core.c 173.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include "sched.h"
L
Linus Torvalds 已提交
9

10
#include <linux/kthread.h>
11
#include <linux/nospec.h>
12

13
#include <asm/switch_to.h>
14
#include <asm/tlb.h>
L
Linus Torvalds 已提交
15

16
#include "../workqueue_internal.h"
17
#include "../smpboot.h"
18

19
#define CREATE_TRACE_POINTS
20
#include <trace/events/sched.h>
21

22
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23

24
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
I
Ingo Molnar 已提交
25 26
/*
 * Debugging: various feature bits
27 28 29 30
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
31
 */
P
Peter Zijlstra 已提交
32 33
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
34
const_debug unsigned int sysctl_sched_features =
35
#include "features.h"
P
Peter Zijlstra 已提交
36 37
	0;
#undef SCHED_FEAT
38
#endif
P
Peter Zijlstra 已提交
39

40 41 42 43 44 45
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

46 47 48 49 50 51 52 53
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
54
/*
I
Ingo Molnar 已提交
55
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
56 57
 * default: 1s
 */
P
Peter Zijlstra 已提交
58
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
59

60
__read_mostly int scheduler_running;
61

P
Peter Zijlstra 已提交
62 63 64 65 66
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
67

68 69 70
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
71
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 73 74 75 76 77 78 79 80 81
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82
			rq_pin_lock(rq, rf);
83 84 85 86 87 88 89 90 91 92 93 94
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
95
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 97 98 99 100 101
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
102
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 104 105 106 107 108 109 110 111 112 113 114
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
115
		 * If we observe the old CPU in task_rq_lock, the acquire of
116 117
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
118
		 * If we observe the new CPU in task_rq_lock, the acquire will
119 120 121
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122
			rq_pin_lock(rq, rf);
123 124 125
			return rq;
		}
		raw_spin_unlock(&rq->lock);
126
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127 128 129 130 131 132

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
201 202
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 204
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
205

206 207 208 209 210 211 212 213
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232
	struct rq_flags rf;
P
Peter Zijlstra 已提交
233 234 235

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

236
	rq_lock(rq, &rf);
237
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
238
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
240 241 242 243

	return HRTIMER_NORESTART;
}

244
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
245

246
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
247 248 249
{
	struct hrtimer *timer = &rq->hrtick_timer;

250
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
251 252
}

253 254 255 256
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
257
{
258
	struct rq *rq = arg;
259
	struct rq_flags rf;
260

261
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
262
	__hrtick_restart(rq);
263
	rq->hrtick_csd_pending = 0;
264
	rq_unlock(rq, &rf);
265 266
}

267 268 269 270 271
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
272
void hrtick_start(struct rq *rq, u64 delay)
273
{
274
	struct hrtimer *timer = &rq->hrtick_timer;
275 276 277 278 279 280 281 282 283
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
284

285
	hrtimer_set_expires(timer, time);
286 287

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
288
		__hrtick_restart(rq);
289
	} else if (!rq->hrtick_csd_pending) {
290
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 292
		rq->hrtick_csd_pending = 1;
	}
293 294
}

295 296 297 298 299 300
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
301
void hrtick_start(struct rq *rq, u64 delay)
302
{
W
Wanpeng Li 已提交
303 304 305 306 307
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
308 309
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
310 311
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
312

313
static void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
314
{
315 316
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
317

318 319 320 321
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
322

323 324
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
325
}
A
Andrew Morton 已提交
326
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
327 328 329 330
static inline void hrtick_clear(struct rq *rq)
{
}

331
static inline void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
332 333
{
}
A
Andrew Morton 已提交
334
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

354
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355 356 357 358 359 360 361 362 363 364
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
365 366 367 368 369 370 371 372 373 374

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
375
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376 377 378 379 380 381 382 383 384 385 386 387 388 389

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

390 391 392 393 394 395
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
396 397 398 399 400 401 402

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
403 404
#endif

405 406 407 408 409 410 411 412 413 414
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
415
	 * barrier implied by the wakeup in wake_up_q().
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
438
		/* Task can safely be re-inserted now: */
439 440 441 442 443 444 445 446 447 448 449 450
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
451
/*
452
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
453 454 455 456 457
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
458
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
459
{
460
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
461 462
	int cpu;

463
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
464

465
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
466 467
		return;

468
	cpu = cpu_of(rq);
469

470
	if (cpu == smp_processor_id()) {
471
		set_tsk_need_resched(curr);
472
		set_preempt_need_resched();
I
Ingo Molnar 已提交
473
		return;
474
	}
I
Ingo Molnar 已提交
475

476
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
477
		smp_send_reschedule(cpu);
478 479
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
480 481
}

482
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
483 484 485 486
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

487
	raw_spin_lock_irqsave(&rq->lock, flags);
488 489
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
490
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
491
}
492

493
#ifdef CONFIG_SMP
494
#ifdef CONFIG_NO_HZ_COMMON
495
/*
I
Ingo Molnar 已提交
496 497
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
498 499
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
500 501
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502
 */
503
int get_nohz_timer_target(void)
504
{
505
	int i, cpu = smp_processor_id();
506 507
	struct sched_domain *sd;

508
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 510
		return cpu;

511
	rcu_read_lock();
512
	for_each_domain(cpu, sd) {
513
		for_each_cpu(i, sched_domain_span(sd)) {
514 515 516
			if (cpu == i)
				continue;

517
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 519 520 521
				cpu = i;
				goto unlock;
			}
		}
522
	}
523

524 525
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526 527
unlock:
	rcu_read_unlock();
528 529
	return cpu;
}
I
Ingo Molnar 已提交
530

531 532 533 534 535 536 537 538 539 540
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
541
static void wake_up_idle_cpu(int cpu)
542 543 544 545 546 547
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

548
	if (set_nr_and_not_polling(rq->idle))
549
		smp_send_reschedule(cpu);
550 551
	else
		trace_sched_wake_idle_without_ipi(cpu);
552 553
}

554
static bool wake_up_full_nohz_cpu(int cpu)
555
{
556 557 558 559 560 561
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
562 563
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
564
	if (tick_nohz_full_cpu(cpu)) {
565 566
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
567
			tick_nohz_full_kick_cpu(cpu);
568 569 570 571 572 573
		return true;
	}

	return false;
}

574 575 576 577 578
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
579 580
void wake_up_nohz_cpu(int cpu)
{
581
	if (!wake_up_full_nohz_cpu(cpu))
582 583 584
		wake_up_idle_cpu(cpu);
}

585
static inline bool got_nohz_idle_kick(void)
586
{
587
	int cpu = smp_processor_id();
588

P
Peter Zijlstra 已提交
589
	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 591 592 593 594 595 596 597 598
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
P
Peter Zijlstra 已提交
599
	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600
	return false;
601 602
}

603
#else /* CONFIG_NO_HZ_COMMON */
604

605
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
606
{
607
	return false;
P
Peter Zijlstra 已提交
608 609
}

610
#endif /* CONFIG_NO_HZ_COMMON */
611

612
#ifdef CONFIG_NO_HZ_FULL
613
bool sched_can_stop_tick(struct rq *rq)
614
{
615 616 617 618 619 620
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

621
	/*
622 623
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
624
	 */
625 626 627 628 629
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
630 631
	}

632 633 634 635 636 637 638 639 640 641 642 643 644 645
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
646
		return false;
647

648
	return true;
649 650
}
#endif /* CONFIG_NO_HZ_FULL */
651

652
void sched_avg_update(struct rq *rq)
653
{
654 655
	s64 period = sched_avg_period();

656
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 658 659 660 661 662
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
663 664 665
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
666 667
}

668
#endif /* CONFIG_SMP */
669

670 671
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672
/*
673 674 675 676
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
677
 */
678
int walk_tg_tree_from(struct task_group *from,
679
			     tg_visitor down, tg_visitor up, void *data)
680 681
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
682
	int ret;
683

684 685
	parent = from;

686
down:
P
Peter Zijlstra 已提交
687 688
	ret = (*down)(parent, data);
	if (ret)
689
		goto out;
690 691 692 693 694 695 696
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
697
	ret = (*up)(parent, data);
698 699
	if (ret || parent == from)
		goto out;
700 701 702 703 704

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
705
out:
P
Peter Zijlstra 已提交
706
	return ret;
707 708
}

709
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
710
{
711
	return 0;
P
Peter Zijlstra 已提交
712
}
713 714
#endif

715
static void set_load_weight(struct task_struct *p, bool update_load)
716
{
N
Nikhil Rao 已提交
717 718 719
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
720 721 722
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
723
	if (idle_policy(p->policy)) {
724
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
725
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
726 727
		return;
	}
728

729 730 731 732 733 734 735 736 737 738
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
739 740
}

741
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742
{
743 744 745
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

746 747
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
748

749
	p->sched_class->enqueue_task(rq, p, flags);
750 751
}

752
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753
{
754 755 756
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

757 758
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
759

760
	p->sched_class->dequeue_task(rq, p, flags);
761 762
}

763
void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 765 766 767
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

768
	enqueue_task(rq, p, flags);
769 770
}

771
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 773 774 775
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

776
	dequeue_task(rq, p, flags);
777 778
}

779
/*
I
Ingo Molnar 已提交
780
 * __normal_prio - return the priority that is based on the static prio
781 782 783
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
784
	return p->static_prio;
785 786
}

787 788 789 790 791 792 793
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
794
static inline int normal_prio(struct task_struct *p)
795 796 797
{
	int prio;

798 799 800
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
801 802 803 804 805 806 807 808 809 810 811 812 813
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
814
static int effective_prio(struct task_struct *p)
815 816 817 818 819 820 821 822 823 824 825 826
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
827 828 829
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
830 831
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
832
 */
833
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
834 835 836 837
{
	return cpu_curr(task_cpu(p)) == p;
}

838
/*
839 840 841 842 843
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
844
 */
845 846
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
847
				       int oldprio)
848 849 850
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
851
			prev_class->switched_from(rq, p);
852

P
Peter Zijlstra 已提交
853
		p->sched_class->switched_to(rq, p);
854
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
855
		p->sched_class->prio_changed(rq, p, oldprio);
856 857
}

858
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859 860 861 862 863 864 865 866 867 868
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
869
				resched_curr(rq);
870 871 872 873 874 875 876 877 878
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
879
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880
		rq_clock_skip_update(rq);
881 882
}

L
Linus Torvalds 已提交
883
#ifdef CONFIG_SMP
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}

/*
 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 * __set_cpus_allowed_ptr() and select_fallback_rq().
 */
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
		return false;

	if (is_per_cpu_kthread(p))
		return cpu_online(cpu);

	return cpu_active(cpu);
}

P
Peter Zijlstra 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
930 931
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
932 933 934 935
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
936
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
937
	set_task_cpu(p, new_cpu);
938
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
939 940 941

	rq = cpu_rq(new_cpu);

942
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
943 944
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
945
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
946 947 948 949 950 951 952 953 954 955 956
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
957
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
958 959 960 961 962 963 964
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
965 966
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
967 968
{
	/* Affinity changed (again). */
969
	if (!is_cpu_allowed(p, dest_cpu))
970
		return rq;
P
Peter Zijlstra 已提交
971

972
	update_rq_clock(rq);
973
	rq = move_queued_task(rq, rf, p, dest_cpu);
974 975

	return rq;
P
Peter Zijlstra 已提交
976 977 978 979 980 981 982 983 984 985
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
986 987
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
988
	struct rq_flags rf;
P
Peter Zijlstra 已提交
989 990

	/*
I
Ingo Molnar 已提交
991 992
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1001 1002

	raw_spin_lock(&p->pi_lock);
1003
	rq_lock(rq, &rf);
1004 1005 1006 1007 1008
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1009 1010
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1011
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 1013 1014
		else
			p->wake_cpu = arg->dest_cpu;
	}
1015
	rq_unlock(rq, &rf);
1016 1017
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1018 1019 1020 1021
	local_irq_enable();
	return 0;
}

1022 1023 1024 1025 1026
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1027 1028 1029 1030 1031
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1032 1033
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1034 1035 1036
	struct rq *rq = task_rq(p);
	bool queued, running;

1037
	lockdep_assert_held(&p->pi_lock);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1048
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 1050 1051 1052
	}
	if (running)
		put_prev_task(rq, p);

1053
	p->sched_class->set_cpus_allowed(p, new_mask);
1054 1055

	if (queued)
1056
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057
	if (running)
1058
		set_curr_task(rq, p);
1059 1060
}

P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1070 1071
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1072
{
1073
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1074
	unsigned int dest_cpu;
1075 1076
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1077 1078
	int ret = 0;

1079
	rq = task_rq_lock(p, &rf);
1080
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1081

