if there was no memory available and no objects on a
3141 3142 3143 3144 3145
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3146
 */
3147
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3148
{
3149 3150
	struct zonelist *zonelist;
	gfp_t local_flags;
3151
	struct zoneref *z;
3152 3153
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3154
	void *obj = NULL;
3155
	int nid;
3156 3157 3158 3159

	if (flags & __GFP_THISNODE)
		return NULL;

3160
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3161
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3162

3163 3164 3165 3166 3167
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3168 3169
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3170

3171
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3172
			cache->nodelists[nid] &&
3173
			cache->nodelists[nid]->free_objects) {
3174 3175
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3176 3177 3178
				if (obj)
					break;
		}
3179 3180
	}

3181
	if (!obj) {
3182 3183 3184 3185 3186 3187
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3188 3189 3190
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3191
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3192 3193
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3210
				/* cache_grow already freed obj */
3211 3212 3213
				obj = NULL;
			}
		}
3214
	}
3215 3216 3217
	return obj;
}

3218 3219
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3220
 */
3221
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3222
				int nodeid)
3223 3224
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3225 3226 3227 3228 3229 3230 3231 3232
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3233
retry:
3234
	check_irq_off();
P
Pekka Enberg 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3254
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3255 3256 3257 3258 3259
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3260
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3261
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3262
	else
P
Pekka Enberg 已提交
3263
		list_add(&slabp->list, &l3->slabs_partial);
3264

P
Pekka Enberg 已提交
3265 3266
	spin_unlock(&l3->list_lock);
	goto done;
3267

A
Andrew Morton 已提交
3268
must_grow:
P
Pekka Enberg 已提交
3269
	spin_unlock(&l3->list_lock);
3270
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3271 3272
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3273

3274
	return fallback_alloc(cachep, flags);
3275

A
Andrew Morton 已提交
3276
done:
P
Pekka Enberg 已提交
3277
	return obj;
3278
}
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3299
	flags &= gfp_allowed_mask;
3300

3301 3302
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3303
	if (slab_should_failslab(cachep, flags))
3304 3305
		return NULL;

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3334 3335
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3336

P
Pekka Enberg 已提交
3337 3338 3339
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3340 3341 3342
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3384
	flags &= gfp_allowed_mask;
3385

3386 3387
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3388
	if (slab_should_failslab(cachep, flags))
3389 3390
		return NULL;

3391 3392 3393 3394 3395
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3396 3397
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3398 3399
	prefetchw(objp);

P
Pekka Enberg 已提交
3400 3401 3402
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3403 3404 3405
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3406 3407
	return objp;
}
3408 3409 3410 3411

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3412
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3413
		       int node)
L
Linus Torvalds 已提交
3414 3415
{
	int i;
3416
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3422
		slabp = virt_to_slab(objp);
3423
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3424
		list_del(&slabp->list);
3425
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3426
		check_slabp(cachep, slabp);
3427
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3428
		STATS_DEC_ACTIVE(cachep);
3429
		l3->free_objects++;
L
Linus Torvalds 已提交
3430 3431 3432 3433
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3434 3435
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3436 3437 3438 3439 3440 3441
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3442 3443
				slab_destroy(cachep, slabp);
			} else {
3444
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3445 3446 3447 3448 3449 3450
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3451
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3452 3453 3454 3455
		}
	}
}

3456
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3457 3458
{
	int batchcount;
3459
	struct kmem_list3 *l3;
3460
	int node = numa_node_id();
L
Linus Torvalds 已提交
3461 3462 3463 3464 3465 3466

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3467
	l3 = cachep->nodelists[node];
3468
	spin_lock(&l3->list_lock);
3469 3470
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3471
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3472 3473 3474
		if (max) {
			if (batchcount > max)
				batchcount = max;
3475
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3476
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3482
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3483
free_done:
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488
#if STATS
	{
		int i = 0;
		struct list_head *p;

3489 3490
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3502
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3503
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3504
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3505 3506 3507
}

/*
A
Andrew Morton 已提交
3508 3509
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3510
 */
3511
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3512
{
3513
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3514 3515

	check_irq_off();
3516
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3517 3518
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3519 3520
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3521 3522 3523 3524 3525 3526 3527
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3528
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529 3530
		return;