1082 1083 1084 1085 1086 1087 1088
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1089 1090 1091 1092 1093 1094 1095 1096 1097
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1098 1099 1100
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1101
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1102 1103 1104 1105 1106 1107
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1108 1109 1110
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1111
		 * !active we want to ensure they are strict per-CPU threads.
1112 1113 1114 1115 1116 1117
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1118 1119 1120 1121
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1122
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1123 1124 1125
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1126
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1127 1128 1129
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1130 1131 1132 1133 1134
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1135
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1136
	}
P
Peter Zijlstra 已提交
1137
out:
1138
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1139 1140 1141

	return ret;
}
1142 1143 1144 1145 1146

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1147 1148
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1149
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1150
{
1151 1152 1153 1154 1155
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1156
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1157
			!p->on_rq);
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1168
#ifdef CONFIG_LOCKDEP
1169 1170 1171 1172 1173
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1174
	 * see task_group().
1175 1176 1177 1178
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1179 1180 1181
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1182 1183 1184 1185
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1186 1187
#endif

1188
	trace_sched_migrate_task(p, new_cpu);
1189

1190
	if (task_cpu(p) != new_cpu) {
1191
		if (p->sched_class->migrate_task_rq)
1192
			p->sched_class->migrate_task_rq(p);
1193
		p->se.nr_migrations++;
1194
		rseq_migrate(p);
1195
		perf_event_task_migrate(p);
1196
	}
I
Ingo Molnar 已提交
1197 1198

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1199 1200
}

1201 1202
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1203
	if (task_on_rq_queued(p)) {
1204
		struct rq *src_rq, *dst_rq;
1205
		struct rq_flags srf, drf;
1206 1207 1208 1209

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1210 1211 1212
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1213
		p->on_rq = TASK_ON_RQ_MIGRATING;
1214 1215 1216
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1217
		p->on_rq = TASK_ON_RQ_QUEUED;
1218
		check_preempt_curr(dst_rq, p, 0);
1219 1220 1221 1222

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1223 1224 1225 1226
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1227
		 * previous CPU our target instead of where it really is.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1244 1245 1246
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1247 1248 1249
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1250 1251
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1252
	double_rq_lock(src_rq, dst_rq);
1253

1254 1255 1256 1257 1258 1259
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1260
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1261 1262
		goto unlock;

1263
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1264 1265 1266 1267 1268 1269 1270 1271 1272
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1273 1274
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1297 1298 1299 1300
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1301 1302 1303
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1304
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1305 1306
		goto out;

1307
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1308 1309
		goto out;

1310
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1311 1312 1313 1314 1315 1316
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1317 1318 1319
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1320 1321 1322 1323 1324 1325 1326
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1327 1328 1329 1330 1331 1332
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1333
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1334
{
1335
	int running, queued;
1336
	struct rq_flags rf;
R
Roland McGrath 已提交
1337
	unsigned long ncsw;
1338
	struct rq *rq;
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1360 1361 1362
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1363
			cpu_relax();
R
Roland McGrath 已提交
1364
		}
1365

1366 1367 1368 1369 1370
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1371
		rq = task_rq_lock(p, &rf);
1372
		trace_sched_wait_task(p);
1373
		running = task_running(rq, p);
1374
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1375
		ncsw = 0;
1376
		if (!match_state || p->state == match_state)
1377
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1378
		task_rq_unlock(rq, p, &rf);
1379

R
Roland McGrath 已提交
1380 1381 1382 1383 1384 1385
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1396

1397 1398 1399 1400 1401
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1402
		 * So if it was still runnable (but just not actively
1403 1404 1405
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1406
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1407
			ktime_t to = NSEC_PER_SEC / HZ;
1408 1409 1410

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1411 1412
			continue;
		}
1413

1414 1415 1416 1417 1418 1419 1420
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1421 1422

	return ncsw;
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1432
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1438
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1448
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1449

1450
/*
1451
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1452 1453 1454 1455 1456
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
1457
 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1458
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1459
 *    CPU isn't yet part of the sched domains, and balancing will not
1460 1461
 *    see it.
 *
I
Ingo Molnar 已提交
1462
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1463
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1464
 *    CPU. Existing tasks will remain running there and will be taken
1465 1466 1467 1468 1469 1470
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1471
 */
1472 1473
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1474 1475
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1476 1477
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1478

1479
	/*
I
Ingo Molnar 已提交
1480 1481 1482
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1483 1484 1485 1486 1487 1488 1489 1490
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1491
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1492 1493
				return dest_cpu;
		}
1494
	}
1495

1496 1497
	for (;;) {
		/* Any allowed, online CPU? */
1498
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1499
			if (!is_cpu_allowed(p, dest_cpu))
1500
				continue;
1501

1502 1503
			goto out;
		}
1504

1505
		/* No more Mr. Nice Guy. */
1506 1507
		switch (state) {
		case cpuset:
1508 1509 1510 1511 1512
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1513
			/* Fall-through */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1533
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1534 1535
					task_pid_nr(p), p->comm, cpu);
		}
1536 1537 1538 1539 1540
	}

	return dest_cpu;
}

1541
/*
1542
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1543
 */
1544
static inline
1545
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1546
{
1547 1548
	lockdep_assert_held(&p->pi_lock);

1549
	if (p->nr_cpus_allowed > 1)
1550
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1551
	else
1552
		cpu = cpumask_any(&p->cpus_allowed);
1553 1554 1555 1556

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1557
	 * CPU.
1558 1559 1560 1561 1562 1563
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1564
	if (unlikely(!is_cpu_allowed(p, cpu)))
1565
		cpu = select_fallback_rq(task_cpu(p), p);
1566 1567

	return cpu;
1568
}
1569 1570 1571 1572 1573 1574

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1606 1607 1608 1609 1610 1611 1612 1613
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1614
#endif /* CONFIG_SMP */
1615

P
Peter Zijlstra 已提交
1616
static void
1617
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1618
{
1619
	struct rq *rq;
1620

1621 1622 1623 1624
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1625

1626 1627
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1628 1629
		__schedstat_inc(rq->ttwu_local);
		__schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1630 1631 1632
	} else {
		struct sched_domain *sd;

1633
		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1634
		rcu_read_lock();
1635
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1636
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1637
				__schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1638 1639 1640
				break;
			}
		}
1641
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1642
	}
1643 1644

	if (wake_flags & WF_MIGRATED)
1645
		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1646 1647
#endif /* CONFIG_SMP */

1648 1649
	__schedstat_inc(rq->ttwu_count);
	__schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1650 1651

	if (wake_flags & WF_SYNC)
1652
		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1653 1654
}

1655
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1656
{
T
Tejun Heo 已提交
1657
	activate_task(rq, p, en_flags);
1658
	p->on_rq = TASK_ON_RQ_QUEUED;
1659

I
Ingo Molnar 已提交
1660
	/* If a worker is waking up, notify the workqueue: */
1661 1662
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1663 1664
}

1665 1666 1667
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1668
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1669
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1670 1671 1672
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1673 1674
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1675
#ifdef CONFIG_SMP
1676 1677
	if (p->sched_class->task_woken) {
		/*
1678 1679
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1680
		 */
1681
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1682
		p->sched_class->task_woken(rq, p);
1683
		rq_repin_lock(rq, rf);
1684
	}
T
Tejun Heo 已提交
1685

1686
	if (rq->idle_stamp) {
1687
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1688
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1689

1690 1691 1692
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1693
			rq->avg_idle = max;
1694

T
Tejun Heo 已提交
1695 1696 1697 1698 1699
		rq->idle_stamp = 0;
	}
#endif
}

1700
static void
1701
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1702
		 struct rq_flags *rf)
1703
{
1704
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1705

1706 1707
	lockdep_assert_held(&rq->lock);

1708 1709 1710
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1711 1712

	if (wake_flags & WF_MIGRATED)
1713
		en_flags |= ENQUEUE_MIGRATED;
1714 1715
#endif

1716
	ttwu_activate(rq, p, en_flags);
1717
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1728
	struct rq_flags rf;
1729 1730 1731
	struct rq *rq;
	int ret = 0;

1732
	rq = __task_rq_lock(p, &rf);
1733
	if (task_on_rq_queued(p)) {
1734 1735
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1736
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1737 1738
		ret = 1;
	}
1739
	__task_rq_unlock(rq, &rf);
1740 1741 1742 1743

	return ret;
}

1744
#ifdef CONFIG_SMP
1745
void sched_ttwu_pending(void)
1746 1747
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1748
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1749
	struct task_struct *p, *t;
1750
	struct rq_flags rf;
1751

1752 1753 1754
	if (!llist)
		return;

1755
	rq_lock_irqsave(rq, &rf);
1756
	update_rq_clock(rq);
1757

1758 1759
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1760

1761
	rq_unlock_irqrestore(rq, &rf);
1762 1763 1764 1765
}

void scheduler_ipi(void)
{
1766 1767 1768 1769 1770
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1771
	preempt_fold_need_resched();
1772

1773
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1790
	sched_ttwu_pending();
1791 1792 1793 1794

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1795
	if (unlikely(got_nohz_idle_kick())) {
1796
		this_rq()->idle_balance = 1;
1797
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1798
	}
1799
	irq_exit();
1800 1801
}

P
Peter Zijlstra 已提交
1802
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1803
{
1804 1805
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1806 1807
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1808 1809 1810 1811 1812 1813
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1814
}
1815

1816 1817 1818
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1819
	struct rq_flags rf;
1820

1821 1822 1823 1824
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1825 1826 1827 1828

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1829
		rq_lock_irqsave(rq, &rf);
1830 1831
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1832
		/* Else CPU is not idle, do nothing here: */
1833
		rq_unlock_irqrestore(rq, &rf);
1834
	}
1835 1836 1837

out:
	rcu_read_unlock();
1838 1839
}

1840
bool cpus_share_cache(int this_cpu, int that_cpu)
1841 1842 1843
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1844
#endif /* CONFIG_SMP */
1845

1846
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1847 1848
{
	struct rq *rq = cpu_rq(cpu);
1849
	struct rq_flags rf;
1850

1851
#if defined(CONFIG_SMP)
1852
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1853
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1854
		ttwu_queue_remote(p, cpu, wake_flags);
1855 1856 1857 1858
		return;
	}
#endif

1859
	rq_lock(rq, &rf);
1860
	update_rq_clock(rq);
1861
	ttwu_do_activate(rq, p, wake_flags, &rf);
1862
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1863 1864
}

1865 1866 1867 1868 1869 1870
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1871 1872
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1883
 * Note: the CPU doing B need not be c0 or c1
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1915
 *   2) smp_cond_load_acquire(!X->on_cpu)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1926
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1952
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1953 1954 1955
 *
 */

T
Tejun Heo 已提交
1956
/**
L
Linus Torvalds 已提交
1957
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1958
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1959
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1960
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1961
 *
1962
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1963
 *
1964 1965 1966 1967 1968 1969 1970
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1971
 */
1972 1973
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1974 1975
{
	unsigned long flags;
1976
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1977

1978 1979 1980 1981 1982 1983
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1984
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1985
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1986
	if (!(p->state & state))
L
Linus Torvalds 已提交
1987 1988
		goto out;

1989 1990
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1991 1992
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1993 1994
	cpu = task_cpu(p);

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2017 2018
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2019 2020

#ifdef CONFIG_SMP
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2040
	/*
I
Ingo Molnar 已提交
2041
	 * If the owning (remote) CPU is still in the middle of schedule() with
2042
	 * this task as prev, wait until its done referencing the task.
2043
	 *
2044
	 * Pairs with the smp_store_release() in finish_task().
2045 2046 2047
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2048
	 */
2049
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2050

2051
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2052
	p->state = TASK_WAKING;
2053

2054
	if (p->in_iowait) {
2055
		delayacct_blkio_end(p);
2056 2057 2058
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2059
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2060 2061
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2062
		set_task_cpu(p, cpu);
2063
	}
2064 2065 2066 2067

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2068
		delayacct_blkio_end(p);
2069 2070 2071
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2072 2073
#endif /* CONFIG_SMP */

2074
	ttwu_queue(p, cpu, wake_flags);
2075
stat:
2076
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2077
out:
2078
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2079 2080 2081 2082

	return success;
}

T
Tejun Heo 已提交
2083 2084 2085
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2086
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2087
 *
2088
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2089
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2090
 * the current task.
T
Tejun Heo 已提交
2091
 */
2092
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2093 2094 2095
{
	struct rq *rq = task_rq(p);

2096 2097 2098 2099
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2100 2101
	lockdep_assert_held(&rq->lock);

2102
	if (!raw_spin_trylock(&p->pi_lock)) {
2103 2104 2105 2106 2107 2108
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2109
		rq_unlock(rq, rf);
2110
		raw_spin_lock(&p->pi_lock);
2111
		rq_relock(rq, rf);
2112 2113
	}

T
Tejun Heo 已提交
2114
	if (!(p->state & TASK_NORMAL))
2115
		goto out;
T
Tejun Heo 已提交
2116

2117 2118
	trace_sched_waking(p);

2119 2120
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
2121
			delayacct_blkio_end(p);
2122 2123
			atomic_dec(&rq->nr_iowait);
		}
2124
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2125
	}
P
Peter Zijlstra 已提交
2126