L
Linus Torvalds 已提交
3531 3532
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3533
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3534 3535 3536 3537
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3538
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3550
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3551
{
E
Eduard - Gabriel Munteanu 已提交
3552 3553
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3554 3555
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3556 3557

	return ret;
L
Linus Torvalds 已提交
3558 3559 3560
}
EXPORT_SYMBOL(kmem_cache_alloc);

E
Eduard - Gabriel Munteanu 已提交
3561 3562 3563 3564 3565 3566 3567 3568
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3569
/**
3570
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3571 3572 3573
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3574
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3582
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3583
{
P
Pekka Enberg 已提交
3584
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3585
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3586
	unsigned long align_mask = BYTES_PER_WORD - 1;
3587
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3603
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3604 3605
		goto out;
	return 1;
A
Andrew Morton 已提交
3606
out:
L
Linus Torvalds 已提交
3607 3608 3609 3610
	return 0;
}

#ifdef CONFIG_NUMA
3611 3612
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3613 3614 3615
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3616 3617 3618
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3619 3620

	return ret;
3621
}
L
Linus Torvalds 已提交
3622 3623
EXPORT_SYMBOL(kmem_cache_alloc_node);

E
Eduard - Gabriel Munteanu 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3635 3636
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3637
{
3638
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3639
	void *ret;
3640 3641

	cachep = kmem_find_general_cachep(size, flags);
3642 3643
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3644 3645
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3646 3647
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3648 3649

	return ret;
3650
}
3651

E
Eduard - Gabriel Munteanu 已提交
3652
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3653 3654 3655 3656 3657
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3658
EXPORT_SYMBOL(__kmalloc_node);
3659 3660

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3661
		int node, unsigned long caller)
3662
{
3663
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3674 3675

/**
3676
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3677
 * @size: how many bytes of memory are required.
3678
 * @flags: the type of memory to allocate (see kmalloc).
3679
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3680
 */
3681 3682
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3683
{
3684
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3685
	void *ret;
L
Linus Torvalds 已提交
3686

3687 3688 3689 3690 3691 3692
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3693 3694
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3695 3696
	ret = __cache_alloc(cachep, flags, caller);

3697 3698
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3699 3700

	return ret;
3701 3702 3703
}


E
Eduard - Gabriel Munteanu 已提交
3704
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3705 3706
void *__kmalloc(size_t size, gfp_t flags)
{
3707
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3708 3709 3710
}
EXPORT_SYMBOL(__kmalloc);

3711
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3712
{
3713
	return __do_kmalloc(size, flags, (void *)caller);
3714 3715
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3716 3717 3718 3719 3720 3721 3722

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3723 3724
#endif

L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3733
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3734 3735 3736 3737
{
	unsigned long flags;

	local_irq_save(flags);
3738
	debug_check_no_locks_freed(objp, obj_size(cachep));
3739 3740
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3741
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3742
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3743

3744
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3752 3753
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3759
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3760 3761
	unsigned long flags;

3762 3763
	trace_kfree(_RET_IP_, objp);

3764
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3765 3766 3767
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3768
	c = virt_to_cache(objp);
3769
	debug_check_no_locks_freed(objp, obj_size(c));
3770
	debug_check_no_obj_freed(objp, obj_size(c));
3771
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3772 3773 3774 3775
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3776
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3777
{
3778
	return obj_size(cachep);
L
Linus Torvalds 已提交
3779 3780 3781
}
EXPORT_SYMBOL(kmem_cache_size);

3782
const char *kmem_cache_name(struct kmem_cache *cachep)
3783 3784 3785 3786 3787
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3788
/*
S
Simon Arlott 已提交
3789
 * This initializes kmem_list3 or resizes various caches for all nodes.
3790
 */
3791
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3792 3793 3794
{
	int node;
	struct kmem_list3 *l3;
3795
	struct array_cache *new_shared;
3796
	struct array_cache **new_alien = NULL;
3797

3798
	for_each_online_node(node) {
3799

3800
                if (use_alien_caches) {
3801
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3802 3803 3804
                        if (!new_alien)
                                goto fail;
                }
3805