2127
	ttwu_do_wakeup(rq, p, 0, rf);
2128
	ttwu_stat(p, smp_processor_id(), 0);
2129 2130
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2131 2132
}

2133 2134 2135 2136 2137
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2138 2139 2140
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2141 2142 2143 2144
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2145
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2146
{
2147
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2148 2149 2150
}
EXPORT_SYMBOL(wake_up_process);

2151
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2159 2160 2161
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2162
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2163
{
P
Peter Zijlstra 已提交
2164 2165 2166
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2167 2168
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2169
	p->se.prev_sum_exec_runtime	= 0;
2170
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2171
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2172
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2173

2174 2175 2176 2177
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2178
#ifdef CONFIG_SCHEDSTATS
2179
	/* Even if schedstat is disabled, there should not be garbage */
2180
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2181
#endif
N
Nick Piggin 已提交
2182

2183
	RB_CLEAR_NODE(&p->dl.rb_node);
2184
	init_dl_task_timer(&p->dl);
2185
	init_dl_inactive_task_timer(&p->dl);
2186
	__dl_clear_params(p);
2187

P
Peter Zijlstra 已提交
2188
	INIT_LIST_HEAD(&p->rt.run_list);
2189 2190 2191 2192
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2193

2194 2195 2196
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2197

2198
	init_numa_balancing(clone_flags, p);
I
Ingo Molnar 已提交
2199 2200
}

2201 2202
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2203
#ifdef CONFIG_NUMA_BALANCING
2204

2205 2206 2207
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2208
		static_branch_enable(&sched_numa_balancing);
2209
	else
2210
		static_branch_disable(&sched_numa_balancing);
2211
}
2212 2213 2214 2215 2216 2217 2218

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2219
	int state = static_branch_likely(&sched_numa_balancing);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2235

2236 2237
#ifdef CONFIG_SCHEDSTATS

2238
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2239
static bool __initdata __sched_schedstats = false;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2263 2264 2265 2266 2267
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2268
	if (!strcmp(str, "enable")) {
2269
		__sched_schedstats = true;
2270 2271
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2272
		__sched_schedstats = false;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2283 2284 2285 2286 2287
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2308 2309 2310 2311
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2312 2313 2314 2315

/*
 * fork()/clone()-time setup:
 */
2316
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2317
{
2318
	unsigned long flags;
I
Ingo Molnar 已提交
2319 2320
	int cpu = get_cpu();

2321
	__sched_fork(clone_flags, p);
2322
	/*
2323
	 * We mark the process as NEW here. This guarantees that
2324 2325 2326
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2327
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2328

2329 2330 2331 2332 2333
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2334 2335 2336 2337
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2338
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2339
			p->policy = SCHED_NORMAL;
2340
			p->static_prio = NICE_TO_PRIO(0);
2341 2342 2343 2344 2345
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2346
		set_load_weight(p, false);
2347

2348 2349 2350 2351 2352 2353
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2354

2355 2356 2357 2358 2359 2360
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2361
		p->sched_class = &fair_sched_class;
2362
	}
2363

2364
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2365

2366 2367 2368 2369 2370 2371 2372
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2373
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2374
	/*
I
Ingo Molnar 已提交
2375
	 * We're setting the CPU for the first time, we don't migrate,
2376 2377 2378 2379 2380
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2381
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2382

2383
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2384
	if (likely(sched_info_on()))
2385
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2386
#endif
P
Peter Zijlstra 已提交
2387 2388
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2389
#endif
2390
	init_task_preempt_count(p);
2391
#ifdef CONFIG_SMP
2392
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2393
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2394
#endif
2395

N
Nick Piggin 已提交
2396
	put_cpu();
2397
	return 0;
L
Linus Torvalds 已提交
2398 2399
}

2400 2401 2402
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2403
		return BW_UNIT;
2404 2405 2406 2407 2408 2409 2410 2411 2412

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2413
	return div64_u64(runtime << BW_SHIFT, period);
2414 2415
}

L
Linus Torvalds 已提交
2416 2417 2418 2419 2420 2421 2422
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2423
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2424
{
2425
	struct rq_flags rf;
I
Ingo Molnar 已提交
2426
	struct rq *rq;
2427

2428
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2429
	p->state = TASK_RUNNING;
2430 2431 2432 2433
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2434
	 *  - any previously selected CPU might disappear through hotplug
2435 2436 2437
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2438
	 */
2439
	p->recent_used_cpu = task_cpu(p);
2440
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2441
#endif
2442
	rq = __task_rq_lock(p, &rf);
2443
	update_rq_clock(rq);
2444
	post_init_entity_util_avg(&p->se);
2445

2446
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2447
	p->on_rq = TASK_ON_RQ_QUEUED;
2448
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2449
	check_preempt_curr(rq, p, WF_FORK);
2450
#ifdef CONFIG_SMP
2451 2452 2453 2454 2455
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2456
		rq_unpin_lock(rq, &rf);
2457
		p->sched_class->task_woken(rq, p);
2458
		rq_repin_lock(rq, &rf);
2459
	}
2460
#endif
2461
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2462 2463
}

2464 2465
#ifdef CONFIG_PREEMPT_NOTIFIERS

2466
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2467

2468 2469
void preempt_notifier_inc(void)
{
2470
	static_branch_inc(&preempt_notifier_key);
2471 2472 2473 2474 2475
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
2476
	static_branch_dec(&preempt_notifier_key);
2477 2478 2479
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2480
/**
2481
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2482
 * @notifier: notifier struct to register
2483 2484 2485
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2486
	if (!static_branch_unlikely(&preempt_notifier_key))
2487 2488
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2489 2490 2491 2492 2493 2494
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2495
 * @notifier: notifier struct to unregister
2496
 *
2497
 * This is *not* safe to call from within a preemption notifier.
2498 2499 2500 2501 2502 2503 2504
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2505
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2506 2507 2508
{
	struct preempt_notifier *notifier;

2509
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2510 2511 2512
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2513 2514
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
2515
	if (static_branch_unlikely(&preempt_notifier_key))
2516 2517 2518
		__fire_sched_in_preempt_notifiers(curr);
}

2519
static void
2520 2521
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2522 2523 2524
{
	struct preempt_notifier *notifier;

2525
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2526 2527 2528
		notifier->ops->sched_out(notifier, next);
}

2529 2530 2531 2532
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
2533
	if (static_branch_unlikely(&preempt_notifier_key))
2534 2535 2536
		__fire_sched_out_preempt_notifiers(curr, next);
}

2537
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2538

2539
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2540 2541 2542
{
}

2543
static inline void
2544 2545 2546 2547 2548
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2549
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

2579 2580
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2581
{
2582 2583 2584 2585 2586 2587 2588 2589
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
	rq_unpin_lock(rq, rf);
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2590 2591
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
2592
	rq->lock.owner = next;
2593
#endif
2594 2595 2596 2597
}

static inline void finish_lock_switch(struct rq *rq)
{
2598 2599 2600 2601 2602 2603 2604 2605 2606
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
	raw_spin_unlock_irq(&rq->lock);
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
/*
 * NOP if the arch has not defined these:
 */

#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif

#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif

2619 2620 2621
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2622
 * @prev: the current task that is being switched out
2623 2624 2625 2626 2627 2628 2629 2630 2631
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2632 2633 2634
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2635
{
2636
	sched_info_switch(rq, prev, next);
2637
	perf_event_task_sched_out(prev, next);
2638
	rseq_preempt(prev);
2639
	fire_sched_out_preempt_notifiers(prev, next);
2640
	prepare_task(next);
2641 2642 2643
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2644 2645 2646 2647
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2648 2649 2650 2651
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2652 2653
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2654
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2655 2656
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2657 2658 2659 2660 2661
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2662
 */
2663
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2664 2665
	__releases(rq->lock)
{
2666
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2667
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2668
	long prev_state;
L
Linus Torvalds 已提交
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2681 2682 2683 2684
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2685

L
Linus Torvalds 已提交
2686 2687 2688 2689
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2690
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2691 2692
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2693 2694
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2695
	 * finish_task), otherwise a concurrent wakeup can get prev
2696 2697
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2698
	 */
O
Oleg Nesterov 已提交
2699
	prev_state = prev->state;
2700
	vtime_task_switch(prev);
2701
	perf_event_task_sched_in(prev, current);
2702 2703
	finish_task(prev);
	finish_lock_switch(rq);
2704
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2705

2706
	fire_sched_in_preempt_notifiers(current);
2707
	/*
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	 * When switching through a kernel thread, the loop in
	 * membarrier_{private,global}_expedited() may have observed that
	 * kernel thread and not issued an IPI. It is therefore possible to
	 * schedule between user->kernel->user threads without passing though
	 * switch_mm(). Membarrier requires a barrier after storing to
	 * rq->curr, before returning to userspace, so provide them here:
	 *
	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
	 *   provided by mmdrop(),
	 * - a sync_core for SYNC_CORE.
2718
	 */
2719 2720
	if (mm) {
		membarrier_mm_sync_core_before_usermode(mm);
L
Linus Torvalds 已提交
2721
		mmdrop(mm);
2722
	}
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
		switch (prev_state) {
		case TASK_DEAD:
			if (prev->sched_class->task_dead)
				prev->sched_class->task_dead(prev);

			/*
			 * Remove function-return probe instances associated with this
			 * task and put them back on the free list.
			 */
			kprobe_flush_task(prev);

			/* Task is done with its stack. */
			put_task_stack(prev);

			put_task_struct(prev);
			break;
2740

2741 2742 2743 2744
		case TASK_PARKED:
			kthread_park_complete(prev);
			break;
		}
2745
	}
2746

2747
	tick_nohz_task_switch();
2748
	return rq;
L
Linus Torvalds 已提交
2749 2750
}

2751 2752 2753
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2754
static void __balance_callback(struct rq *rq)
2755
{
2756 2757 2758
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2759

2760 2761 2762 2763 2764 2765 2766 2767
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2768

2769
		func(rq);
2770
	}
2771 2772 2773 2774 2775 2776 2777
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2778 2779 2780
}

#else
2781

2782
static inline void balance_callback(struct rq *rq)
2783
{
L
Linus Torvalds 已提交
2784 2785
}

2786 2787
#endif

L
Linus Torvalds 已提交
2788 2789 2790 2791
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2792
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2793 2794
	__releases(rq->lock)
{
2795
	struct rq *rq;
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2806
	rq = finish_task_switch(prev);
2807
	balance_callback(rq);
2808
	preempt_enable();
2809

L
Linus Torvalds 已提交
2810
	if (current->set_child_tid)
2811
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2812 2813 2814
}

/*
2815
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2816
 */
2817
static __always_inline struct rq *
2818
context_switch(struct rq *rq, struct task_struct *prev,
2819
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2820
{
I
Ingo Molnar 已提交
2821
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2822

2823
	prepare_task_switch(rq, prev, next);
2824

I
Ingo Molnar 已提交
2825 2826
	mm = next->mm;
	oldmm = prev->active_mm;
2827 2828 2829 2830 2831
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2832
	arch_start_context_switch(prev);
2833

2834 2835 2836 2837 2838 2839 2840
	/*
	 * If mm is non-NULL, we pass through switch_mm(). If mm is
	 * NULL, we will pass through mmdrop() in finish_task_switch().
	 * Both of these contain the full memory barrier required by
	 * membarrier after storing to rq->curr, before returning to
	 * user-space.
	 */
2841
	if (!mm) {
L
Linus Torvalds 已提交
2842
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2843
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2844 2845
		enter_lazy_tlb(oldmm, next);
	} else
2846
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2847

2848
	if (!prev->mm) {
L
Linus Torvalds 已提交
2849 2850 2851
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2852

2853
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2854

2855
	prepare_lock_switch(rq, next, rf);
L
Linus Torvalds 已提交
2856 2857 2858

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2859
	barrier();
2860 2861

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2862 2863 2864
}

/*
2865
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2866 2867
 *
 * externally visible scheduler statistics: current number of runnable
2868
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2878
}
L
Linus Torvalds 已提交
2879

2880
/*
I
Ingo Molnar 已提交
2881
 * Check if only the current task is running on the CPU.
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2892 2893 2894
 */
bool single_task_running(void)
{
2895
	return raw_rq()->nr_running == 1;
2896 2897 2898
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2899
unsigned long long nr_context_switches(void)
2900
{
2901 2902
	int i;
	unsigned long long sum = 0;
2903

2904
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2905
		sum += cpu_rq(i)->nr_switches;
2906

L
Linus Torvalds 已提交
2907 2908
	return sum;
}
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2940 2941 2942
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2943

2944
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2945
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2946

L
Linus Torvalds 已提交
2947 2948
	return sum;
}
2949

2950 2951 2952 2953 2954 2955 2956
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2957
unsigned long nr_iowait_cpu(int cpu)
2958
{
2959
	struct rq *this = cpu_rq(cpu);
2960 2961
	return atomic_read(&this->nr_iowait);
}
2962

2963 2964
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2965 2966 2967
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2968 2969
}

I
Ingo Molnar 已提交
2970
#ifdef CONFIG_SMP
2971

2972
/*
P
Peter Zijlstra 已提交
2973 2974
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2975
 */
P
Peter Zijlstra 已提交
2976
void sched_exec(void)
2977
{
P
Peter Zijlstra 已提交
2978
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2979
	unsigned long flags;
2980
	int dest_cpu;
2981

2982
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2983
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2984 2985
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2986

2987
	if (likely(cpu_active(dest_cpu))) {
2988
		struct migration_arg arg = { p, dest_cpu };
2989

2990 2991
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2992 2993
		return;
	}
2994
unlock:
2995
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2996
}
I
Ingo Molnar 已提交
2997

L
Linus Torvalds 已提交
2998 2999 3000
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3001
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3002 3003

EXPORT_PER_CPU_SYMBOL(kstat);
3004
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3023 3024 3025 3026 3027 3028 3029
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3030
	struct rq_flags rf;
3031
	struct rq *rq;
3032
	u64 ns;
3033

3034 3035
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
3036
	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3037 3038 3039
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3040 3041
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3042
	 * indistinguishable from the read occurring a few cycles earlier.
3043 3044
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3045
	 */
3046
	if (!p->on_cpu || !task_on_rq_queued(p))
3047 3048 3049
		return p->se.sum_exec_runtime;
#endif

3050
	rq = task_rq_lock(p, &rf);
3051 3052 3053 3054 3055 3056
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3057
		prefetch_curr_exec_start(p);
3058 3059 3060 3061
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3062
	task_rq_unlock(rq, p, &rf);
3063 3064 3065

	return ns;
}
3066

3067 3068 3069 3070 3071 3072 3073 3074
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3075
	struct task_struct *curr = rq->curr;
3076
	struct rq_flags rf;
3077 3078

	sched_clock_tick();
I
Ingo Molnar 已提交
3079

3080 3081
	rq_lock(rq, &rf);

3082
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3083
	curr->sched_class->task_tick(rq, curr, 0);
3084
	cpu_load_update_active(rq);
3085
	calc_global_load_tick(rq);
3086 3087

	rq_unlock(rq, &rf);
3088

3089
	perf_event_task_tick();
3090

3091
#ifdef CONFIG_SMP
3092
	rq->idle_balance = idle_cpu(cpu);
3093
	trigger_load_balance(rq);
3094
#endif
L
Linus Torvalds 已提交
3095 3096
}

3097
#ifdef CONFIG_NO_HZ_FULL
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

struct tick_work {
	int			cpu;
	struct delayed_work	work;
};

static struct tick_work __percpu *tick_work_cpu;

static void sched_tick_remote(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tick_work *twork = container_of(dwork, struct tick_work, work);
	int cpu = twork->cpu;
	struct rq *rq = cpu_rq(cpu);
	struct rq_flags rf;

	/*
	 * Handle the tick only if it appears the remote CPU is running in full
	 * dynticks mode. The check is racy by nature, but missing a tick or
	 * having one too much is no big deal because the scheduler tick updates
	 * statistics and checks timeslices in a time-independent way, regardless
	 * of when exactly it is running.
	 */
	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
		struct task_struct *curr;
		u64 delta;

		rq_lock_irq(rq, &rf);
		update_rq_clock(rq);
		curr = rq->curr;
		delta = rq_clock_task(rq) - curr->se.exec_start;

		/*
		 * Make sure the next tick runs within a reasonable
		 * amount of time.
		 */
		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
		curr->sched_class->task_tick(rq, curr, 0);
		rq_unlock_irq(rq, &rf);
	}

	/*
	 * Run the remote tick once per second (1Hz). This arbitrary
	 * frequency is large enough to avoid overload but short enough
	 * to keep scheduler internal stats reasonably up to date.
	 */
	queue_delayed_work(system_unbound_wq, dwork, HZ);
}

static void sched_tick_start(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	twork->cpu = cpu;
	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
}

#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	cancel_delayed_work_sync(&twork->work);
}
#endif /* CONFIG_HOTPLUG_CPU */

int __init sched_tick_offload_init(void)
{
	tick_work_cpu = alloc_percpu(struct tick_work);
	BUG_ON(!tick_work_cpu);

	return 0;
}

#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
3188
#endif
L
Linus Torvalds 已提交
3189

3190 3191
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3206

3207
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3208
{
3209
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3210 3211 3212
	/*
	 * Underflow?
	 */
3213 3214
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3215
#endif
3216
	__preempt_count_add(val);
3217
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3218 3219 3220
	/*
	 * Spinlock count overflowing soon?
	 */
3221 3222
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3223
#endif
3224
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3225
}
3226
EXPORT_SYMBOL(preempt_count_add);
3227
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3239
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3240
{
3241
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3242 3243 3244
	/*
	 * Underflow?
	 */
3245
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3246
		return;
L
Linus Torvalds 已提交
3247 3248 3249
	/*
	 * Is the spinlock portion underflowing?
	 */
3250 3251 3252
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3253
#endif
3254

3255
	preempt_latency_stop(val);
3256
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3257
}
3258
EXPORT_SYMBOL(preempt_count_sub);
3259
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3260

3261 3262 3263
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3264 3265
#endif

3266 3267 3268 3269 3270 3271 3272 3273 3274
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3275
/*
I
Ingo Molnar 已提交
3276
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3277
 */
I
Ingo Molnar 已提交
3278
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3279
{
3280 3281 3282
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3283 3284 3285
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3286 3287
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3288

I
Ingo Molnar 已提交
3289
	debug_show_held_locks(prev);
3290
	print_modules();
I
Ingo Molnar 已提交
3291 3292
	if (irqs_disabled())
		print_irqtrace_events(prev);
3293 3294
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3295
		pr_err("Preemption disabled at:");
3296
		print_ip_sym(preempt_disable_ip);
3297 3298
		pr_cont("\n");
	}
3299 3300 3301
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3302
	dump_stack();
3303
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3304
}
L
Linus Torvalds 已提交
3305

I
Ingo Molnar 已提交
3306 3307 3308 3309 3310
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3311
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3312 3313
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3314
#endif
3315

3316
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3317
		__schedule_bug(prev);
3318 3319
		preempt_count_set(PREEMPT_DISABLED);
	}
3320
	rcu_sleep_check();
I
Ingo Molnar 已提交
3321

L
Linus Torvalds 已提交
3322 3323
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3324
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3325 3326 3327 3328 3329 3330
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3331
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3332
{
3333
	const struct sched_class *class;
I
Ingo Molnar 已提交
3334
	struct task_struct *p;
L
Linus Torvalds 已提交
3335 3336

	/*
3337 3338 3339 3340
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3341
	 */
3342 3343 3344 3345
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3346
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3347 3348 3349
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3350
		/* Assumes fair_sched_class->next == idle_sched_class */
3351
		if (unlikely(!p))
3352
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3353 3354

		return p;
L
Linus Torvalds 已提交
3355 3356
	}

3357
again:
3358
	for_each_class(class) {
3359
		p = class->pick_next_task(rq, prev, rf);
3360 3361 3362
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3363
			return p;
3364
		}
I
Ingo Molnar 已提交
3365
	}
3366

I
Ingo Molnar 已提交
3367 3368
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3369
}
L
Linus Torvalds 已提交
3370

I
Ingo Molnar 已提交
3371
/*
3372
 * __schedule() is the main scheduler function.
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3407
 *
3408
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3409
 */
3410
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3411 3412
{
	struct task_struct *prev, *next;
3413
	unsigned long *switch_count;
3414
	struct rq_flags rf;
I
Ingo Molnar 已提交
3415
	struct rq *rq;
3416
	int cpu;
I
Ingo Molnar 已提交
3417 3418 3419 3420 3421 3422

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3423

3424
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3425
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3426

3427
	local_irq_disable();
3428
	rcu_note_context_switch(preempt);
3429

3430 3431 3432 3433
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
3434 3435 3436
	 *
	 * The membarrier system call requires a full memory barrier
	 * after coming from user-space, before storing to rq->curr.
3437
	 */
3438
	rq_lock(rq, &rf);
3439
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3440

I
Ingo Molnar 已提交
3441 3442
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3443
	update_rq_clock(rq);
3444

3445
	switch_count = &prev->nivcsw;
3446
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3447
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3448
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3449
		} else {
3450
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3451 3452
			prev->on_rq = 0;

3453 3454 3455 3456 3457
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3458
			/*
3459 3460 3461
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3462 3463 3464 3465
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3466
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3467
				if (to_wakeup)
3468
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3469 3470
			}
		}
I
Ingo Molnar 已提交
3471
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3472 3473
	}

3474
	next = pick_next_task(rq, prev, &rf);
3475
	clear_tsk_need_resched(prev);
3476
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3477 3478 3479 3480

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3481 3482 3483
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		 * rq->curr, before returning to user-space.
		 *
		 * Here are the schemes providing that barrier on the
		 * various architectures:
		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
		 * - finish_lock_switch() for weakly-ordered
		 *   architectures where spin_unlock is a full barrier,
		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
		 *   is a RELEASE barrier),
3494
		 */
L
Linus Torvalds 已提交
3495 3496
		++*switch_count;

3497
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3498 3499 3500

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3501
	} else {
3502
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3503
		rq_unlock_irq(rq, &rf);
3504
	}
L
Linus Torvalds 已提交
3505

3506
	balance_callback(rq);
L
Linus Torvalds 已提交
3507
}
3508

3509 3510
void __noreturn do_task_dead(void)
{
I
Ingo Molnar 已提交
3511
	/* Causes final put_task_struct in finish_task_switch(): */
3512
	set_special_state(TASK_DEAD);
I
Ingo Molnar 已提交
3513 3514 3515 3516

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3517 3518
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3519 3520

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3521
	for (;;)
I
Ingo Molnar 已提交
3522
		cpu_relax();
3523 3524
}

3525 3526
static inline void sched_submit_work(struct task_struct *tsk)
{
3527
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3528 3529 3530 3531 3532 3533 3534 3535 3536
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3537
asmlinkage __visible void __sched schedule(void)
3538
{
3539 3540 3541
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3542
	do {
3543
		preempt_disable();
3544
		__schedule(false);
3545
		sched_preempt_enable_no_resched();
3546
	} while (need_resched());
3547
}
L
Linus Torvalds 已提交
3548 3549
EXPORT_SYMBOL(schedule);

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3575
#ifdef CONFIG_CONTEXT_TRACKING
3576
asmlinkage __visible void __sched schedule_user(void)
3577 3578 3579 3580 3581 3582
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3583 3584
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3585
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3586
	 * too frequently to make sense yet.
3587
	 */
3588
	enum ctx_state prev_state = exception_enter();
3589
	schedule();
3590
	exception_exit(prev_state);
3591 3592 3593
}
#endif

3594 3595 3596 3597 3598 3599 3600
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3601
	sched_preempt_enable_no_resched();
3602 3603 3604 3605
	schedule();
	preempt_disable();
}

3606
static void __sched notrace preempt_schedule_common(void)
3607 3608
{
	do {
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3622
		preempt_disable_notrace();
3623
		preempt_latency_start(1);
3624
		__schedule(true);
3625
		preempt_latency_stop(1);
3626
		preempt_enable_no_resched_notrace();
3627 3628 3629 3630 3631 3632 3633 3634

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3635 3636
#ifdef CONFIG_PREEMPT
/*
3637
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3638
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3639 3640
 * occur there and call schedule directly.
 */
3641
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3642 3643 3644
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3645
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3646
	 */
3647
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3648 3649
		return;

3650
	preempt_schedule_common();
L
Linus Torvalds 已提交
3651
}
3652
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3653
EXPORT_SYMBOL(preempt_schedule);
3654 3655

/**
3656
 * preempt_schedule_notrace - preempt_schedule called by tracing
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3669
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3670 3671 3672 3673 3674 3675 3676
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3690
		preempt_disable_notrace();
3691
		preempt_latency_start(1);
3692 3693 3694 3695 3696 3697
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3698
		__schedule(true);
3699 3700
		exception_exit(prev_ctx);

3701
		preempt_latency_stop(1);
3702
		preempt_enable_no_resched_notrace();
3703 3704
	} while (need_resched());
}
3705
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3706

3707
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3708 3709

/*
3710
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3711 3712 3713 3714
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3715
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3716
{
3717
	enum ctx_state prev_state;
3718

3719
	/* Catch callers which need to be fixed */
3720
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3721

3722 3723
	prev_state = exception_enter();

3724
	do {
3725
		preempt_disable();
3726
		local_irq_enable();
3727
		__schedule(true);
3728
		local_irq_disable();
3729
		sched_preempt_enable_no_resched();
3730
	} while (need_resched());
3731 3732

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3733 3734
}

3735
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3736
			  void *key)
L
Linus Torvalds 已提交
3737
{
P
Peter Zijlstra 已提交
3738
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3739 3740 3741
}
EXPORT_SYMBOL(default_wake_function);