3806 3807 3808
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3809
				cachep->shared*cachep->batchcount,
3810
					0xbaadf00d, gfp);
3811 3812 3813 3814
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3815
		}
3816

A
Andrew Morton 已提交
3817 3818
		l3 = cachep->nodelists[node];
		if (l3) {
3819 3820
			struct array_cache *shared = l3->shared;

3821 3822
			spin_lock_irq(&l3->list_lock);

3823
			if (shared)
3824 3825
				free_block(cachep, shared->entry,
						shared->avail, node);
3826

3827 3828
			l3->shared = new_shared;
			if (!l3->alien) {
3829 3830 3831
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3832
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3833
					cachep->batchcount + cachep->num;
3834
			spin_unlock_irq(&l3->list_lock);
3835
			kfree(shared);
3836 3837 3838
			free_alien_cache(new_alien);
			continue;
		}
3839
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3840 3841 3842
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3843
			goto fail;
3844
		}
3845 3846 3847

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3848
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3849
		l3->shared = new_shared;
3850
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3851
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3852
					cachep->batchcount + cachep->num;
3853 3854
		cachep->nodelists[node] = l3;
	}
3855
	return 0;
3856

A
Andrew Morton 已提交
3857
fail:
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3873
	return -ENOMEM;
3874 3875
}

L
Linus Torvalds 已提交
3876
struct ccupdate_struct {
3877
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3883
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3884 3885 3886
	struct array_cache *old;

	check_irq_off();
3887
	old = cpu_cache_get(new->cachep);
3888

L
Linus Torvalds 已提交
3889 3890 3891 3892
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3893
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3894
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3895
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3896
{
3897
	struct ccupdate_struct *new;
3898
	int i;
L
Linus Torvalds 已提交
3899

3900
	new = kzalloc(sizeof(*new), gfp);
3901 3902 3903
	if (!new)
		return -ENOMEM;

3904
	for_each_online_cpu(i) {
3905
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3906
						batchcount, gfp);
3907
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3908
			for (i--; i >= 0; i--)
3909 3910
				kfree(new->new[i]);
			kfree(new);
3911
			return -ENOMEM;
L
Linus Torvalds 已提交
3912 3913
		}
	}
3914
	new->cachep = cachep;
L
Linus Torvalds 已提交
3915

3916
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3917

L
Linus Torvalds 已提交
3918 3919 3920
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3921
	cachep->shared = shared;
L
Linus Torvalds 已提交
3922

3923
	for_each_online_cpu(i) {
3924
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3925 3926
		if (!ccold)
			continue;
3927
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3928
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3929
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3930 3931
		kfree(ccold);
	}
3932
	kfree(new);
3933
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3934 3935
}

3936
/* Called with cache_chain_mutex held always */
3937
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3938 3939 3940 3941
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3942 3943
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3944 3945
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3946
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3947 3948 3949 3950
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3951
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3952
		limit = 1;
3953
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3954
		limit = 8;
3955
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3956
		limit = 24;
3957
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3958 3959 3960 3961
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3962 3963
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968 3969 3970 3971
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3972
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3973 3974 3975
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3976 3977 3978
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3979 3980 3981 3982
	 */
	if (limit > 32)
		limit = 32;
#endif
3983
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
3984 3985
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3986
		       cachep->name, -err);
3987
	return err;
L
Linus Torvalds 已提交
3988 3989
}

3990 3991
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3992 3993
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3994 3995 3996
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3997 3998 3999
{
	int tofree;

4000 4001
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4002 4003
	if (ac->touched && !force) {
		ac->touched = 0;
4004
	} else {
4005
		spin_lock_irq(&l3->list_lock);
4006 4007 4008 4009 4010 4011 4012 4013 4014
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4015
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4021
 * @w: work descriptor
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4028 4029
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4030
 */
4031
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4032
{
4033
	struct kmem_cache *searchp;
4034
	struct kmem_list3 *l3;
4035
	int node = numa_node_id();
4036
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4037

4038
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4039
		/* Give up. Setup the next iteration. */
4040
		goto out;
L
Linus Torvalds 已提交
4041

4042
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4043 4044
		check_irq_on();

4045 4046 4047 4048 4049
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4050
		l3 = searchp->nodelists[node];
4051

4052
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4053

4054
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4055

4056 4057 4058 4059
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4060
		if (time_after(l3->next_reap, jiffies))
4061
			goto next;
L
Linus Torvalds 已提交
4062

4063
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4064

4065
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4066

4067
		if (l3->free_touched)
4068
			l3->free_touched = 0;
4069 4070
		else {
			int freed;
L
Linus Torvalds 已提交
4071

4072 4073 4074 4075
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4076
next:
L
Linus Torvalds 已提交
4077 4078 4079
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4080
	mutex_unlock(&cache_chain_mutex);
4081
	next_reap_node();
4082
out:
A
Andrew Morton 已提交
4083
	/* Set up the next iteration */
4084
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4085 4086
}

4087
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4088

4089
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4090
{
4091 4092 4093 4094
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4095
#if STATS
4096
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4097
#else
4098
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4099
#endif
4100 4101 4102 4103
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4104
#if STATS
4105
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4106
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4107
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4108
#endif
4109 4110 4111 4112 4113 4114 4115
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4116
	mutex_lock(&cache_chain_mutex);
4117 4118
	if (!n)
		print_slabinfo_header(m);
4119 4120

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4121 4122 4123 4124
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4125
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4126 4127 4128 4129
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4130
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4131 4132 4133 4134
}

static int s_show(struct seq_file *m, void *p)
{
4135
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4136 4137 4138 4139 4140
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4141
	const char *name;
L
Linus Torvalds 已提交
4142
	char *error = NULL;
4143 4144
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4145 4146 4147

	active_objs = 0;
	num_slabs = 0;
4148 4149 4150 4151 4152
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4153 4154
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4155

4156
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4157 4158 4159 4160 4161
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4162
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4163 4164 4165 4166 4167 4168 4169
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4170
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4171 4172 4173 4174 4175
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4176 4177
		if (l3->shared)
			shared_avail += l3->shared->avail;
4178

4179
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4180
	}
P
Pekka Enberg 已提交
4181 4182
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4183
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4184 4185
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4186
	name = cachep->name;
L
Linus Torvalds 已提交
4187 4188 4189 4190
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4191
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4192
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4193
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4194
		   cachep->limit, cachep->batchcount, cachep->shared);
4195
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4196
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4197
#if STATS
P
Pekka Enberg 已提交
4198
	{			/* list3 stats */
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4206
		unsigned long node_frees = cachep->node_frees;
4207
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4208

4209
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4210
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4211
				reaped, errors, max_freeable, node_allocs,
4212
				node_frees, overflows);
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4222
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4243
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4244 4245 4246 4247
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4258 4259
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4260
{
P
Pekka Enberg 已提交
4261
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4262
	int limit, batchcount, shared, res;
4263
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4264

L
Linus Torvalds 已提交
4265 4266 4267 4268
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4269
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4280
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4281
	res = -EINVAL;
4282
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4283
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4284 4285
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4286
				res = 0;
L
Linus Torvalds 已提交
4287
			} else {
4288
				res = do_tune_cpucache(cachep, limit,
4289 4290
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4291 4292 4293 4294
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4295
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4296 4297 4298 4299
	if (res >= 0)
		res = count;
	return res;
}
4300

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4314 4315 4316 4317 4318
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4319
	return seq_list_start(&cache_chain, *pos);
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4370
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4371

4372
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4373
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4374
		if (modname[0])
4375 4376 4377 4378 4379 4380 4381 4382 4383
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4384
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4409
		list_for_each_entry(slabp, &l3->slabs_full, list)
4410
			handle_slab(n, cachep, slabp);
4411
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4438

4439 4440 4441
	return 0;
}

4442
static const struct seq_operations slabstats_op = {
4443 4444 4445 4446 4447
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4476
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4477 4478
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4479
#endif
4480 4481 4482
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4483 4484
#endif

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4497
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4498
{
4499 4500
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4501
		return 0;
L
Linus Torvalds 已提交
4502

4503
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4504
}
K
Kirill A. Shutemov 已提交
4505
EXPORT_SYMBOL(ksize);