3742 3743
#ifdef CONFIG_RT_MUTEXES

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3759 3760
/*
 * rt_mutex_setprio - set the current priority of a task
3761 3762
 * @p: task to boost
 * @pi_task: donor task
3763 3764 3765 3766
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3767 3768
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3769
 */
3770
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3771
{
3772
	int prio, oldprio, queued, running, queue_flag =
3773
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3774
	const struct sched_class *prev_class;
3775 3776
	struct rq_flags rf;
	struct rq *rq;
3777

3778 3779 3780 3781 3782 3783 3784 3785
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3786

3787
	rq = __task_rq_lock(p, &rf);
3788
	update_rq_clock(rq);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3825
	trace_sched_pi_setprio(p, pi_task);
3826
	oldprio = p->prio;
3827 3828 3829 3830

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3831
	prev_class = p->sched_class;
3832
	queued = task_on_rq_queued(p);
3833
	running = task_current(rq, p);
3834
	if (queued)
3835
		dequeue_task(rq, p, queue_flag);
3836
	if (running)
3837
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3849 3850
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3851
			p->dl.dl_boosted = 1;
3852
			queue_flag |= ENQUEUE_REPLENISH;
3853 3854
		} else
			p->dl.dl_boosted = 0;
3855
		p->sched_class = &dl_sched_class;
3856 3857 3858 3859
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3860
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3861
		p->sched_class = &rt_sched_class;
3862 3863 3864
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3865 3866
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3867
		p->sched_class = &fair_sched_class;
3868
	}
I
Ingo Molnar 已提交
3869

3870 3871
	p->prio = prio;

3872
	if (queued)
3873
		enqueue_task(rq, p, queue_flag);
3874
	if (running)
3875
		set_curr_task(rq, p);
3876

P
Peter Zijlstra 已提交
3877
	check_class_changed(rq, p, prev_class, oldprio);
3878
out_unlock:
I
Ingo Molnar 已提交
3879 3880
	/* Avoid rq from going away on us: */
	preempt_disable();
3881
	__task_rq_unlock(rq, &rf);
3882 3883 3884

	balance_callback(rq);
	preempt_enable();
3885
}
3886 3887 3888 3889 3890
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3891
#endif
3892

3893
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3894
{
P
Peter Zijlstra 已提交
3895 3896
	bool queued, running;
	int old_prio, delta;
3897
	struct rq_flags rf;
3898
	struct rq *rq;
L
Linus Torvalds 已提交
3899

3900
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3901 3902 3903 3904 3905
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3906
	rq = task_rq_lock(p, &rf);
3907 3908
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3909 3910 3911 3912
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3913
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3914
	 */
3915
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3916 3917 3918
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3919
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3920
	running = task_current(rq, p);
3921
	if (queued)
3922
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3923 3924
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3925 3926

	p->static_prio = NICE_TO_PRIO(nice);
3927
	set_load_weight(p, true);
3928 3929 3930
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3931

3932
	if (queued) {
3933
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3934
		/*
3935 3936
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3937
		 */
3938
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3939
			resched_curr(rq);
L
Linus Torvalds 已提交
3940
	}
P
Peter Zijlstra 已提交
3941 3942
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3943
out_unlock:
3944
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3945 3946 3947
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3948 3949 3950 3951 3952
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3953
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3954
{
I
Ingo Molnar 已提交
3955
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3956
	int nice_rlim = nice_to_rlimit(nice);
3957

3958
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3959 3960 3961
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3971
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3972
{
3973
	long nice, retval;
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3980
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3981
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3982

3983
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3984 3985 3986
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
4001
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
4002 4003 4004
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4005
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
4011
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
4012
 * @cpu: the processor in question.
4013 4014
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
4015 4016 4017
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4032 4033
}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

4045 4046 4047
	if (vcpu_is_preempted(cpu))
		return 0;

T
Thomas Gleixner 已提交
4048
	return 1;
L
Linus Torvalds 已提交
4049 4050 4051
}

/**
I
Ingo Molnar 已提交
4052
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
4053
 * @cpu: the processor in question.
4054
 *
I
Ingo Molnar 已提交
4055
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
4056
 */
4057
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4065 4066
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4067
 */
A
Alexey Dobriyan 已提交
4068
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4069
{
4070
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4071 4072
}

4073 4074 4075 4076 4077 4078
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4079 4080
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4081
{
4082 4083
	int policy = attr->sched_policy;

4084
	if (policy == SETPARAM_POLICY)
4085 4086
		policy = p->policy;

L
Linus Torvalds 已提交
4087
	p->policy = policy;
4088

4089 4090
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4091
	else if (fair_policy(policy))
4092 4093
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4094 4095 4096 4097 4098 4099
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4100
	p->normal_prio = normal_prio(p);
4101
	set_load_weight(p, true);
4102
}
4103

4104 4105
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4106
			   const struct sched_attr *attr, bool keep_boost)
4107 4108
{
	__setscheduler_params(p, attr);
4109

4110
	/*
4111 4112
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4113
	 */
4114
	p->prio = normal_prio(p);
4115
	if (keep_boost)
4116
		p->prio = rt_effective_prio(p, p->prio);
4117

4118 4119 4120
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4121 4122 4123
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4124
}
4125

4126
/*
I
Ingo Molnar 已提交
4127
 * Check the target process has a UID that matches the current process's:
4128 4129 4130 4131 4132 4133 4134 4135
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4136 4137
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4138 4139 4140 4141
	rcu_read_unlock();
	return match;
}

4142 4143
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4144
				bool user, bool pi)
L
Linus Torvalds 已提交
4145
{
4146 4147
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4148
	int retval, oldprio, oldpolicy = -1, queued, running;
4149
	int new_effective_prio, policy = attr->sched_policy;
4150
	const struct sched_class *prev_class;
4151
	struct rq_flags rf;
4152
	int reset_on_fork;
4153
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4154
	struct rq *rq;
L
Linus Torvalds 已提交
4155

4156 4157
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4158
recheck:
I
Ingo Molnar 已提交
4159
	/* Double check policy once rq lock held: */
4160 4161
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4162
		policy = oldpolicy = p->policy;
4163
	} else {
4164
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4165

4166
		if (!valid_policy(policy))
4167 4168 4169
			return -EINVAL;
	}

4170
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4171 4172
		return -EINVAL;

L
Linus Torvalds 已提交
4173 4174
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4175 4176
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4177
	 */
4178
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4179
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4180
		return -EINVAL;
4181 4182
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4183 4184
		return -EINVAL;

4185 4186 4187
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4188
	if (user && !capable(CAP_SYS_NICE)) {
4189
		if (fair_policy(policy)) {
4190
			if (attr->sched_nice < task_nice(p) &&
4191
			    !can_nice(p, attr->sched_nice))
4192 4193 4194
				return -EPERM;
		}

4195
		if (rt_policy(policy)) {
4196 4197
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4198

I
Ingo Molnar 已提交
4199
			/* Can't set/change the rt policy: */
4200 4201 4202
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4203
			/* Can't increase priority: */
4204 4205
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4206 4207
				return -EPERM;
		}
4208

4209 4210 4211 4212 4213 4214 4215 4216 4217
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4218
		/*
4219 4220
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4221
		 */
4222
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4223
			if (!can_nice(p, task_nice(p)))
4224 4225
				return -EPERM;
		}
4226

I
Ingo Molnar 已提交
4227
		/* Can't change other user's priorities: */
4228
		if (!check_same_owner(p))
4229
			return -EPERM;
4230

I
Ingo Molnar 已提交
4231
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4232 4233
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4234
	}
L
Linus Torvalds 已提交
4235

4236
	if (user) {
4237 4238 4239
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4240
		retval = security_task_setscheduler(p);
4241 4242 4243 4244
		if (retval)
			return retval;
	}

4245
	/*
I
Ingo Molnar 已提交
4246
	 * Make sure no PI-waiters arrive (or leave) while we are
4247
	 * changing the priority of the task:
4248
	 *
L
Lucas De Marchi 已提交
4249
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4250 4251
	 * runqueue lock must be held.
	 */
4252
	rq = task_rq_lock(p, &rf);
4253
	update_rq_clock(rq);
4254

4255
	/*
I
Ingo Molnar 已提交
4256
	 * Changing the policy of the stop threads its a very bad idea:
4257 4258
	 */
	if (p == rq->stop) {
4259
		task_rq_unlock(rq, p, &rf);
4260 4261 4262
		return -EINVAL;
	}

4263
	/*
4264 4265
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4266
	 */
4267
	if (unlikely(policy == p->policy)) {
4268
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4269 4270 4271
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4272
		if (dl_policy(policy) && dl_param_changed(p, attr))
4273
			goto change;
4274

4275
		p->sched_reset_on_fork = reset_on_fork;
4276
		task_rq_unlock(rq, p, &rf);
4277 4278
		return 0;
	}
4279
change:
4280

4281
	if (user) {
4282
#ifdef CONFIG_RT_GROUP_SCHED
4283 4284 4285 4286 4287
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4288 4289
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4290
			task_rq_unlock(rq, p, &rf);
4291 4292 4293
			return -EPERM;
		}
#endif
4294
#ifdef CONFIG_SMP
4295 4296
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4297 4298 4299 4300 4301 4302 4303
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4304 4305
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4306
				task_rq_unlock(rq, p, &rf);
4307 4308 4309 4310 4311
				return -EPERM;
			}
		}
#endif
	}
4312

I
Ingo Molnar 已提交
4313
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4314 4315
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4316
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4317 4318
		goto recheck;
	}
4319 4320 4321 4322 4323 4324

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4325
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4326
		task_rq_unlock(rq, p, &rf);
4327 4328 4329
		return -EBUSY;
	}

4330 4331 4332
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4333 4334 4335 4336 4337 4338 4339 4340
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4341
		new_effective_prio = rt_effective_prio(p, newprio);
4342 4343
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4344 4345
	}

4346
	queued = task_on_rq_queued(p);
4347
	running = task_current(rq, p);
4348
	if (queued)
4349
		dequeue_task(rq, p, queue_flags);
4350
	if (running)
4351
		put_prev_task(rq, p);
4352

4353
	prev_class = p->sched_class;
4354
	__setscheduler(rq, p, attr, pi);
4355

4356
	if (queued) {
4357 4358 4359 4360
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4361 4362
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4363

4364
		enqueue_task(rq, p, queue_flags);
4365
	}
4366
	if (running)
4367
		set_curr_task(rq, p);
4368

P
Peter Zijlstra 已提交
4369
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4370 4371 4372

	/* Avoid rq from going away on us: */
	preempt_disable();
4373
	task_rq_unlock(rq, p, &rf);
4374

4375 4376
	if (pi)
		rt_mutex_adjust_pi(p);
4377

I
Ingo Molnar 已提交
4378
	/* Run balance callbacks after we've adjusted the PI chain: */
4379 4380
	balance_callback(rq);
	preempt_enable();
4381

L
Linus Torvalds 已提交
4382 4383
	return 0;
}
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4394 4395
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4396 4397 4398 4399 4400
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4401
	return __sched_setscheduler(p, &attr, check, true);
4402
}
4403 4404 4405 4406 4407 4408
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4409 4410
 * Return: 0 on success. An error code otherwise.
 *
4411 4412 4413
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4414
		       const struct sched_param *param)
4415
{
4416
	return _sched_setscheduler(p, policy, param, true);
4417
}
L
Linus Torvalds 已提交
4418 4419
EXPORT_SYMBOL_GPL(sched_setscheduler);

4420 4421
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4422
	return __sched_setscheduler(p, attr, true, true);
4423 4424 4425
}
EXPORT_SYMBOL_GPL(sched_setattr);

4426 4427 4428 4429 4430
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4441 4442
 *
 * Return: 0 on success. An error code otherwise.
4443 4444
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4445
			       const struct sched_param *param)
4446
{
4447
	return _sched_setscheduler(p, policy, param, false);
4448
}
4449
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4450

I
Ingo Molnar 已提交
4451 4452
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4453 4454 4455
{
	struct sched_param lparam;
	struct task_struct *p;
4456
	int retval;
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4462 4463 4464

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4465
	p = find_process_by_pid(pid);
4466 4467 4468
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4469

L
Linus Torvalds 已提交
4470 4471 4472
	return retval;
}

4473 4474 4475
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4476
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4477 4478 4479 4480 4481 4482 4483
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4484
	/* Zero the full structure, so that a short copy will be nice: */
4485 4486 4487 4488 4489 4490
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4491 4492
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4493 4494
		goto err_size;

I
Ingo Molnar 已提交
4495 4496
	/* ABI compatibility quirk: */
	if (!size)
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4531
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4532 4533
	 * to be strict and return an error on out-of-bounds values?
	 */
4534
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4535

4536
	return 0;
4537 4538 4539

err_size:
	put_user(sizeof(*attr), &uattr->size);
4540
	return -E2BIG;
4541 4542
}

L
Linus Torvalds 已提交
4543 4544 4545 4546 4547
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4548 4549
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4550
 */
I
Ingo Molnar 已提交
4551
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4552
{
4553 4554 4555
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561 4562
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4563 4564
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4565
 */
4566
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4567
{
4568
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4569 4570
}

4571 4572 4573
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4574
 * @uattr: structure containing the extended parameters.
4575
 * @flags: for future extension.
4576
 */
4577 4578
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4579 4580 4581 4582 4583
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4584
	if (!uattr || pid < 0 || flags)
4585 4586
		return -EINVAL;

4587 4588 4589
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4590

4591
	if ((int)attr.sched_policy < 0)
4592
		return -EINVAL;
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4604 4605 4606
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4607 4608 4609
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4610
 */
4611
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4612
{
4613
	struct task_struct *p;
4614
	int retval;
L
Linus Torvalds 已提交
4615 4616

	if (pid < 0)
4617
		return -EINVAL;
L
Linus Torvalds 已提交
4618 4619

	retval = -ESRCH;
4620
	rcu_read_lock();
L
Linus Torvalds 已提交
4621 4622 4623 4624
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4625 4626
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4627
	}
4628
	rcu_read_unlock();
L
Linus Torvalds 已提交
4629 4630 4631 4632
	return retval;
}

/**
4633
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4634 4635
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4636 4637 4638
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4639
 */
4640
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4641
{
4642
	struct sched_param lp = { .sched_priority = 0 };
4643
	struct task_struct *p;
4644
	int retval;
L
Linus Torvalds 已提交
4645 4646

	if (!param || pid < 0)
4647
		return -EINVAL;
L
Linus Torvalds 已提交
4648

4649
	rcu_read_lock();
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4659 4660
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4661
	rcu_read_unlock();
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4671
	rcu_read_unlock();
L
Linus Torvalds 已提交
4672 4673 4674
	return retval;
}

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4698
				return -EFBIG;
4699 4700 4701 4702 4703
		}

		attr->size = usize;
	}

4704
	ret = copy_to_user(uattr, attr, attr->size);
4705 4706 4707
	if (ret)
		return -EFAULT;

4708
	return 0;
4709 4710 4711
}

/**
4712
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4713
 * @pid: the pid in question.
J
Juri Lelli 已提交
4714
 * @uattr: structure containing the extended parameters.
4715
 * @size: sizeof(attr) for fwd/bwd comp.
4716
 * @flags: for future extension.
4717
 */
4718 4719
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4720 4721 4722 4723 4724 4725 4726 4727
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4728
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4742 4743
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4744 4745 4746
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4747 4748
		attr.sched_priority = p->rt_priority;
	else
4749
		attr.sched_nice = task_nice(p);
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4761
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4762
{
4763
	cpumask_var_t cpus_allowed, new_mask;
4764 4765
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4766

4767
	rcu_read_lock();
L
Linus Torvalds 已提交
4768 4769 4770

	p = find_process_by_pid(pid);
	if (!p) {
4771
		rcu_read_unlock();
L
Linus Torvalds 已提交
4772 4773 4774
		return -ESRCH;
	}

4775
	/* Prevent p going away */
L
Linus Torvalds 已提交
4776
	get_task_struct(p);
4777
	rcu_read_unlock();
L
Linus Torvalds 已提交
4778

4779 4780 4781 4782
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4783 4784 4785 4786 4787 4788 4789 4790
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4791
	retval = -EPERM;
E
Eric W. Biederman 已提交
4792 4793 4794 4795
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4796
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4797 4798 4799
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4800

4801
	retval = security_task_setscheduler(p);
4802
	if (retval)
4803
		goto out_free_new_mask;
4804

4805 4806 4807 4808

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4809 4810 4811 4812 4813 4814 4815
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4816 4817 4818
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4819
			retval = -EBUSY;
4820
			rcu_read_unlock();
4821
			goto out_free_new_mask;
4822
		}
4823
		rcu_read_unlock();
4824 4825
	}
#endif
P
Peter Zijlstra 已提交
4826
again:
4827
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4828

P
Paul Menage 已提交
4829
	if (!retval) {
4830 4831
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4832 4833 4834 4835 4836
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4837
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4838 4839 4840
			goto again;
		}
	}
4841
out_free_new_mask:
4842 4843 4844 4845
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4846 4847 4848 4849 4850
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4851
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4852
{
4853 4854 4855 4856 4857
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4858 4859 4860 4861
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4862
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4863 4864
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4865
 * @user_mask_ptr: user-space pointer to the new CPU mask
4866 4867
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4868
 */
4869 4870
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4871
{
4872
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4873 4874
	int retval;

4875 4876
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4877

4878 4879 4880 4881 4882
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4883 4884
}

4885
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4886
{
4887
	struct task_struct *p;
4888
	unsigned long flags;
L
Linus Torvalds 已提交
4889 4890
	int retval;

4891
	rcu_read_lock();
L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4898 4899 4900 4901
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4902
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4903
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4904
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4905 4906

out_unlock:
4907
	rcu_read_unlock();
L
Linus Torvalds 已提交
4908

4909
	return retval;
L
Linus Torvalds 已提交
4910 4911 4912
}

/**
I
Ingo Molnar 已提交
4913
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4914 4915
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4916
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4917
 *
4918 4919
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4920
 */
4921 4922
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4923 4924
{
	int ret;
4925
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4926

A
Anton Blanchard 已提交
4927
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4928 4929
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4930 4931
		return -EINVAL;

4932 4933
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4934

4935 4936
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4937
		unsigned int retlen = min(len, cpumask_size());
4938 4939

		if (copy_to_user(user_mask_ptr, mask, retlen))
4940 4941
			ret = -EFAULT;
		else
4942
			ret = retlen;
4943 4944
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4945

4946
	return ret;
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4952 4953
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4954 4955
 *
 * Return: 0.
L
Linus Torvalds 已提交
4956
 */
4957
static void do_sched_yield(void)
L
Linus Torvalds 已提交
4958
{
4959 4960 4961 4962 4963 4964
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4965

4966
	schedstat_inc(rq->yld_count);
4967
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4973 4974
	preempt_disable();
	rq_unlock(rq, &rf);
4975
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4976 4977

	schedule();
4978
}
L
Linus Torvalds 已提交
4979

4980 4981 4982
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
L
Linus Torvalds 已提交
4983 4984 4985
	return 0;
}

4986
#ifndef CONFIG_PREEMPT
4987
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4988
{
4989
	if (should_resched(0)) {
4990
		preempt_schedule_common();
L
Linus Torvalds 已提交
4991 4992
		return 1;
	}
4993
	rcu_all_qs();
L
Linus Torvalds 已提交
4994 4995
	return 0;
}
4996
EXPORT_SYMBOL(_cond_resched);
4997
#endif
L
Linus Torvalds 已提交
4998 4999

/*
5000
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5001 5002
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5003
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5004 5005 5006
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5007
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5008
{
5009
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
5010 5011
	int ret = 0;

5012 5013
	lockdep_assert_held(lock);

5014
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5015
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5016
		if (resched)
5017
			preempt_schedule_common();
N
Nick Piggin 已提交
5018 5019
		else
			cpu_relax();
J
Jan Kara 已提交
5020
		ret = 1;
L
Linus Torvalds 已提交
5021 5022
		spin_lock(lock);
	}
J
Jan Kara 已提交
5023
	return ret;
L
Linus Torvalds 已提交
5024
}
5025
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5026 5027 5028 5029

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5039
 *	yield();
P
Peter Zijlstra 已提交
5040 5041 5042 5043 5044 5045 5046 5047
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5048 5049 5050 5051
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
5052
	do_sched_yield();
L
Linus Torvalds 已提交
5053 5054 5055
}
EXPORT_SYMBOL(yield);

5056 5057 5058 5059
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5060 5061
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5062 5063 5064 5065
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5066
 * Return:
5067 5068 5069
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5070
 */
5071
int __sched yield_to(struct task_struct *p, bool preempt)
5072 5073 5074 5075
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5076
	int yielded = 0;
5077 5078 5079 5080 5081 5082

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5083 5084 5085 5086 5087 5088 5089 5090 5091
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5092
	double_rq_lock(rq, p_rq);
5093
	if (task_rq(p) != p_rq) {
5094 5095 5096 5097 5098
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5099
		goto out_unlock;
5100 5101

	if (curr->sched_class != p->sched_class)
5102
		goto out_unlock;
5103 5104

	if (task_running(p_rq, p) || p->state)
5105
		goto out_unlock;
5106 5107

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5108
	if (yielded) {
5109
		schedstat_inc(rq->yld_count);
5110 5111 5112 5113 5114
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5115
			resched_curr(p_rq);
5116
	}
5117

5118
out_unlock:
5119
	double_rq_unlock(rq, p_rq);
5120
out_irq:
5121 5122
	local_irq_restore(flags);

5123
	if (yielded > 0)
5124 5125 5126 5127 5128 5129
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5145
/*
I
Ingo Molnar 已提交
5146
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5147 5148 5149 5150
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5151
	int token;
L
Linus Torvalds 已提交
5152 5153
	long ret;

5154
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5155
	ret = schedule_timeout(timeout);
5156
	io_schedule_finish(token);
5157

L
Linus Torvalds 已提交
5158 5159
	return ret;
}
5160
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5161

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5172 5173 5174 5175
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5176 5177 5178
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5179
 */
5180
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187 5188
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5189
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5190
	case SCHED_NORMAL:
5191
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5192
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5203 5204 5205
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5206
 */
5207
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5216
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5217
	case SCHED_NORMAL:
5218
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5219
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224
		ret = 0;
	}
	return ret;
}

5225
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5226
{
5227
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5228
	unsigned int time_slice;
5229
	struct rq_flags rf;
5230
	struct rq *rq;
5231
	int retval;
L
Linus Torvalds 已提交
5232 5233

	if (pid < 0)
5234
		return -EINVAL;
L
Linus Torvalds 已提交
5235 5236

	retval = -ESRCH;
5237
	rcu_read_lock();
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243 5244 5245
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5246
	rq = task_rq_lock(p, &rf);
5247 5248 5249
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5250
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5251

5252
	rcu_read_unlock();
5253 5254
	jiffies_to_timespec64(time_slice, t);
	return 0;
5255

L
Linus Torvalds 已提交
5256
out_unlock:
5257
	rcu_read_unlock();
L
Linus Torvalds 已提交
5258 5259 5260
	return retval;
}

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5298
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5299 5300
{
	unsigned long free = 0;
5301
	int ppid;
5302

5303 5304
	if (!try_get_task_stack(p))
		return;
5305 5306 5307 5308

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5309
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5310
#ifdef CONFIG_DEBUG_STACK_USAGE
5311
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5312
#endif
5313
	ppid = 0;
5314
	rcu_read_lock();
5315 5316
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5317
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5318
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5319
		task_pid_nr(p), ppid,
5320
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5321

5322
	print_worker_info(KERN_INFO, p);
5323
	show_stack(p, NULL);
5324
	put_task_stack(p);
L
Linus Torvalds 已提交
5325
}
5326
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5327

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5350
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5351
{
5352
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5353

5354
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5355 5356
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5357
#else
P
Peter Zijlstra 已提交
5358 5359
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5360
#endif
5361
	rcu_read_lock();
5362
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5363 5364
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5365
		 * console might take a lot of time:
5366 5367 5368
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5369 5370
		 */
		touch_nmi_watchdog();
5371
		touch_all_softlockup_watchdogs();
5372
		if (state_filter_match(state_filter, p))
5373
			sched_show_task(p);
5374
	}
L
Linus Torvalds 已提交
5375

I
Ingo Molnar 已提交
5376
#ifdef CONFIG_SCHED_DEBUG
5377 5378
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5379
#endif
5380
	rcu_read_unlock();
I
Ingo Molnar 已提交
5381 5382 5383
	/*
	 * Only show locks if all tasks are dumped:
	 */
5384
	if (!state_filter)
I
Ingo Molnar 已提交
5385
		debug_show_all_locks();
L
Linus Torvalds 已提交
5386 5387
}

5388 5389 5390
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5391
 * @cpu: CPU the idle task belongs to
5392 5393 5394 5395
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5396
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5397
{
5398
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5399 5400
	unsigned long flags;

5401 5402
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5403

5404
	__sched_fork(0, idle);
5405
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5406
	idle->se.exec_start = sched_clock();
5407
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5408

5409 5410
	kasan_unpoison_task_stack(idle);

5411 5412 5413 5414 5415 5416 5417 5418 5419
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5420 5421
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5422
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5423 5424 5425 5426 5427 5428 5429 5430
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5431
	__set_task_cpu(idle, cpu);
5432
	rcu_read_unlock();
L
Linus Torvalds 已提交
5433 5434

	rq->curr = rq->idle = idle;
5435
	idle->on_rq = TASK_ON_RQ_QUEUED;
5436
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5437
	idle->on_cpu = 1;
5438
#endif
5439 5440
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5441 5442

	/* Set the preempt count _outside_ the spinlocks! */
5443
	init_idle_preempt_count(idle, cpu);
5444

I
Ingo Molnar 已提交
5445 5446 5447 5448
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5449
	ftrace_graph_init_idle_task(idle, cpu);
5450
	vtime_init_idle(idle, cpu);
5451
#ifdef CONFIG_SMP
5452 5453
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5454 5455
}

5456 5457
#ifdef CONFIG_SMP

5458 5459 5460
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5461
	int ret = 1;
5462

5463 5464 5465
	if (!cpumask_weight(cur))
		return ret;

5466
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5467 5468 5469 5470

	return ret;
}

5471 5472 5473 5474 5475 5476 5477
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5478
	 * to a new cpuset; we don't want to change their CPU
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5491 5492
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5493 5494 5495 5496 5497

out:
	return ret;
}

5498
bool sched_smp_initialized __read_mostly;
5499

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5510
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5511 5512 5513 5514
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5515
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5516 5517
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5518 5519 5520 5521 5522 5523 5524

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5525
	bool queued, running;
5526 5527
	struct rq_flags rf;
	struct rq *rq;
5528

5529
	rq = task_rq_lock(p, &rf);
5530
	queued = task_on_rq_queued(p);
5531 5532
	running = task_current(rq, p);

5533
	if (queued)
5534
		dequeue_task(rq, p, DEQUEUE_SAVE);
5535
	if (running)
5536
		put_prev_task(rq, p);
5537 5538 5539

	p->numa_preferred_nid = nid;

5540
	if (queued)
5541
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5542
	if (running)
5543
		set_curr_task(rq, p);
5544
	task_rq_unlock(rq, p, &rf);
5545
}
P
Peter Zijlstra 已提交
5546
#endif /* CONFIG_NUMA_BALANCING */
5547

L
Linus Torvalds 已提交
5548
#ifdef CONFIG_HOTPLUG_CPU
5549
/*
I
Ingo Molnar 已提交
5550
 * Ensure that the idle task is using init_mm right before its CPU goes
5551
 * offline.
5552
 */
5553
void idle_task_exit(void)
L
Linus Torvalds 已提交
5554
{
5555
	struct mm_struct *mm = current->active_mm;
5556

5557
	BUG_ON(cpu_online(smp_processor_id()));
5558

5559
	if (mm != &init_mm) {
5560
		switch_mm(mm, &init_mm, current);
5561
		current->active_mm = &init_mm;
5562 5563
		finish_arch_post_lock_switch();
	}
5564
	mmdrop(mm);
L
Linus Torvalds 已提交
5565 5566 5567
}

/*
5568 5569
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5570 5571 5572
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5573 5574
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5575
 */
5576
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5577
{
5578
	long delta = calc_load_fold_active(rq, 1);
5579 5580
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5581 5582
}

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5599
/*
5600 5601 5602 5603 5604 5605
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5606
 */
5607
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5608
{
5609
	struct rq *rq = dead_rq;
5610
	struct task_struct *next, *stop = rq->stop;
5611
	struct rq_flags orf = *rf;
5612
	int dest_cpu;
L
Linus Torvalds 已提交
5613 5614

	/*
5615 5616 5617 5618 5619 5620 5621
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5622
	 */
5623
	rq->stop = NULL;
5624

5625 5626 5627 5628 5629 5630 5631
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5632
	for (;;) {
5633 5634
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5635
		 * remaining thread:
5636 5637
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5638
			break;
5639

5640
		/*
I
Ingo Molnar 已提交
5641
		 * pick_next_task() assumes pinned rq->lock:
5642
		 */
5643
		next = pick_next_task(rq, &fake_task, rf);
5644
		BUG_ON(!next);
V
Viresh Kumar 已提交
5645
		put_prev_task(rq, next);
5646

W
Wanpeng Li 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5656
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5657
		raw_spin_lock(&next->pi_lock);
5658
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5670
		/* Find suitable destination for @next, with force if needed. */
5671
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5672
		rq = __migrate_task(rq, rf, next, dest_cpu);
5673
		if (rq != dead_rq) {
5674
			rq_unlock(rq, rf);
5675
			rq = dead_rq;
5676 5677
			*rf = orf;
			rq_relock(rq, rf);
5678
		}
W
Wanpeng Li 已提交
5679
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5680
	}
5681

5682
	rq->stop = stop;
5683
}
L
Linus Torvalds 已提交
5684 5685
#endif /* CONFIG_HOTPLUG_CPU */

5686
void set_rq_online(struct rq *rq)
5687 5688 5689 5690
{
	if (!rq->online) {
		const struct sched_class *class;

5691
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5692 5693 5694 5695 5696 5697 5698 5699 5700
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5701
void set_rq_offline(struct rq *rq)
5702 5703 5704 5705 5706 5707 5708 5709 5710
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5711
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5712 5713 5714 5715
		rq->online = 0;
	}
}

5716
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5717
{
5718
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5719

5720 5721 5722
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5723 5724 5725 5726
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5727

L
Linus Torvalds 已提交
5728
/*
5729 5730 5731
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5732 5733 5734
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5735
 */
5736
static void cpuset_cpu_active(void)
5737
{
5738
	if (cpuhp_tasks_frozen) {
5739 5740 5741 5742 5743 5744
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5745 5746
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5747
			return;
5748 5749 5750 5751 5752
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5753
		cpuset_force_rebuild();
5754
	}
5755
	cpuset_update_active_cpus();
5756
}
5757

5758
static int cpuset_cpu_inactive(unsigned int cpu)
5759
{
5760
	if (!cpuhp_tasks_frozen) {
5761
		if (dl_cpu_busy(cpu))
5762
			return -EBUSY;
5763
		cpuset_update_active_cpus();
5764
	} else {
5765 5766
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5767
	}
5768
	return 0;
5769 5770
}

5771
int sched_cpu_activate(unsigned int cpu)
5772
{
5773
	struct rq *rq = cpu_rq(cpu);
5774
	struct rq_flags rf;
5775

5776
	set_cpu_active(cpu, true);
5777

5778
	if (sched_smp_initialized) {
5779
		sched_domains_numa_masks_set(cpu);
5780
		cpuset_cpu_active();
5781
	}
5782 5783 5784 5785 5786

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5787
	 *    after all CPUs have been brought up.
5788 5789 5790 5791
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5792
	rq_lock_irqsave(rq, &rf);
5793 5794 5795 5796
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5797
	rq_unlock_irqrestore(rq, &rf);
5798 5799 5800

	update_max_interval();

5801
	return 0;
5802 5803
}

5804
int sched_cpu_deactivate(unsigned int cpu)
5805 5806 5807
{
	int ret;

5808
	set_cpu_active(cpu, false);
5809 5810 5811 5812 5813 5814 5815
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5816
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5817 5818 5819 5820 5821 5822 5823 5824

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5825
	}
5826 5827
	sched_domains_numa_masks_clear(cpu);
	return 0;
5828 5829
}

5830 5831 5832 5833 5834 5835 5836 5837
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5838 5839 5840
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5841
	sched_rq_cpu_starting(cpu);
5842
	sched_tick_start(cpu);
5843
	return 0;
5844 5845
}

5846 5847 5848 5849
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5850
	struct rq_flags rf;
5851 5852 5853

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5854
	sched_tick_stop(cpu);
5855 5856

	rq_lock_irqsave(rq, &rf);
5857 5858 5859 5860
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5861
	migrate_tasks(rq, &rf);
5862
	BUG_ON(rq->nr_running != 1);
5863 5864
	rq_unlock_irqrestore(rq, &rf);

5865 5866
	calc_load_migrate(rq);
	update_max_interval();
5867
	nohz_balance_exit_idle(rq);
5868
	hrtick_clear(rq);
5869 5870 5871 5872
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5889 5890
void __init sched_init_smp(void)
{
5891 5892
	sched_init_numa();

5893 5894
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5895
	 * CPU masks are stable and all blatant races in the below code cannot
5896 5897
	 * happen.
	 */
5898
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5899
	sched_init_domains(cpu_active_mask);
5900
	mutex_unlock(&sched_domains_mutex);
5901

5902
	/* Move init over to a non-isolated CPU */
5903
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5904
		BUG();
I
Ingo Molnar 已提交
5905
	sched_init_granularity();
5906

5907
	init_sched_rt_class();
5908
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5909 5910 5911

	sched_init_smt();

5912
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5913
}
5914 5915 5916

static int __init migration_init(void)
{
5917
	sched_rq_cpu_starting(smp_processor_id());
5918
	return 0;
L
Linus Torvalds 已提交
5919
}
5920 5921
early_initcall(migration_init);

L
Linus Torvalds 已提交
5922 5923 5924
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5925
	sched_init_granularity();
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5936
#ifdef CONFIG_CGROUP_SCHED
5937 5938 5939 5940
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5941
struct task_group root_task_group;
5942
LIST_HEAD(task_groups);
5943 5944 5945

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5946
#endif
P
Peter Zijlstra 已提交
5947

5948
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5949
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5950

L
Linus Torvalds 已提交
5951 5952
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5953
	int i, j;
5954 5955
	unsigned long alloc_size = 0, ptr;

5956
	sched_clock_init();
5957
	wait_bit_init();
5958

5959 5960 5961 5962 5963 5964 5965
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5966
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5967 5968

#ifdef CONFIG_FAIR_GROUP_SCHED
5969
		root_task_group.se = (struct sched_entity **)ptr;
5970 5971
		ptr += nr_cpu_ids * sizeof(void **);

5972
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5973
		ptr += nr_cpu_ids * sizeof(void **);
5974

5975
#endif /* CONFIG_FAIR_GROUP_SCHED */
5976
#ifdef CONFIG_RT_GROUP_SCHED
5977
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5978 5979
		ptr += nr_cpu_ids * sizeof(void **);

5980
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5981 5982
		ptr += nr_cpu_ids * sizeof(void **);

5983
#endif /* CONFIG_RT_GROUP_SCHED */
5984
	}
5985
#ifdef CONFIG_CPUMASK_OFFSTACK
5986 5987 5988
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5989 5990
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5991
	}
5992
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5993

I
Ingo Molnar 已提交
5994 5995
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5996

G
Gregory Haskins 已提交
5997 5998 5999 6000
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6001
#ifdef CONFIG_RT_GROUP_SCHED
6002
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6003
			global_rt_period(), global_rt_runtime());
6004
#endif /* CONFIG_RT_GROUP_SCHED */
6005

D
Dhaval Giani 已提交
6006
#ifdef CONFIG_CGROUP_SCHED
6007 6008
	task_group_cache = KMEM_CACHE(task_group, 0);

6009 6010
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6011
	INIT_LIST_HEAD(&root_task_group.siblings);
6012
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6013
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6014

6015
	for_each_possible_cpu(i) {
6016
		struct rq *rq;
L
Linus Torvalds 已提交
6017 6018

		rq = cpu_rq(i);
6019
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6020
		rq->nr_running = 0;
6021 6022
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6023
		init_cfs_rq(&rq->cfs);
6024 6025
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6026
#ifdef CONFIG_FAIR_GROUP_SCHED
6027
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6028
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6029
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6030
		/*
I
Ingo Molnar 已提交
6031
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6032 6033
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6034 6035
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6036
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6037 6038 6039
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6040
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6041
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6042
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6043
		 *
6044
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6045
		 *
6046 6047
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6048
		 */
6049
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6050
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6051 6052 6053
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6054
#ifdef CONFIG_RT_GROUP_SCHED
6055
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6056
#endif
L
Linus Torvalds 已提交
6057

I
Ingo Molnar 已提交
6058 6059
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6060

L
Linus Torvalds 已提交
6061
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6062
		rq->sd = NULL;
G
Gregory Haskins 已提交
6063
		rq->rd = NULL;
6064
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6065
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6066
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6067
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6068
		rq->push_cpu = 0;
6069
		rq->cpu = i;
6070
		rq->online = 0;
6071 6072
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6073
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6074 6075 6076

		INIT_LIST_HEAD(&rq->cfs_tasks);

6077
		rq_attach_root(rq, &def_root_domain);
6078
#ifdef CONFIG_NO_HZ_COMMON
6079
		rq->last_load_update_tick = jiffies;
6080
		rq->last_blocked_load_update_tick = jiffies;
6081
		atomic_set(&rq->nohz_flags, 0);
6082
#endif
6083
#endif /* CONFIG_SMP */
6084
		hrtick_rq_init(rq);
L
Linus Torvalds 已提交
6085 6086 6087
		atomic_set(&rq->nr_iowait, 0);
	}

6088
	set_load_weight(&init_task, false);
6089

L
Linus Torvalds 已提交
6090 6091 6092
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6093
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6103 6104 6105

	calc_load_update = jiffies + LOAD_FREQ;

6106
#ifdef CONFIG_SMP
6107
	idle_thread_set_boot_cpu();
6108
	set_cpu_rq_start_time(smp_processor_id());
6109 6110
#endif
	init_sched_fair_class();
6111

6112 6113
	init_schedstats();

6114
	scheduler_running = 1;
L
Linus Torvalds 已提交
6115 6116
}

6117
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6118 6119
static inline int preempt_count_equals(int preempt_offset)
{
6120
	int nested = preempt_count() + rcu_preempt_depth();
6121

A
Arnd Bergmann 已提交
6122
	return (nested == preempt_offset);
6123 6124
}

6125
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6126
{
P
Peter Zijlstra 已提交
6127 6128 6129 6130 6131
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6132
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6133 6134 6135 6136
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6137
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6138

6139 6140 6141 6142 6143
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6144
{
I
Ingo Molnar 已提交
6145 6146 6147
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6148
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6149

I
Ingo Molnar 已提交
6150 6151 6152
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6153 6154
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6155 6156
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6157
		return;
6158

I
Ingo Molnar 已提交
6159 6160 6161 6162
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6163
	/* Save this before calling printk(), since that will clobber it: */
6164 6165
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6166 6167 6168 6169 6170 6171 6172
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6173

6174 6175 6176
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6177 6178 6179
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6180 6181
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6182
		pr_err("Preemption disabled at:");
6183
		print_ip_sym(preempt_disable_ip);
6184 6185
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6186
	dump_stack();
6187
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6188
}
6189
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6190 6191 6192
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6193
void normalize_rt_tasks(void)
6194
{
6195
	struct task_struct *g, *p;
6196 6197 6198
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6199

6200
	read_lock(&tasklist_lock);
6201
	for_each_process_thread(g, p) {
6202 6203 6204
		/*
		 * Only normalize user tasks:
		 */
6205
		if (p->flags & PF_KTHREAD)
6206 6207
			continue;

6208 6209 6210 6211
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6212

6213
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6214 6215 6216 6217
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6218
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6219
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6220
			continue;
I
Ingo Molnar 已提交
6221
		}
L
Linus Torvalds 已提交
6222

6223
		__sched_setscheduler(p, &attr, false, false);
6224
	}
6225
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6226 6227 6228
}

#endif /* CONFIG_MAGIC_SYSRQ */
6229

6230
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6231
/*
6232
 * These functions are only useful for the IA64 MCA handling, or kdb.
6233 6234 6235 6236 6237 6238 6239 6240 6241
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6242
 * curr_task - return the current task for a given CPU.
6243 6244 6245
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6246 6247
 *
 * Return: The current task for @cpu.
6248
 */
6249
struct task_struct *curr_task(int cpu)
6250 6251 6252 6253
{
	return cpu_curr(cpu);
}

6254 6255 6256
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6257
/**
I
Ingo Molnar 已提交
6258
 * set_curr_task - set the current task for a given CPU.
6259 6260 6261 6262
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6263
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6264
 * notion of the current task on a CPU in a non-blocking manner. This function
6265 6266 6267 6268 6269 6270 6271
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6272
void ia64_set_curr_task(int cpu, struct task_struct *p)
6273 6274 6275 6276 6277
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6278

D
Dhaval Giani 已提交
6279
#ifdef CONFIG_CGROUP_SCHED
6280 6281 6282
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6283
static void sched_free_group(struct task_group *tg)
6284 6285 6286
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6287
	autogroup_free(tg);
6288
	kmem_cache_free(task_group_cache, tg);
6289 6290 6291
}

/* allocate runqueue etc for a new task group */
6292
struct task_group *sched_create_group(struct task_group *parent)
6293 6294 6295
{
	struct task_group *tg;

6296
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6297 6298 6299
	if (!tg)
		return ERR_PTR(-ENOMEM);

6300
	if (!alloc_fair_sched_group(tg, parent))
6301 6302
		goto err;

6303
	if (!alloc_rt_sched_group(tg, parent))
6304 6305
		goto err;

6306 6307 6308
	return tg;

err:
6309
	sched_free_group(tg);
6310 6311 6312 6313 6314 6315 6316
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6317
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6318
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6319

I
Ingo Molnar 已提交
6320 6321
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6322 6323 6324

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6325
	list_add_rcu(&tg->siblings, &parent->children);
6326
	spin_unlock_irqrestore(&task_group_lock, flags);
6327 6328

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6329 6330
}

6331
/* rcu callback to free various structures associated with a task group */
6332
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6333
{
I
Ingo Molnar 已提交
6334
	/* Now it should be safe to free those cfs_rqs: */
6335
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6336 6337
}

6338
void sched_destroy_group(struct task_group *tg)
6339
{
I
Ingo Molnar 已提交
6340
	/* Wait for possible concurrent references to cfs_rqs complete: */
6341
	call_rcu(&tg->rcu, sched_free_group_rcu);
6342 6343 6344
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6345
{
6346
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6347

I
Ingo Molnar 已提交
6348
	/* End participation in shares distribution: */
6349
	unregister_fair_sched_group(tg);
6350 6351

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6352
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6353
	list_del_rcu(&tg->siblings);
6354
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6355 6356
}

6357
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6358
{
P
Peter Zijlstra 已提交
6359
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6360

6361 6362 6363 6364 6365 6366
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6367 6368 6369 6370
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6371
#ifdef CONFIG_FAIR_GROUP_SCHED
6372 6373
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6374
	else
P
Peter Zijlstra 已提交
6375
#endif
6376
		set_task_rq(tsk, task_cpu(tsk));
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6388 6389
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6390 6391 6392 6393
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6394
	update_rq_clock(rq);
6395 6396 6397 6398 6399

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6400
		dequeue_task(rq, tsk, queue_flags);
6401
	if (running)
6402 6403 6404
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6405

6406
	if (queued)
6407
		enqueue_task(rq, tsk, queue_flags);
6408
	if (running)
6409
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6410

6411
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6412
}
6413

6414
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6415
{
6416
	return css ? container_of(css, struct task_group, css) : NULL;
6417 6418
}

6419 6420
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6421
{
6422 6423
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6424

6425
	if (!parent) {
6426
		/* This is early initialization for the top cgroup */
6427
		return &root_task_group.css;
6428 6429
	}

6430
	tg = sched_create_group(parent);
6431 6432 6433 6434 6435 6436
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6448
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6449
{
6450
	struct task_group *tg = css_tg(css);
6451

6452
	sched_offline_group(tg);
6453 6454
}

6455
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6456
{
6457
	struct task_group *tg = css_tg(css);
6458

6459 6460 6461 6462
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6463 6464
}

6465 6466 6467 6468
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6469
static void cpu_cgroup_fork(struct task_struct *task)
6470
{
6471 6472 6473 6474 6475
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6476
	update_rq_clock(rq);
6477 6478 6479
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6480 6481
}

6482
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6483
{
6484
	struct task_struct *task;
6485
	struct cgroup_subsys_state *css;
6486
	int ret = 0;
6487

6488
	cgroup_taskset_for_each(task, css, tset) {
6489
#ifdef CONFIG_RT_GROUP_SCHED
6490
		if (!sched_rt_can_attach(css_tg(css), task))
6491
			return -EINVAL;
6492
#else
6493 6494 6495
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6496
#endif
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6513
	}
6514
	return ret;
6515
}
6516

6517
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6518
{
6519
	struct task_struct *task;
6520
	struct cgroup_subsys_state *css;
6521

6522
	cgroup_taskset_for_each(task, css, tset)
6523
		sched_move_task(task);
6524 6525
}

6526
#ifdef CONFIG_FAIR_GROUP_SCHED
6527 6528
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6529
{
6530
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6531 6532
}

6533 6534
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6535
{
6536
	struct task_group *tg = css_tg(css);
6537

6538
	return (u64) scale_load_down(tg->shares);
6539
}
6540 6541

#ifdef CONFIG_CFS_BANDWIDTH
6542 6543
static DEFINE_MUTEX(cfs_constraints_mutex);

6544 6545 6546
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6547 6548
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6549 6550
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6551
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6552
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6573 6574 6575 6576 6577
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6578 6579 6580 6581 6582
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6583
	runtime_enabled = quota != RUNTIME_INF;
6584
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6585 6586 6587 6588 6589 6590
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6591 6592 6593
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6594

P
Paul Turner 已提交
6595
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6596 6597

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6598 6599
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6600

6601 6602
	raw_spin_unlock_irq(&cfs_b->lock);

6603
	for_each_online_cpu(i) {
6604
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6605
		struct rq *rq = cfs_rq->rq;
6606
		struct rq_flags rf;
6607

6608
		rq_lock_irq(rq, &rf);
6609
		cfs_rq->runtime_enabled = runtime_enabled;
6610
		cfs_rq->runtime_remaining = 0;
6611

6612
		if (cfs_rq->throttled)
6613
			unthrottle_cfs_rq(cfs_rq);
6614
		rq_unlock_irq(rq, &rf);
6615
	}
6616 6617
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6618 6619
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6620
	put_online_cpus();
6621

6622
	return ret;
6623 6624 6625 6626 6627 6628
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6629
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6642
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6643 6644
		return -1;

6645
	quota_us = tg->cfs_bandwidth.quota;
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6656
	quota = tg->cfs_bandwidth.quota;
6657 6658 6659 6660 6661 6662 6663 6664

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6665
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6666 6667 6668 6669 6670
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6671 6672
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6673
{
6674
	return tg_get_cfs_quota(css_tg(css));
6675 6676
}

6677 6678
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6679
{
6680
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6681 6682
}

6683 6684
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6685
{
6686
	return tg_get_cfs_period(css_tg(css));
6687 6688
}

6689 6690
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6691
{
6692
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6693 6694
}

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6727
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6728 6729 6730 6731 6732
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6733
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6734 6735

		quota = normalize_cfs_quota(tg, d);
6736
		parent_quota = parent_b->hierarchical_quota;
6737 6738

		/*
6739 6740
		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
		 * always take the min.  On cgroup1, only inherit when no
I
Ingo Molnar 已提交
6741
		 * limit is set:
6742
		 */
6743 6744 6745 6746 6747 6748 6749 6750
		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
			quota = min(quota, parent_quota);
		} else {
			if (quota == RUNTIME_INF)
				quota = parent_quota;
			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
				return -EINVAL;
		}
6751
	}
6752
	cfs_b->hierarchical_quota = quota;
6753 6754 6755 6756 6757 6758

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6759
	int ret;
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6771 6772 6773 6774 6775
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6776
}
6777

6778
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6779
{
6780
	struct task_group *tg = css_tg(seq_css(sf));
6781
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6782

6783 6784 6785
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6786 6787 6788

	return 0;
}
6789
#endif /* CONFIG_CFS_BANDWIDTH */
6790
#endif /* CONFIG_FAIR_GROUP_SCHED */
6791

6792
#ifdef CONFIG_RT_GROUP_SCHED
6793 6794
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6795
{
6796
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6797 6798
}

6799 6800
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6801
{
6802
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6803
}
6804

6805 6806
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6807
{
6808
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6809 6810
}

6811 6812
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6813
{
6814
	return sched_group_rt_period(css_tg(css));
6815
}
6816
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6817

6818
static struct cftype cpu_legacy_files[] = {
6819
#ifdef CONFIG_FAIR_GROUP_SCHED
6820 6821
	{
		.name = "shares",
6822 6823
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6824
	},
6825
#endif
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6837 6838
	{
		.name = "stat",
6839
		.seq_show = cpu_cfs_stat_show,
6840
	},
6841
#endif
6842
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6843
	{
P
Peter Zijlstra 已提交
6844
		.name = "rt_runtime_us",
6845 6846
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6847
	},
6848 6849
	{
		.name = "rt_period_us",
6850 6851
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6852
	},
6853
#endif
I
Ingo Molnar 已提交
6854
	{ }	/* Terminate */
6855 6856
};

6857 6858
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6859 6860 6861
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6862
		struct task_group *tg = css_tg(css);
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;
6929
	int idx;
6930 6931 6932 6933

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

6934 6935 6936 6937
	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
	idx = array_index_nospec(idx, 40);
	weight = sched_prio_to_weight[idx];

6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

	if (!sscanf(buf, "%s %llu", tok, periodp))
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

7024
struct cgroup_subsys cpu_cgrp_subsys = {
7025
	.css_alloc	= cpu_cgroup_css_alloc,
7026
	.css_online	= cpu_cgroup_css_online,
7027
	.css_released	= cpu_cgroup_css_released,
7028
	.css_free	= cpu_cgroup_css_free,
7029
	.css_extra_stat_show = cpu_extra_stat_show,
7030
	.fork		= cpu_cgroup_fork,
7031 7032
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7033
	.legacy_cftypes	= cpu_legacy_files,
7034
	.dfl_cftypes	= cpu_files,
7035
	.early_init	= true,
7036
	.threaded	= true,
7037 7038
};

7039
#endif	/* CONFIG_CGROUP_SCHED */
7040

7041 7042 7043 7044 7045
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
7087 7088

#undef CREATE_TRACE_POINTS